
Prior Knowledge in Economic Applications of
Data Mining

A.J. Feelders

Tilburg University
Faculty of Economics

Department of Information Management
PO Box 90153

5000 LE Tilburg, The Netherlands
A.J.Feelders@kub.nl

Abstract. A common form of prior knowledge in economic modelling
concerns the monotonicity of relations between the dependent and ex-
planatory variables. Monotonicity may also be an important requirement
with a view toward explaining and justifying decisions based on such mo-
dels. We explore the use of monotonicity constraints in classification tree
algorithms. We present an application of monotonic classification trees to
a problem in house pricing. In this preliminary study we found that the
monotonic trees were only slightly worse in classification performance,
but were much simpler than their non-monotonic counterparts.

1 Introduction

The estimation of economic relationships from empirical data is studied in the
field of econometrics. In the model specification stage of econometric modelling
the relevant explanatory variables and the functional form of the relationship
with the dependent variable are derived from economic theory. Then the rele-
vant data are collected and the model is estimated and tested. Applied econo-
metric work does not conform to this textbook approach however, but is often
characterized specification searches ([Lea78]).

Data mining is often associated with the situation where little prior know-
ledge is available and an extensive search over possible models is performed. Of
course one has to have some prior beliefs, for how else does one for example
decide which explanatory variables to include in the model? But often the algo-
rithm is able to select the relevant variables from a large collection of variables
and furthermore flexible families of functions are used. Even though data mining
is often applied to domains where little theory is available, in some cases useful
prior knowledge is available, and one would like the mining algorithm to make
use of it one way or the other.

One type of prior knowledge that is often available in economic applications
concerns the sign of a relation between the dependent and explanatory variables.
Economic theory would state that people tend to buy less of a product if its price
increases (ceteris paribus), so price elasticity of demand should be negative. The

D.A. Zighed, J. Komorowski, and J. Żytkow (Eds.): PKDD 2000, LNAI 1910, pp. 395–400, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



396 A.J. Feelders

strength of this relationship and the precise functional form are however not al-
ways dictated by economic theory. The usual assumption that such relationships
are linear are mostly imposed for mathematical convenience.

This paper is organized as follows. In section 2 we focuss the discussion
on prior knowledge for applications in economics. One of the most common
forms of prior knowledge in economics and other application domains concerns
monotonicity of relations. This subject is explored further in section 3, where
we discuss monotonicity in classification tree algorithms. In section 4 we present
an application of monotonic classification trees to a problem in house pricing.
Finally, in section 5 we draw a number of conclusions from this study.

2 Prior Knowledge in Economic Applications

Regression analysis is by far the most widely used technique in econometrics.
This is quite natural since economic models are often expressed as (systems of)
equations where one economic quantity is determined or explained by one or
more other quantities.

The a priori domain knowledge is primarily used in the model specification
phase of the analysis. Such a priori knowledge is supposed to be derived largely
from economic theory. Model specification consists of the following elements:

1. Choice of dependent and explanatory variables.
2. Specification of the functional form of the relation between dependent and

explanatory variables.
3. Restrictions on parameter values.
4. Specification of the stochastic process.

In applied econometrics usually alternative specifications are tried, and the
specification, estimation and testing steps are iterated a number of times (see
[Lea78] for an excellent exposition of different types of specification-searches used
in applied work). As a historical note, the search for an adequate specification
based on preliminary results has sometimes been called “data mining” within the
econometrics community [Lea78,Lov83]. In principle, there is nothing wrong with
this approach, its combination however with classic testing procedures that do
not take into account the amount of search performed have given “data mining”
a negative connotation.

We shall give an example from empirical demand theory to illustrate how dif-
ferent types of domain knowledge may be used in the model specification phase.
Empirical demand theory asserts that ceteris paribus an individual’s purcha-
ses of some commodity depend on his income, the price of the commodity and
the price of other commodities. This is reflected in a simple demand equation
[Lea78]:

log Do
i = a + b log P o

i + c log Yi + d log P g
i + εi

where Do denotes the purchases of oranges, P o the price of oranges, Y deno-
tes income,P g denotes the price of grapefruit, and index i stands for different
households. The log-linear specification is chosen primarily for convenience. It



Prior Knowledge in Economic Applications of Data Mining 397

allows us to interpret the estimated coefficients as elasticities, e.g. the estimate
of b is interpreted as the price elasticity of demand, and the estimate of c as
the income elasticity of demand. A priori we would expect that b < 0 (if price
increases, ceteris paribus demand decreases). Likewise we would expect c > 0
and d > 0 (since grapefruits are a substitute for oranges).

According to economic theory there should be absence of money illusion,
i.e. if income and all prices are multiplied by the same constant, demand will
not change. If we believe in the“absence of money illusion” we can add the
restriction that the demand equation should be homogeneous of degree zero. For
the log-linear specification this leads to the constraint b + c + d = 0.

3 Domain Knowledge in Trees

Tree-based algorithms such as CART[BFOS84] and C4.5[Qui93] are very popular
in data mining. It is therefore not surprising that many variations on these basic
algorithms have been constructed to allow for the inclusion of different types
of domain knowledge such as the cost of measuring different attributes and
misclassification costs. Another common form of domain knowledge concerns
monotonicity of the allocation rule.

Let us formulate the notion of monotone classification more precisely. Let
(x1, x2, . . . , xp) denote a vector of linearly ordered features. Furthermore, let
X = X1 × X2 × . . . × Xp be the feature space, with partial ordering ≥, and let
C be a set of classes with linear ordering ≥. An allocation rule is a function
r : X → C which assigns a class from C to every point in the feature space. Let
r(x) = i denote that an entity with feature values x is assigned to the ith class.

An allocation rule is monotone if

x1 ≥ x2 ⇒ r(x1) ≥ r(x2),

for all x1,x2 ∈ X .
A classification tree partitions the feature space X into a number of hyper-

rectangles (corresponding to the leaf nodes of the tree) and elements in the same
hyperrectangle are all assigned to the same class. As is shown in [Pot99], a clas-
sification tree is non-monotonic if and only if there exist leaf nodes t1, t2 such
that

r(t1) > r(t2) and min(t1) ≤ max(t2),

where min(t) and max(t) denote the minimum and maximum element of t res-
pectively. A dataset (xn, cn), is called monotone if

xi ≥ xj ⇒ ci ≥ cj ,

for all i, j = 1, . . . , n.
Potharst [Pot99] provides a thorough study for the case that the training

data may be assumed to be monotone. This requirement however makes the
algorithms presented of limited use for data mining. For example, in loan eva-
luation the dataset used to learn the allocation rule would typically consist of



398 A.J. Feelders

loans accepted in the past together with the outcome of the loan (say, defaulted
or not). It is very unlikely that this dataset would be monotone.

A more pragmatic approach is taken by Ben-David [BD95], who proposes a
splitting rule that includes a non-monotonicity index in addition to the usual
impurity measure. This non-monotonicity index gives equal weight to each pair
of non-monotonic leaf nodes.

A possible improvement of this index would be to give a pair t1, t2 of non-
monotonic leaf nodes weight p(t1) × p(t2), where p(t) denotes the proportion of
cases in leaf t. The idea behind this is that when two low-probability leaves are
non-monotonic with respect to each other, this violates the monotonicity of the
tree to a lesser extent than two high-probability leaves. The reader should note
that p(t1) × p(t2) is an upperbound for the degree of non-monotonicity between
node t1 and t2 because not all their elements have to be non-monotonic with
respect to each other.

The use of a non-monotonicity index in determining the best split has cer-
tain drawbacks however. Monotonicity is a global property, i.e. it involves a
relation between different leaf nodes of a tree. If the degree of monotonicity is
measured for each possible split during tree construction, the order in which
nodes are expanded becomes important. For example, a depth-first search stra-
tegy will generally lead to a different tree then a breadth-first search. Also, a
non-monotonic tree may become monotone after additional splits. Therefore we
consider an alternative, computationally more intensive, approach in this study.
Rather than enforcing monotonicity during tree construction, we generate many
different trees and check if they are monotonic. The collection of trees may be
obtained by drawing bootstrap samples from the training data, or making dif-
ferent random partitions of the data in a training and test set. This approach
allows the use of a standard tree algorithm except that the minimum and ma-
ximum elements of the nodes have to be recorded during tree construction, in
order to be able to check whether the final tree is monotone. This approach has
the additional advantage that one can estimate to what extent the assumption
of monotonicity is correct. In the next section we apply this idea to an economic
data set concerning house prices.

4 Den Bosch Housing Data

In this section we discuss the application of monotonic classification trees to the
prediction of the asking price of a house in the city of Den Bosch (a medium
sized Dutch city with approximately 120,000 inhabitants). The basic principle
of a hedonic price model is that the consumption good is regarded as a bundle
of characteristics for which a valuation exists ([HR78]). The price of the good is
determined by a combination of these valuations:

P = P (x1, . . . , xp)

In the case at hand the variables x1, x2, . . . , xp are characteristics of the house.
The explanatory variables have been selected on the basis of interviews with



Prior Knowledge in Economic Applications of Data Mining 399

experts of local house brokers, and advertisements offering real estate in local
magazines. The most important variables are listed in table 1.

Symbol Definition

DISTR type of district, four categories ranked from bad to good
SURF total area including garden
RM number of bedrooms
TYPE 1. apartment

2. row house
3. corner house
4. semidetached house
5. detached house
6. villa

VOL volume of the house
STOR number of storeys
GARD type of garden, four categories ranked from bad to good
GARG 1. no garage

2. normal garage
3. large garage

Table 1. Definition of model variables

It is a relatively small data set with only 119 observations. Of all 7021 distinct
pairs of observations, 2217 are comparable, of which 78 are non-monotonic. For
the purpose of this study we have discretized the dependent variable (asking
price) into the classes “below median” (fl. 347,500) and “above median” (the
current version of the algorithm can only handle binary classification). After
this discretization of the dependent variable only 9 pairs of observations are
non-monotonic.

The tree algorithm used is in many respects similar to the CART program
as described in [BFOS84]. The program only makes binary splits and use the
gini-index as splitting criterion. Furthermore it uses cost-complexity pruning
[BFOS84] to generate a nested sequence of trees from which the best one is
selected on the basis of test set performance. During tree construction, the al-
gorithm records the minimum and maximum element for each node. These are
used to check whether a tree is monotone. The algorithm has been written in
the Splus language [VR97].

In order to determine the effect of application of the monotonicity constraint
we repeated the following experiment 100 times. The dataset was randomly
partitioned (within classes) into a training set (60 observations) and test set
(59 observations). The training set was used to construct a sequence of trees
using cost-complexity pruning. From this sequence the best tree was selected
on the basis of error rate on the test set (in case of a tie, the smallest tree
was chosen). Finally, it was checked whether the tree was monotone and if not,



400 A.J. Feelders

the upperbound for the degree of monotonicity (as described in section 3) was
computed.

Out of the 100 trees thus constructed, 61 turned out to be monotone and 39
not. The average misclassification rate of the monotonic trees was 14.9%, against
13.3% for the non-monotonic trees. Thus, the monotonic trees had a slightly
worse classification performance. A two-sample t-test of the null hypothesis that
monotonic and non-monotonic trees have the same classification error yielded
a p-value of 0.0615 agains a two-sided alternative. The average degree of non-
monotonicity of the non-monotonic trees was about 1.7%, which is quite low,
the more if we take into consideration that this is an upper bound. Another
interesting comparison is between the average sizes of the trees. On average, the
monotonic trees had about 3.13 leaf nodes, against 7.92 for the non-monotonic
trees. Thus, the monotonic trees are considerably smaller and therefore easier to
understand at the cost of only a slightly worse classification performance.

5 Conclusion

Monotonicity of relations is a common form of domain knowledge in economics as
well as other application domains. Furthermore, monotonicity of the final model
may be an important requirement for explaining and justifying model outcomes.
We have investigated the use of monotonicity constraints in classification tree
algorithms.

In preliminary experiments on house pricing data, we have found that the
predictive performance of monotonic trees was comparable to, but slightly worse
than, the performance of the non-monotonic trees. On the other hand, the mo-
notonic trees were much simpler and therefore more insightful and easier to
explain. This provides interesting prospects for applications where monotonicity
is an absolute requirement, such as in many selection decision models.

References

[BD95] A. Ben-David. Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, 19:29–43, 1995.

[BFOS84] L. Breiman, J.H. Friedman, R.A. Olshen, and C.T. Stone. Classification
and Regression Trees. Wadsworth, Belmont, California, 1984.

[HR78] O. Harrison and D. Rubinfeld. Hedonic prices and the demand for clean air.
Journal of Environmental Economics and Management, 53:81–102, 1978.

[Lea78] E. Leamer. Specification Searches: Ad Hoc Inference with Nonexperimental
Data. Wiley, 1978.

[Lov83] Michael C. Lovell. Data mining. The Review of Economics and Statistics,
65(1):1–12, 1983.

[Pot99] R. Potharst. Classification using decision trees and neural nets. PhD thesis,
Erasmus Universiteit Rotterdam, 1999. SIKS Dissertation Series No. 99-2.

[Qui93] J.R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann,
San Mateo, California, 1993.

[VR97] W.N. Venables and B.D. Ripley. Modern Applied Statistics with S-PLUS
(second edition). Springer, New York, 1997.


	Prior Knowledge in Economic Applications of Data Mining
	Introduction
	Prior Knowledge in Economic Applications
	Domain Knowledge in Trees
	Den Bosch Housing Data
	Conclusion
	References


