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the other measuring the match of m to the target image Itarget. The algorithm for single
figure objects is as follows. At each stage of this algorithm the geometric typicality
measures deviation from the deformed model that is the result of the previous stage.

Algorithm
1a. Manually place the model in the 3D image, thereby choosing a similarity

transform
1b. Find and apply the similarity transform which optimizes F(m, Itarget)
2. Until convergence, do
  {For each medial atom in m {Transform the atom to optimize F(m, Itarget)}
3. For each boundary tile implied by m
  {Shift the position of the tile along the tile�s normal to optimize  F(m, Itarget)}

The initial models m0 used in this work (Figs. 1 & 4) were developed in one of two
ways:

By analysis of the geometry of a training set of hand segmented instances of the
object over a variety of patients. This automatic analysis uses a method described
in [Styner 2001].

By manual construction on a single training image according to set of rules
determined by the mathematics of medial geometry [Pizer et al 2001].

Space limitations do not permit us to detail these model building methods here.

2.   Theoretical Advantages of M-reps Based Segmentation

We desire successful segmentation performance that is linear in the number of the
smallest scale geometric primitives, for example the boundary tiles defining the
segmented object�s surface or the voxels making up the object. We argue elsewhere
that a) such behavior is achievable only by multi-scale-level segmentation with rather
closely spaced scale levels, and b) at each level the diameter of the area or volume
summarized by the geometric primitives (atoms) at that level and the distance of
communication used at each geometric transformation of an atom or group of atoms
are comparable. Either of these two distances can be taken as the measure of the scale
at that level.

In our method the scale levels are indicated by the numbered steps in the
algorithm above: [1] the figural scale levels, [2] the medial atom or figural section
scale level, [3] the boundary atom scale level. In steps 1 and 2 the object is
represented by medial atoms, and at step 3 it is represented by boundary atoms. A
representation of a figure by medial atoms is called an m-rep.

An m-rep for a generic figure in our system is a quad-mesh of medial atoms (Fig.
1), where an interior medial atom is a medial position at which two vectors (called
port and starboard sails) of equal length r share a sail and a mesh-edge medial atom
in addition is equipped with a bisector vector of the two sails of length greater or
equal to the common sail length. To allow shape representation and thus
magnification invariance not only globally but locally, the spacing of the atoms in an
m-rep is approximately proportional to the sail lengths r of the atom.
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object and object scale levels. Also described elsewhere [Yushkevich 2001],
there are opportunities for multiple levels of meshing of each figure.

4. Figures yield an intrinsic coordinate system with space varying frame and
distance metric. Indeed, multi-figure complexes also yield an intrinsic coordinate
system, not described in this paper due to lack of space. As described in section
3, this leads to correspondences under deformation that are important with
deformable models.

3.   Intrinsic Figural Coordinates and Their Use in Geometric
Typicality and in Geometry to Image Match

Geometric typicality functions measure the closeness of a deformed model for a
figure to a mean or most typical form of the figure. Since sensing of the figure is
typically at the boundary, it is natural for this geometric typicality measure to involve
the distances of corresponding boundary points between the deformed state of the
figure and the typical state (Fig. 2). In a medial geometry, allowing shape to be
characterized at all levels of scale (locality), the distances must be taken in multiples
of r (the length of the relevant medial sail). In our method as it presently stands, the
geometric typicality is measured by the mean squared r-proportional offset of the
boundary. This mean is taken over the section of boundary appropriate for the present
level of scale, and it is measured between the version of the deformed model
produced at the next larger level of scale and the newly deformed candidate m.

As is common, our method measures the match of m to the target image in a
region near the object boundary that we we call a boundary collar (Fig. 2). A fruitful
way of looking at matching m to Itarget is that at corresponding positions in the collar,
before and after deformation of the model into m, a template defined on the model
must match as closely as possible a template image defined with respect to the model.
The template can be an ideal image, e.g., defined by directional derivatives of a
Gaussian, the training image from which the model was built, or the statistics of a set
of training images from which the model was built.

Fig. 2. Medially implied correspondences between a typical figure and a deformed
figure for figural boundary positions (leftmost), for positions interior and exterior to
the boundary (center), and for the boundary collar (right).

The boundary and collar position correspondences required by geometric typicality
and the image match, respectively, are well provided by the medially based intrinsic
coordinate system for a figure, as follows. Let the two dimensions of the quad mesh
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forming the m-rep be called u and v. Let the atom positions be taken as integer values
of u and v. Let the interpolated medial sheet be parametrized by its (u,v) �figural�
coordinate system in which distances are r-proportional along the medial manifold.

The medially implied boundary is parametrized via the medial coordinates, but in
addition a parameter t is needed to select the side of the medial sheet. We let t=1 for
boundary points touched by port sails and let t= -1 for boundary points touched by
starboard sails. At the crest, where the boundary switches from the port side to the
starboard side, t varies smoothly from +1 to �1 such that t=0 at the crest. Then every
boundary point is parametrized by its figural coordinates (u,v,t). Each boundary point
thereby carries a normal in the direction of the sail abutting there and a ruler r(u,v).
The (u,v,t) values are used to produce correspondences for boundary points to
measure the geometric typicality between the state before and that after deformation
and are also used in the boundary displacement final stage of the segmentation.

Points inside the figure and outside it but inside the caustic surface can also be
put into correspondence in a figurally relative manner. Correspondences outside the
caustic surface have also been defined [Crouch 2001], but this is beyond the scope of
this paper. In the medial framework distances are measured in an r-proportional
fashion along the sails, i.e., along boundary normals. Thus if d is the Euclidean
distance from the medially implied boundary to a point in space, with points interior
to the figure having negative distances and points exterior to the figure having
positive distances, (u,v,t,d/r) provides a shape-respecting figural coordinate for a
point. Correspondences between the collars of a figure and its deformed version used
in computing geometry to image match are then done according to equal values of the
these figural coordinates for space. More precisely, at model building time a boundary
sampling defined by equally spaced samples of u, v, and t is determined and an
equally spaced sampling of d/r  between �k and +k is specified (k = 0.33 is a typical
value). These sample positions for the part of the boundary that can be shifted at the
respective level of scale are used in producing the geometry to image match measure.

Many segmentation systems use directional derivatives of a Gaussian at some
scale as a measure of contrast, which is expected to be high at a boundary. This is
equivalent to correlation with a derivative of Gaussian template in the normal
direction at each boundary position of the object. This suggests that a correlation
method with a template related by figural correspondence to the image(s) on which
the model is based is advisable. Other measures of template match, such as
normalized mutual information are possible [Willis 2001].

A different template is preferable for images in which the object appears at low
contrast at some boundary positions, the polarity or other form of the contrast changes
along the boundary (Fig. 3), or either object or the background region in some
portions of the boundary is quite thin. In these cases, which are more common than
not, a template made from a training image or the mean of a set of training images is
quite attractive. Such a template can avoid having the deformation be attracted by a
high contrast nearby boundary in a region along which the object sought bounds an
object with similar intensity and thus is known to provide no contrast.

We have implemented such a training image template for collars of half-width
r/3. For certain kidneys they provide improved segmentation, and for the
hippocampus they are essential.



                                    Segmentation of Single-Figure Objects by Deformable M-reps           867

Fig 3.  Intensity profiles for a set of patient�s normal to the boundary at three separate
locations. Compliments of G. Gerig.

4.   Results on Single Figure Objects

We have tested this method for the extraction of three anatomic objects well modeled
by a single figure: the lateral cerebral ventricle, the kidney parenchyma + pelvis, and
the hippocampus.  Extracting the lateral ventricle from MR images is not very
challenging because the ventricle appears with high contrast, so our successful results
are not shown. Extracting the kidney from CT has some challenge because in certain
sections of the kidney, where it abuts the liver, there is essentially no contrast and the
high contrast spine is nearby. Results of a kidney segmentation are visualized in Figs.
4 & 5. As laid out in Table 1, for 30 kidneys (18 right kidneys and 12 left kidneys,
with the model having been built on a right kidney) we were able to extract the kidney
with an median accuracy of boundary position of 1 voxel (2.0 mm) as compared to a
human manual segmentation. All of the measurements in Table 1are made relative to
a human segmentation that classified each voxel as in or not in the object and did not
take anatomic understanding well into account when segmenting the renal pelvis from
the ureter and other background. Moreover, the measurement tool measures offsets
and overlaps only to the closest voxel. Therefore, our real median boundary accuracy
is subvoxel, and the overlap percentatges are understated. Human to human
agreement is of the same order.

5.   Conclusions

Extracting the hippocampus from MRI is very challenging for humans and has great
variability across human segmenters. This provides a major challenge for automatic
segmentation, but so far we have achieved 8 successful, reproducible segmentations.
Fig. 6 shows comparison for our deformable m-reps  segmentation based on a training
template to human manual segmentation.

Median boundary offset: Median case: 2.0* mm.  Worst case: 2.0* mm
3rd quartile boundary offset:  Median case: 2.0* mm.  Worst case: 3.4� mm
Percent volume overlap:         Median case: 89%         Worst case: 81%

Table 1. Comparison of deformable m-reps segmentation to manual segmentation of
four kidneys from CT, using a Gaussian derivative template. *distance between face-
adjacent voxels, �distance between corner-adjacent voxels
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Fig. 4. Kidney model and segmentation results.

   
 M-rep model  Model-implied boundary       Rendering of 3D seg-

 relative to training image       mentation in target
                                                 image

Segmentation results at the m-rep level of scale (i.e., before boundary
displacement) on kidneys in CT using a single figure model. The three
yellow curves on the m-rep implied boundary rendered in red in the 3D
view above, right show the location of the slices shown in the center row.
On these slices the curve shows the intersection of the m-rep implied
boundary with the slices. The slices in the lower row are the sagittal and
coronal slices shown in the 3D view.

  
               Top    Middle            Bottom

   
Fig 5. The result of 3D boundary displacements on the kidney. Grey
curves: before displacement. White curves: after displacement. Left
three: on three orthogonal slices. Right: surface rendered.
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training intensity template for the more difficult cases. While we have only a few
cases of the kidney and all (but still only a few) cases of the hippocampus where we
have used this training image template, we have found that success with the training
image template in all cases if the match was successively made against a highly
blurred version of the target image, then a moderately blurred version of the target
image, and then the target image.

The method described here is by no means fully developed. The metrics, the
segmentation algorithm, and the visualizations and user interface, and the program
code have already been extended to deal with objects made up of multiple attached
figures which must be kept in the correct geometric relations as they deform.
Examples are the cerebral ventricle, the vertebra, and the kidney parenchyma.
Extension has also been made to deal with multiple nonoverlapping figures which
must be kept in the right geometric relations and to remain noninterpenetrating.
Examples are the pubic bones, bladder, prostate, and rectum in the male pelvis and the
full set of cerebral ventricles. Early, incomplete trials of the extended versions of the
code suggest that m-reps have particular advantages also with multiple attached
figures and multiple nonoverlapping figures.

Two important directions to improve deformable m-reps based segmentation are
the following. Applying the segmentation at multiple levels of medial meshing, in
coarse to fine order, is expected to speed the method for any level of effectiveness.
This multiscale approach will overcome the question of what is the best level of
meshing and replace it by the question of the spacing between the scale levels.

The replacement of the geometric distance measures for geometric typicality and
average intensity correlation or mutual information for the geometry to image match
measure by log probability measures [Cootes & Taylor 1999] has two important
advantages. First, the probabilities reflect the modes of variability in the respective
population. Second, the arbitrary, manually selected weight between geometric
typicality and geometry to image match is no longer necessary. We will soon begin
work on methods for measuring these probabilities from training sets, at each of the
relevant scale levels based on a Markov random field model, and for using them in
the model deformation process.
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