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Abstract. A system to support the mining task of sets of time series is
presented. A model of a set of time series is constructed by a series of
classi�ers each de�ning certain consecutive time points based on the char-
acteristics of particular time points in the series. Matching a previously
unknown series with respect to a model is discussed. The architecture
of the MSTS{System (Mining of Sets of Time Series) is described. As a
distinctive feature the system is implemented as a database application:
time series and the models, i.e. series of classi�ers, are database objects.
As a consequence of this integration, advanced functionality as the ma-
nipulation of models and various forms of meta learning can be easily
build on top of MSTS.

1 Introduction

Data in form of time series represents the behaviour of some time-dependent
processes and can be used to exhibit the characteristics of the observed processes.
In the literature there exists much work treating various aspects of time series.
Matching characteristic patterns in time series databases is discussed in [2, 8, 1,
12, 5, 14]. These methods vary in the representation techniques for time series,
the algorithms for measuring similarity between the time series, and in the search
mechanisms used for mining patterns. Methods for the discovery of rules [6, 11]
and frequent episodes [15] in time series have been proposed, as well. Rules and
episodes describe the interrelations among the local shapes of time series.

The discovery of common patterns from a set of time series has a long tradi-
tion in statistics and one of the most widely used techniques is cross-correlation
[3]. In the machine-learning framework the problem has previously been studied
only by [13], to the best of our knowledge. Similar to cross-correlation, [13] base
their approach on time series as a whole and classify them according to a dis-
tance measure. We take a di�erent approach and classify concrete time points
based on their local properties, i.e. properties of time points within a certain
window on the whole time series. In contrast to the more mean-value oriented
known technique, the resulting pointwise classi�cation of a time series gives di-
rect handles to explanations of the behaviour of the time series. This approach
originated from a practical project to date tree trunks according to the yearly
radial increase [17]; in the current paper we present a simpli�ed and more e�-
cient version of the algorithm and discuss its usuage as part of a data mining
system.

D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 289−298, 2000.
 Springer-Verlag Berlin Heidelberg 2000



Our current contributions are as follows. First we address the problem of
�nding the common characteristics of the time series which describe a set of
similar processes. Given a description of a domain in the form of a set of training
instances (time series), a model is constructed which describes the characteristic
properties of the domain. The representation of the model is based on the \local"
properties of time points | the time points are described by the characteristics
of values which occurred close to the described time point. To build the model a
sequence of classi�ers is derived (computed by C5.0 [18]), which are represented
by corresponding sets of rules. An algorithm for matching a sequence of values
with the sets of training time series is introduced and analyzed. This task is also
called dating the sequence.

One important direction during the last years is the development of data min-
ing suites to support the mining tasks by integrating di�erent mining techniques
into a common framework and supporting interoperability with a database man-
agement system (e.g. [4]). Orthogonal to this stream of work we have imple-
mented a system with the aim to provide support not for mining in general,
but for the speci�c task of mining for applications interested in mining sets of
time series. As one example of such applications we mention experimental results
concerning the analysis of tree-ring time series which represent the yearly radial
increases of tree trunks [17]. The architecture and implementation of MSTS{
System (Mining of Sets of Time Series) is described. As a distinctive feature,
MSTS is a database application: time series and the models, i.e. series of clas-
si�ers, are database objects. MSTS has been implemented under Windows NT
using C++ as programming language and the Oracle 8 database environment.

Finally, we outline the bene�ts of our database-centered approach. Having the
domain data and the domain models in a uniform database framework not only
makes it easy for the miner to choose under several precomputed classi�ers for
the mining task, but also provides a powerful framework to manipulate models
and to perform meta learning.

The structure of the paper is as follows. Section 2 presents the formal frame-
work for mining and section 3 an algorithm for matching. Section 4 contains the
architecture of MSTS and in particular presents an ER-schema specifying the
content of the database. Moreover, real world experimental results underlining
the usefulness of the approach are presented. In section 5 we conclude the paper
by discussing advanced functionality of MSTS.

2 Formal Framework

The following is based on [17]. A time series s = (v1; : : : ; vn) is a sequence of
real numbers vi representing the values of a time{dependent parameter of a
process. The interval between subsequent time points is assumed to be constant.
A set of time series is called a domain D = fs1; : : : ; smg. Each time series si 2 D,
si = (vi1; : : : ; vin) has n values with time points t(vij) = tj . Let su = (u1; : : : ; ur)
be a sequence of values where the time points t(ui) are not known. The time
series of the domain are the training cases to build a model of the domain and
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su is a test case which has to be dated, i.e., whose pattern has to be matched
against the model in order to predict the start time point t(u1).

The values of a time series s 2 D in subsequent time points tj ; : : : ; tj+k ,
k � 0, j � 1, j + k � n is the projection of s on the given sequence of time
points s[tj ::tj+k ] = (s[tj ]; : : : ; s[tj+k]). Let w � 1 and w odd, then the projection
s[tj ::tj+w�1] is called a window of s and w is the size of the window; j+w�1 � n.

The main idea later used for the construction of a model is to describe the
characteristics of each particular time point in the domain by the properties of
the values which are local with regards to the described time points. In other
words, a time point tj can be described by the characteristics of values which
appeared some time before tj , the values which appeared at tj and some time
after tj . To this end, in the sequel, we consider sets of windows of the form
D[tj�bw=2c::tj+bw=2c] = fsi[tj�bw=2c::tj+bw=2c]ji 2 [1::m] ^ si 2 Dg, where w is
the size of the windows, j > bw=2c and tj the central (time) point of the window.
Observe that any two windows of the same time series with central points tl; tl+1

will overlap in w � 1 time points.

Let si[tj�bw=2c::tj+bw=2c] be a window. A window associated with its central
point is called a dated window.1 If D[tj�bw=2c:: tj+bw=2c] is a given set of windows,
then D�[tj�bw=2c::tj+bw=2c] is the corresponding set of dated windows. A range
of sets of dated windows is used as the input dataset for the construction of
classi�ers. Formally, a dataset S is de�ned as S =

S
j2[b::(b+d�1)]D

�[tj�bw=2c::

tj+bw=2c] where each window is dated, w � 1 is the window size, d � 1 is the size
of the dataset given by the number of di�erent central points, and b � bw=2c+1
is the index of the �rst central point. Each window in a dataset is used for
building a classi�er as follows. The central point of the window denotes the class
and all values constituting the window are the observed parameter values at the
respective time points describing the corresponding class.

To simplify notation, throughout the paper we will assume � � d = n�w+1
for some natural number �. The time series from D can now be split into a
sequence of � datasets S1; : : : ; S�, which are used for the de�nition of � classi�ers
C1; : : : ; C�, where each classi�er Ci, 1 � i � � is to predict time points out of
the interval [bw=2c + 1 + (i� 1) � d; bw=2c + i � d]. Note that any two datasets
Si; Si+1 overlap in bw=2c time points, however any two corresponding classi�ers
Ci; Ci+1 do not overlap with respect to their predicted time points, 1 � i < �.
Computing a classi�er given a dataset, in principle, is a standard mining task;
however, as we have to compute O(n) classi�ers, the implementation of this task
needs some futher discussion which is presented in Section 4.2.

3 Matching algorithm

Let D = (s1; : : : ; sm) be a domain such that the time series si are de�ned
for the time points t1; : : : ; tn. Further, let C1; : : : ; C� be the set of classi�ers

1 Note that a window is a mere sequence of real numbers, while a dated window has

a reference to a time point.
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Algorithm Match
Input: A sequence su = (u1; : : : ; ur) with corresponding

sequence of windows (U1; : : : ; Ur�w+1) and

a sequence of classifiers (C1; : : : ; C�).
Output: Time point ti 2 [t1 : : : tn], which has been predicted

with the maximal collected probability.

Method:

1. foreach (ti 2 [t1 : : : tn] ) ColProb[ti] = 0;
2. foreach ( window Ui 2 (U1; : : : ; Ur�w+1) )

3. foreach ( classifier Cj 2 (C1; : : : ; C�) ) do
4. (t; prob) = predictCentralPoint(Ui ; Cj);
5. firstPoint = t� bw=2c � i+ 1;
6. ColProb[firstPoint] = ColProb[firstPoint] + prob;
7. od;
8. foreach (ti 2 [t1 : : : tn] ) ColProb[ti] = ColProb[ti]=(r � w + 1);
9. return( ti 2 [t1 : : : tn] with maximal collected probability);

10.end;

Fig. 1. Matching algorithm.

constructed from � datasets of size d containing windows of size w. Finally, let
su = (u1; : : : ; ur), r � w, be a sequence of values which is to be dated. The
task of matching then is to �nd the time point tu 2 [t1::tn] of the �rst value
u1 of the sequence su such that the sequence su matches with D starting at
tu with a maximal precision. To this end all possible windows of length w are
extracted from the input sequence su. Let U = (U1; : : : ; Ur�w+1) be the sequence
of possible windows of size w for su.

The matching algorithm we shall present simpli�es and optimizes the ap-
proach proposed in [17]. While the algorithm in [17] tries to �nd a good guess
for a prediction based on a threshold parameter stating a lower bound for the
required probability of the guess, we directly classify each window with each
classi�er and store the results in a way, such that it can be guaranteed, that the
time point with maximal collected probability will always be found. For length of
the training sequences n and length of the test sequence m, we compute O(n �m)
predictions. In contrast, the previous algorithm overall computes O(
 � n � m2)
predictions, where 1

m
� 
 � 1 depending on the threshold. Small thresholds

imply large 
, i.e. a threshold of 0 implies 
 = 1. This means a worst case time
complexity of O(n � m2) of the previous algorithm. Moreover, for a threshold
greater 0 it is not guaranteed whether the time point with maximal precision
will be found. This may happen because as precision the average of probabilities
is computed, such that a high probability in one situation does not necessarily
imply a high average.

The matching algorithm (cf. �gure 1) classi�es each of the windows in U

with each available classi�er (line 4). As the classi�er predicts the central point
of each window, the predicted central point is transformed into the corresponding
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Fig. 2. Graph of a set of 5 time series and two test sequences.

predicted initial time point of su (line 5). ColProb then sums up the probabilities
a certain time point is predicted to be the initial time point of su (line 6). Finally,
the algorithm computes for each time point ti the respective collected probability,
which is computed as the average of the probabilities with respect to the number
of classi�cations, which could predict ti. This number is given by the number of
windows in U , i.e. (r�w+1). To see this assume the contrary, i.e. one time point
is predicted more often than the number of windows in su. However this is not
possible, because di�erent classi�ers predict disjoint intervalls. The �nal output
of the algorithm then is the time point ti, for which the collected probability is
maximal; collected probabilities are our measure for precision.

To demonstrate the steps of the algorithm we will investigate two test se-
quence. Test sequences s1u and s2u and a given set of 5 training sequences are
shown in �gure 2. While the shape of s1

u
was chosen such that a start point of

7 could be expected, s2
u
was constructed by �rst trying to capture the shape of

the series between 1 and 10, but then changing the contour of the series at time
point 5 and 8 signi�cantly.

Assume a window size w = 5 and a size of the dataset d = 4. Applying C5.0
to compute the classi�ers and to predict the start points of the test sequences
allows us to trace the computation for the matching tasks. For each window w

and each classi�er C (by writing Ci::j we express that the classi�er can predict as
central point of a window a time point between i and j) the predicted �rst point
of the considered test case su and the respective probability is given. Because
of the underlying very small set of training examples the probabilities shown in
the tables cannot be interpreted in a strong statistical sense. Results of a real
practical experiment are reported in section 4.3.

Matching of s1
u
:

window C3..6 prob C7..10 prob C11..14 prob C15..18 prob

w1 4 0.86 7 0.86 11 0.86 13 0.86

w2 1 0.86 7 0.86 10 0.86 15 0.86

w3 0 0.86 6 0.86 7 0.86 13 0.86

w4 -1 0.86 2 0.86 7 0.86 10 0.86
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Matching of s2
u
:

window C3..6 prob C7..10 prob C11..14 prob C15..18 prob

w1 2 0.86 5 0.86 11 0.86 13 0.86

w2 1 0.86 4 0.86 11 0.86 12 0.86

w3 1 0.75 3 0.43 9 0.86 11 0.86

w4 -1 0.86 2 0.43 9 0.86 11 0.86

w5 -1 0.75 1 0.43 7 0.86 9 0.86

w6 -1 0.86 1 0.86 6 0.86 9 0.43

We summarize by mentioning the best, the second and third best matching
starting point:

s
1

u
ColProb s

2

u
ColProb

Bestmatch 7 0.86 11 0.57

next best 10 0.43 9 0.5

next best 13 0.43 1 0.48

As expected, the start point of s
1

u
is predicted by 7; for s

2

u
the algorithm

predicts start point 11 which, in fact, begins a shape of the training series which
is similar to the test series s

2

u
. However, here the situation is not as supported

by the collected probabilities as in the previous case. The collected probabilities
show, that start points 1, 9, 11 are more or less equally supported.

4 MSTS: Mining Sets of Time Series

We will now present the architecture of the MSTS{System (Mining of Sets of
Time Series); a detailed description can be found in [7]. In contrast to general
data mining suites MSTS aims at supporting the speci�c task of mining sets of
time series and therefore can be considered as complementing a mining suite. The
mining algorithms of MSTS are based on the techniques described in section 2, 3.
For building classi�ers C5.0 [18] is used. The training cases for the classi�ers are
given by the datasets derived from a given domain. The attribute values of each
case in a window of the dataset are the values of the observed parameter at
a respective time points. The classes to be trained are the respective central
points.

Working with MSTS supports modelling of sets of time series (called se-

quences) and matching undated sequences against a model. The sequences, re-
sulting models and matchings are database objects. Further database objects
are sessions. Sessions are the logical unit a user is working with MSTS. For a
domain given by a set of sequences, di�erent models may exist in the database.
This allows to explore several alternatives when matching unknown series. Di�er-
ent models may arise because of varying window sizes and sizes of the datasets.
Grouping modelling and matching tasks into sessions allows the user to keep
track of several explorations of the same, or overlapping domains.

The information content of the database underlying MSTS is speci�ed by the
ER{schema shown in �gure 3. Objects2 of type sequence, model and session

2 We talk about objects instead of entities.
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Fig. 3. ER{Schema of the database underlying MSTS; attributes are omitted.

can be created, deleted or viewed; objects of type match can only be viewed

because they are computed by the system. Objects of type sequence are further

classi�ed in dated and undated, where in the �rst case we further distinguish

sure and estimated. Estimated sequences are those whose dating has been per-

formed by MSTS. An object of type domain then is given by a set of dated

sequences. A model is de�ned by a set of classi�ers and related to exactly one

domain. This is represented by object types model and classifier and rela-

tionship types shape and part of. A classi�er may be part of more than one

model, however these must be shapes of the same domain; therefore a classi�er is

related by owned by with exactly one domain. Matches are represented by rela-

tionship type match; each match is further characterized by a set of submatches,

which means the elements of the table relating windows of the test sequence

and the classi�ers of the used model. This gives rise to object type submatch

and relationship type contain. The remaining part of the ER{schema is self-

explanatory. Because of limited space attributes of the types are not discussed;

we only mention that classifier has two attributes to store the rules computed

by C5.0 in binary format, such that they can be reused for prediction, and ascii

format, such that they can be shown to the user.

MSTS is implemented as a database application written in C++ and con-

nected to a Oracle 8 database server by ODBC. The coupling with the database

is based on cache memory which is carefully maintained by MSTS. With re-
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spect to the sequences there is a ternary relation SEQUENCE VALUES stored in
the database, which relates a certain sequence by its ID to a certain time point
giving the respective value of the parameter of interest.

When a range of classi�ers has to be computed the corresponding datasets are
extracted from the database as follows. The database receives an SQL-expression
which extracts from SEQUENCE VALUES the relevant subset of rows which are
needed to compute the cases (windows) for constructing one dataset. This subset
is sorted by time and with respect to a certain time point by sequence ID. Using
only one database cursor the input �le for C5.0 now can be easily derived in
C++. As consequtive datasets overlap, when switching from one dataset to the
next only the missing rows are extracted from the database. Note that because of
sorting �rst by time and within one time point by sequence ID, the overlapping
already sorted part can be reused. As only one database cursor is used and each
row from the database is involved in exactly one sort operation, the work to
build the input of C5.0 is minimized.

Fig. 4. MSTS screendump demonstrating the mining task.

MSTS has been successfully applied for the analysis of tree-ring time series
which represent the yearly radial increases of tree trunks. The results presented
in [17] are also valid for MSTS and will be mentioned shortly.3 The domain was

3 The detailed analysis reported in [17] is based on a prototypical implementation in
Perl.
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build out of 50 tree-ring time series of length 100 to 250. A typical example of a
set of rules describing a time point 1900 is as follows (window size 21):

plus7 > 3.086, plus9 > 2.693, plus10 > 3.071, plus14 > 3.526 -> class 1900

[0.965]

minus10 > 2.861, plus10 <= 3.071, plus13 <= 3.267 -> class 1900 [0.916]

minus5 <= 2.835, minus3 <= 2.979, plus10 > 3.071 -> class 1900 [0.748]

Here plusi, respectively minusi, refers to the time point 1900+i, respectively,
1900-i. The probabilities of the rules are given in brackets. A �rst analysis based
on inspecting the rules shows, that time point 1910 seems of some importance
for predicting time point 1900. This observation could be the starting point
of a deeper investigation. As an example for matching consider the following
sequence: . For a model of the domain with a window of size 5, the
following is the result of matching: Number of matches = 8; Average probability
= 0.89; Starting time points: 1880,1888,1896,1912,1918,1929,1937,1963.

5 Conclusion

In this paper we have presented MSTS, a system to mine sets of time series. As a
distinctive feature, MSTS stores not only the time series, but also the classi�ers
and the information used to construct them in the database. This gives us the
opportunity to reason about the mining process using as a high-level language
SQL. However we can also go beyond SQL.

It has been recently pointed out that the integration of inductive and de-
ductive reasoning is a promising direction [9, 10]. The underlying motivation is
to control the overall mining task and to incorporate background knowledge.
We also support this direction, however are convinced, that a less ambitious
approach based on commercial platforms (C++, Oracle 8) is also of interest.

MSTS can be extended towards the above goals, because sequences, classi�ers
and models are database objects and thus can be easily manipulated. Because
of limited space we only sketch three possible extensions. Consider a model
given by a range of classi�ers over time points [ti::tj ]. Because each classi�er
de�nes time points by rules, it is easy to compute the projection of the model
to [t0i::t

0

j ], where ti � t
0

i � t
0

j � tj . Similarly, if there are models on time points
[ti1::tj1], [ti2::tj2], where tj1 = ti2 and the size of the windows are equal, then
the union can be computed. The next extension is a form of meta learning called
combining [16]. Here the predictions of the base classi�ers performed on their
validation sets form the basis for the meta-learner's training set. In our scenario
the role of a classi�er is taken by a model. One interesting aspect here then
is the possibility to predict based on di�erent window sizes at the same time.
This allows to combine models based on small windows appropriate to re
ect
short term e�ects in the time series with models based on large window sizes
appropriate to re
ect long term e�ects. It is easy to see that the ER-schema
of MSTS shown in Figure 3 provides the necessary information: a match is a
relationship between a sequence and a model, which is further described by the
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determined startpoints. For one sequence there may exist several matches which

then may form the meta-learner's training set.
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