
M. Reed Little and L. Nigay (Eds.): EHCI 2001, LNCS 2254, pp. 141–155, 2001.
© Springer-Verlag Berlin Heidelberg 2001

An Organizational Learning Method
for Applying Usability Guidelines and Patterns

Scott Henninger

Department of Computer Science & Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588-0115 USA

+1 402 472 8394
scotth@cse.unl.edu

Abstract. As usability knowledge and techniques continues to grow, there is an
increasing need to provide tools that disseminate the accumulated wisdom of
the field. Usability guidelines are one technique that is used to convey usability
knowledge. Another is the emerging discipline of usability patterns. This
paper presents an approach that combines these techniques in a case-based
architecture and utilizes a process to help an organization capture, adapt, and
refine usability resources from project experiences. The approach utilizes a
rule-based tool to represent the circumstances under which a given usability
resource is applicable. Characteristics of the application under development are
captured and used to match usability resources to the project where they can be
used to drive the design process. Design reviews are used to capture feedback
and ensure that the repository remains a vital knowledge source for producing
useful and usable software systems.

1 Introduction and Motivation

As the body of knowledge on the design of interactive software systems becomes
mature, the need for disseminating the accumulated wisdom of the field becomes
increasingly important to the design of useful and usable software systems. Design
for usability is becoming increasingly important to the success of software systems,
but software developers are usually poorly trained in human factors, ergonomics, or
usability issues. One solution is to always require a human factors specialist on
development teams, but this is often impractical as such specialists continue to be in
short supply and budgets do not always allow such specialized personnel. Education
and iterative development processes aimed at evaluating and improving the user
interfaces are necessary solutions to this problem, but techniques are needed that
provide software developers with proactive knowledge and techniques for developing
high quality user interfaces.

Usability guidelines have been around in various forms for some time, and have
had some impact on design practices for user interface software. Yet the full potential
of guidelines have yet to be realized [1, 2]. To date, work in these areas have failed to
adequately address concerns facing software designers, developers, and managers,
focusing on comprehensive usability issues at the expense of determining which

142 Scott Henninger

guidelines should be used under what circumstances. In addition, usability guidelines
often become a static document read only by human factors specialists and used to
assess an application’s conformance to usability standards. Guideline analyzers,
which analyze completed interfaces against guidelines or other usability metrics [3,
4], can assess completed systems, but do little to support the development process.

These methods apply usability knowledge as an assessment, which is often too late
in the development process. In one example witnessed by the author, an application
was submitted to a human factors group in a large IT department that had a screen
with 39 seemingly unordered buttons arranged in an array [5], a poor interface that
would cause users to engage in lengthy searches to find desired features. This
organization had a well-designed on-line style guide [6], but usability approval was so
late in the development process that there was inadequate time and resources to fix
the problem before it was shipped. The less mature work on usability patterns take a
more proactive view of the design process, but add little to the usability guidelines
perspective beyond a different format for documenting the pattern and some concerns
for establishing the context of a pattern.

Instead of being relegated to a discretionary reference role and/or an after-the-fact
human factors certification process, the knowledge contained in usability resources
needs to be delivered as an integral part of the entire development process.
Guidelines and patterns can be helpful resources for the developer, but tools for
finding applicable resources are lacking. Current approaches are document-based, at
best supported with hypertext tools, which relies on individual developers to know of
the existence of the resources and understand when they should be applied. Given the
potentially copious usability guidelines and patterns, and the lack of training in
usability issues, this is not a satisfactory solution.

Tools are needed to turn guidelines and patterns into proactive development
resources that can be applied throughout the development process. In this paper, a
methodology is presented that represents the context of a given guideline or pattern in
the form of applicability rules that formally specify the conditions under which a
usability resource is appropriate. We present an exploratory prototype, named
GUIDE (Guidelines for Usability through Interface Development Experiences), that
we have been using to investigate and demonstrate how this methodology can be used
to deliver usability resources to software developers when they are needed. The focus
of this work is not the creation or discovery of good guidelines or patterns, but the
creation of tools that capture and disseminate knowledge of user interface design
principles and experiences at the right time – during the development process. In
addition, our organizational learning approach [7] allows the incremental capture of
the characteristics of the context of use so the applicability rules and guidelines can
evolve as new requirements are encountered, new techniques are used, and new
designs are created.

2 Usability Guidelines and Patterns

Usability guidelines have become a widely recognized method of bringing the
cumulative knowledge of usability issues to bear on the software development
process. It is generally accepted that guidelines cannot replace the “golden rules” of

An Organizational Learning Method for Applying Usability Guidelines and Patterns 143

interface design - user involvement, user feedback from early prototypes, and iterative
development [8]. But guidelines can play a role in improving the quality of the
iterative steps, leading to an improvement in quality and reduction (but not
elimination) of the number of iterations involved in the design-evaluate-redesign
cycle of HCI development.

Guidelines have evolved to take on a number of forms. Style guides address how
different kinds of windows should look and interact with the user for tasks such as
choosing from lists [9-13]. Style guides tend to be platform-specific and focus on
interface widgets, such as dialogue boxes, pull-down menus, screen layouts, and
naming conventions. Other questions, such as when a particular widget should be
used or how the interface elements integrate together, are left unanswered.

While style guides are usually platform-specific, universally applicable interface
guidelines have also been explored to provide higher-level guidelines on various
aspects of human-computer interfaces [14-18]. These guidelines dispense general
advice, such as “Allow the user to control the dialogue,” “Provide displayed feedback
for all user actions during data entry,” or “Reduce the user’s memory load.” At some
level, this is sound advice, but this kind of information lacks important contextual
information that would allow designers and developers to assess how and when to
apply the guidelines to a specific set of circumstances or system requirements.

Usability standards also take on the character of guidelines, opting to specify
general principles rather than mandating specific techniques, widgets, or tools.
International standards have been created [19], and standards have been used within
organizations to ensure a degree of consistency across applications [6, 20, 21].
Domain-specific guidelines have also been created, the most prominent being
guidelines for designing Web pages [22, 23].

All of these efforts have largely focused on the content and structure of the
guidelines themselves. On-line versions of guidelines have been created, but have
used simple hypertext-based search systems for accessing the guidelines [24-28]. But
these systems have done little to address the problems demonstrated in studies using
guidelines, such as the time to find relevant guidelines, problems with interpreting
guidelines for the task at hand, and generally being too abstract to directly apply [29-
31].

While usability guideline have become voluminous to the point that it is difficult to
determine which principles are applicable to a given design problem. And the
continuing proliferation of technology only exacerbates the problem. Little thought
has been given to defining when guidelines are applicable or how guidelines can be
refined to meet user task requirements for a specific set of users and a specific type of
application. In addition, little research has been done to accumulate knowledge about
interface design in a form that can capture relationships between specific contexts and
applicable guidelines.

2.1 Context and Usability Patterns

A usability patterns community, inspired by the recent work on software patterns, has
begun to explore how patterns can be used to provide an intermediate perspective
between universally applicable usability guidelines and component-specific style
guides [32-35]. The essential idea of a design pattern is to capture recurring problems

144 Scott Henninger

along with the context and forces that operate on the problem to yield a general
solution. Collections of patterns can be organized in a network of higher-level
patterns that are resolved or refined by more detailed patterns, resulting in a pattern
language [36].

Usability patterns explicitly represent context, although approaches vary from a
one-sentence description of the design goals [37] to viewing context as the explicit
focus of patterns, telling “the designer when, how and why a solution can be applied.”
[32]. Usability patterns represent context through text fields such as context and
forces that respectively describe how the problem arises and other issues that may
impact the outcome. For example, the “Shield” pattern [32] describes the problem of
protecting users from accidental selection of a function with irreversible effects. The
context states that users need protection against undesired or unsafe system actions,
and that the pattern should not be used for easily reversible actions. The forces
include severity of the unintended actions and the user’s need to work quickly while
avoiding mistakes. Patterns can also represent context through a network of linked
patterns, the pattern language, from high-level issues to low-level choices, although
examples of these networks and tools for traversing the links are currently lacking.

2.2 Integrating Usability Guidelines and Patterns

Differences between usability guidelines and usability patterns lie primarily in
perspective and representation of the information. In fact, many of the proposed
patterns replicate much of the information contained in existing guidelines. The
major difference is that pattern languages are intended to be used as a design method.
The pattern community is therefore concerned with using patterns to communicate
between designers and customers or users [38, 39], a perspective not often seen in
guidelines.

Because of this main difference, the perspective of usability patterns tends to be
more problem-oriented, focusing on describing a problem and solution, than the more
general information or advice perspective of guidelines. Although templates and data
structures for describing guidelines and patterns can easily be reconciled, the fields
commonly seen in patterns are indicative of the problem-oriented perspective. In
addition to the problem-solution (or title-solution) format seen in most guidelines,
patterns add fields to describe the context of the problem and the forces that shape the
problem and its variants.

The goals of both these approaches are essentially the same: to document and
manage experience about usability design issues in a format that is easily
disseminated and understood. But much of the work in these fields focus on the
development of patterns and guidelines (a notable exception is the recent Tools for
Working With Guidelines workshop series [40]). Creating and disseminating this
knowledge is important, particularly where empirical validation is present, but little
work has been done on creating the computational framework that will supply this
information in an effective manner. Our focus is different in that we begin from the
perspective of creating resources and tools for software developers. Instead of
teaching developers specific usability principles (the proverbial fish), we aim to
provide the tools that allow development organizations to create and disseminate

An Organizational Learning Method for Applying Usability Guidelines and Patterns 145

usability resources in a manner that helps developers design and develop usable
applications (the proverbial teaching them how to fish).

3 An Organizational Learning Approach
 for Usability Guidelines and Patterns

Current research and practice for both guidelines and patterns primarily rely on an
educational or information retrieval model. It is entirely up to the designer to either
know that usability resource (collectively we will refer to patterns and guidelines as
“resources”) exists or at least know enough about the repository to realize they should
search for applicable resources. One must have an overall understanding of existing
guidelines and patterns to recognize when a given resource should be applied. Given
the lack of formal usability training, the potential size of a comprehensive pattern or
guideline repository, and the frailty of human memory, this assumption does not
always hold.

In past research, we have created tools to support organizational memory for
usability guidelines. The objective of organizational memory tools is to provide
information relevant to organizational practices that “you can’t learn in school” [41],
such as local terminology, organization and project-specific conventions, lessons
learned, policies and guidelines, individuals with expertise, and many others. The
Mimir Guidelines system illustrated how organizational memory techniques could be
used to collect and disseminate usability guidelines [31]. Project experiences were
captured using case-based decision support technology [42], where cases were
attached to guidelines as examples of how the guideline had been applied.
Dissemination of guidelines was supported through hypertext and searching
techniques where users matched project characteristics to appropriate guidelines.

Creating a repository of project experiences, an organizational memory, is valuable
in and of itself. But the overarching objective is to learn and improve on past
performance. Emphasis must be placed on establishing a continuous improvement
process that enhances product quality and developer productivity, while recognizing
past experiences as a catalyst for the learning process. We call this an organizational
learning approach [7] to emphasize that the knowledge is used as the basis for
improvement, not just memorizing past experiences [43-45].

3.1 The GUIDE Process for Applying Usability Resources

Our approach to supporting organizational learning to usability resources is a
combination of tool and process to capture knowledge as it emerges in practice,
review and/or otherwise validate that knowledge, and ensure that previous knowledge
and known best practices are applied where they exist. The GUIDE (Guidelines for
Usability through Interface Development Experiences) methodology supports an
organizational learning approach to developing context-specific usability resources
through the process shown in Figure 1. A key component of the methodology is a
hierarchical structure of usability guidelines delivered in the GUIDE tool shown in

146 Scott Henninger

Figure 2. We have chosen to seed our repository with a Web-enhanced Smith and
Mosier 944 guidelines corpus [16], although any set of initial guidelines would work
equally well.1 A rule-based system is then used to match project characteristics (user
populations, tasks, GUI tools, etc.) to specific usability resources that project
personnel should apply during development. The result is a set of project activities
that are assigned to the project. For example, if the system is being accessed by users
over the Internet and involves access to sensitive data, then guidelines and/or patterns
for login interfaces and access to sensitive data will be given to the project as an
activity to be considered.

Fig. 1. Using and modifying usability resources.

The next step of the process in Figure 1 is the most critical element of the
organizational learning approach. A review process is used to inspect how project
personnel answered the options posed by GUIDE and discuss whether the assigned
resources are appropriate for the project in question. This review creates an important
feedback loop that is used to learn emergent user interface needs. If there is a
mismatch between project needs and the resources assigned by GUIDE, reviewers can
recommend that either a different option is chosen (options are described below) or
that the knowledge in the repository needs to be updated to meet the needs of this
project. The latter of these two options creates an opportunity for learning. As shown

1 We are currently investigating the possibility of basing our structure on patterns, adopting one

of the usability pattern languages currently under development and augmenting with
guidelines from various sources.

An Organizational Learning Method for Applying Usability Guidelines and Patterns 147

in Figure 1, not only are modified project guidelines created, but the conditions for
this modification can optionally be fed into the repository, essentially “blazing a trail”
for subsequent projects.

Fig. 2. Guide interface and a usability case.

For example, suppose a project is the first to have a requirement for both cross-
platform and cross-browser Java delivery. A project performs some studies and
determines that using the Java Plug-in is the best choice in this instance. While this
decision can later be augmented (for example, another project’s users may be using
28k modems and could deem downloading the rather sizable Plug-in infeasible),
extended, and eventually replaced by subsequent efforts or outside changes in
technology, it represents a form of intellectual capital that has considerable research
and effort behind it that the organization probably does not want to replicate
unnecessarily.

3.2 The GUIDE Architecture

GUIDE is an exploratory prototype that has been used to investigate and demonstrate
how usability guidelines can be integrated into the software development process.
GUIDE borrows from the case-based architecture of the BORE (Building an
Organizational Repository of Experiences) project [7], but focuses exclusively on
usability issues. Although initial efforts have explored the different issues arising in
software engineering processes and usability separately, GUIDE is currently being re-
designed to become part of BORE. As with BORE, GUIDE is a Web-based

148 Scott Henninger

application, using HTML and Java for the user interface, Java for processing, and a
database back-end to store information.

Representation of usability resources in GUIDE embodies the intersection of three
closely related technologies. Patterns and guidelines, as discussed above, are related
by common goals and similar formats. Case-based technology, which uses a
problem-solution structure similar to patterns and guidelines, adds an instance-of
relationship (cases are context-specific instances of usability resources, which can be
patterns or guidelines).

Figure 2 shows a hierarchical view of usability resources in GUIDE and a window
showing a specific resource on frame-based Web page navigation. The fields shown
on the resource window (the window on the right in Figure 2) include the canonical
fields found in usability patterns work, although other formats can easily be integrated
into GUIDE’s architecture. The system architecture is flexible enough to
accommodate many of the different fields suggested in usability guideline and pattern
research.

3.3 Using GUIDE to Develop Interactive Software Systems

GUIDE uses a case-based structure to associate usability resources to project
activities (see the Case Manager windows in Figure 3a and 3b) that document a
specific project’s use of the resources. At the start of a software development effort, a
GUIDE project is created. This will create a number of project initiation cases, some
of which will have usability options associated with them, delimited by a ‘?’ inside
the icon in the project hierarchy. Clicking on the “Options” tab of the case displays
one or more questions about the characteristics or requirements of the project (bottom
window, Figure 3a). Selecting a question displays possible answers in the Answers
box. Selecting an answer will trigger applicability rules (described in the next
section) for resources that are assigned to the project to inform developers of usability
principles that need to be followed.

 3a 3b

Fig. 3. Documenting Contextual factors through project requirements.

An Organizational Learning Method for Applying Usability Guidelines and Patterns 149

For example, the left window in Figure 3a displays a project named “Usability
Guidelines.” This project has a few initial project cases associated with it that are
used to identify tools, techniques, and usability issues that developers should be
considering during design. Previous questions have determined that the project
involves designing an e-storefront that allows multiple items to be purchased during
the same session. This causes a number of cases to be assigned to the project, such as
“Navigation for Selecting Purchase Items,” that represents recommended project
activities. The user has selected the Options tab for that case (bottom window of
Figure 3a), revealing a series of questions to disclose further project requirements.
One question has already been answered, leading to new questions that explore
further project requirements.

3.4 Representing Context with Applicability Rules

Usability resources in GUIDE are assigned to a specific project through applicability
rules that match project characteristics to appropriate resources. This is accomplished
by a forward-chaining inference engine using production rules with an if-then
structure. Preconditions are defined as question-answer pairs. Each time a question is
answered, the inference engine checks the database to see if any of the rules are
satisfied. When this occurs, a set of actions are fired. Actions can cause a variety of
events, including placing questions in or taking questions out of the New Question
stack, assignment of system variables, and attaching usability resources to the project.

For example, selecting the answer “11-20” in Figure 3a will fire a rule that will
place cases in the project that points to frame-based navigation resources, shown as
child cases under the “Navigation for Selecting Purchase Items,” shown in the
selected case in Figure 3b. In essence, the rule base is stating that using frame-based
navigation is recommended when the purchasing procedure takes between 1 and 2
steps and there are between 11 and 20 items available for purchase. Rationale for this
recommendation is provided in the resource, which states that frames can be used as a
solution to the problem of needing to keep a context while accessing multiple pages2.
Note that these rules encode the context of the resources, a major features of pattern
languages [38].

It should also be noted that GUIDE is designed so that questions can be associated
with any project case, allowing development teams to incrementally disclose usability
issues when they are ready, instead of having to answer all questions at the beginning
of a project. In Figure 3b, the “Frame-Based Web Page Navigation” case has further
options associated with it, allowing further decomposition to more detailed guidelines
or patterns.

Figure 4 depicts a partial decision tree of the kind that can be represented by our
forward-chaining inference engine. Through these rules, which are developed by
usability professionals (see the following section), the GUIDE system is placing the
accumulated wisdom of usability issues at the fingertips of software developers in the
context in which they are applicable.

2 This example is intended to demonstrate our approach, not advocate any specific usability

principles.

150 Scott Henninger

Fig. 4. A partial GUIDE decision tree.

3.5 Incremental Acquisition of Design Knowledge

Applicability rules in GUIDE are meant to provide a more proactive alternative to the
“build a repository and let them search” philosophy that current approaches to
usability guidelines and patterns employ. Rules are not meant to automate the design
and development of interfaces, but to provide a match to resources that can inform
developers of usability issues. They are intended to act as a medium for discussion
and debate. Indeed, we view rules as a means to formally state, evolve, and improve
the current understanding of usability guidelines and the conditions under which they
can provide helpful information to software developers. An important aspect of this
philosophy are tools and processes to modify rules to meet the dynamic needs of
interactive software systems, as described by process depicted in Figure 1.

The overall objective and philosophy of this research is not to derive universally
applicable rules or usability resources. Rather, the aim is to provide the rules and
infrastructure that allow an organization or group to accumulate knowledge based on
the collective experiences of the organization. This is accomplished by instituting a
process that reviews the recommendations given by GUIDE during project design
reviews. Suggestions on modifications and improvements to the knowledge base are
then forwarded to human factors and GUIDE librarian personnel for consideration.
This kind of process has been demonstrated to work in practice [43], provided the
repository remains up to date and remains an important corporate asset that provides
benefit to the developers.

During periodic design reviews, teams will review and critique project answers to
GUIDE questions. Different answers could be negotiated and found to be more
appropriate for the project and can easily be changed in GUIDE (the system supports
rule backtracking). Review teams could also determine that GUIDE
recommendations are either inappropriate or missing. This is seen as an opportunity
to improve the knowledge base. The review team provides rationale for why

An Organizational Learning Method for Applying Usability Guidelines and Patterns 151

deviations are necessary. Human factors specialists and/or other GUIDE curators
review the requests and either refuses the request, allows a once-only deviation, or
turns the rationale into GUIDE rules and modifies the repository with this new
knowledge. New guidelines, examples, and other information could also be created
and placed in the repository to document the project’s experiences.

For example, suppose that previous projects have noted that users have problems
keeping track of where they are in complex procedures and clicking on links to
external Web pages that end up in the viewing part of the frame (the second problem
is a common HTML frame issue, especially when framed pages are displayed inside
of frames).3 The review team identify that frames are needed in this project and want
to use the review as an opportunity to document and apply the lessons learned from
previous efforts. The external link problem could be handled in a number of ways,
including adding sections in the “Guidelines for HTML Frames” document (see
Figure 3b) or adding a new guideline and rule stating that if frames are used the new
guideline on external page links needs to be followed. The tracking complex
procedures issue could be addressed by creating a new guideline stating, for example,
that completion of steps in a procedure are tracked by changing the color or otherwise
highlighting completed steps. Then an action is added to the rule used in Figure 3 so
that any project having 3 to 10 steps in the procedure is also given this new guideline.

This process ensures that the repository will evolve to meet the changing needs of
the organization while foraging new paths for subsequent projects to follow. As the
repository grows it will accommodate greater portions of projects, minimizing the
number of deviations while increasing knowledge reuse.

The rule base can be as specific or vague as needed by the organization. For
example, an organization that services only the medical community will probably
have guidelines that are specific to medical terms and procedures, while an
organization servicing a broader customer base will probably want guidelines at a
higher level of abstraction. The level of detail is determined by the rules and the
amount of effort desired by the organization, not by any limitation or mandate placed
in GUIDE itself.

4 Conclusions and Future Research

The objective of this research is not an attempt to automate user interface design. To
the contrary, it is recognized that effective user interface design take a degree of talent
and careful work with the end users that cannot be captured through rules, patterns or
any information system. Nonetheless, there is recognized knowledge and conventions
that can help some designers reach higher levels of competency and help
accomplished designers extend their knowledge to areas they have not yet
experienced. This research is an exploration of how resources can be delivered to
software developers through a rule-based structure that provides the basis for an
organizational memory – capturing the collective intelligence of an organization with
respect to usability design issues. Rules in this context serve as a medium, a formal

3 Empirical studies may have been conducted confirming this, and would be linked to the

specific guidelines or patterns addressing these issues.

152 Scott Henninger

mechanism for communicating design knowledge and establishing relationships
between context and usability resources.

Rule-based systems are often criticized for their inflexibility, which we ameliorate
through a process that reviews the relationships established by the rules throughout
the development process to ensure that real project experiences are represented. Our
integration of rule-based and case-based systems comes closer to the spirit of
American Case Law, where statutory law (rules) are contextualized by case law
(cases, guidelines, patterns). People then use this structure to argue which cases come
closest to the current situation and apply the attached rule, or set new precedents if
none of the cases are applicable.

The result is a web of knowledge on usability issues that is continuously updated to
meet the evolving needs of the organization. As the repository grows, it will become
an important piece of intellectual capital that puts knowledge of proven usability
techniques and wisdom at the fingertips of software developers. This approach does
not replace the need for iterative software development methodologies and user
studies (although knowledge of how to conduct those processes should be contained
in the repository), but can reduce the number of iterations by assuring that certain
classes of errors are avoided.

This approach requires that some software development staff devote some
percentage of their time maintaining the knowledge base. Personnel knowledgeable
about usability issues and the structure and content of the usability guidelines and
patterns are necessary for this approach to work. In addition, rule-based expertise is
necessary to ensure that GUIDE rules are well-structured and operate properly. Such
a structure resembles the concept of software factories [46], aligns well with current
trends to involve human factors in the design process [6], and can easily be applied to
mid-size or small development firms that can only afford to staff usability consultants
on a part-time basis.

The intersection of guidelines and patterns needs further investigation. We are
currently exploring structures that better integrate the different kinds of knowledge
contained in patterns, guidelines, style guides, etc. We are also interested in
providing examples as a significant knowledge resource. Given the number and
diverse composition and content of existing resources, particularly usability
guidelines, finding a proper “seed” [47] for the repository is problematic. A study
revealed that there was minimal overlap between 21 different guideline corpuses [48],
further underscoring the need for supporting a diverse initial set of usability resources.

Continued research is needed to further understand the issues of using
organizational memory repositories as advocated here. Many empirical questions
remain, such as whether variance between projects is too great to apply past
experiences, whether past experiences stifle creativity or enables it by shifting
attention away from re-creating previous solutions, whether the approach is useful for
only certain types of organizations, and whether the documentation burden of
constructing rues is too great for practical application. The contribution of this work
thus far is to provide tool support to turn usability guidelines and patterns into a
proactive design tool and design organizational structure and process to capture and
disseminate project experiences on usability issues.

The GUIDE and BORE projects will be evaluated through use in the Software
Design Studio in the JD Edwards Design Studio at the University of Nebraska-
Lincoln. This program, which integrates a combination of business and computer
science subjects, has been built around a design studio concept [49] where students

An Organizational Learning Method for Applying Usability Guidelines and Patterns 153

are engaged in long-term projects from paying customers external to the University.
BORE will be used to deliver and manage the studio’s defined software development
process. GUIDE will be employed to deliver usability resources as part of scenario-
based and other design methodologies. This and other research efforts will further
refine the system while further populating the repository with usability knowledge
and experiences. We will also seek to apply the tool and technique to pilot studies in
industry, as an effort to further study the issues involved with employing an
experience-based methodology to the usability design process.

Acknowledgments

I gratefully acknowledge the efforts a number of graduate students that have helped
develop BORE, including Charisse Lu, Kurt Baumgarten, and Peter Hsu. Osama Al
Shara has also contributed. This research was funded by the National Science
Foundation (CCR-9502461, CCR-9988540, and ITR/SEL-0085788), and through
contracts with Union Pacific Railroad.

References

1. J. D. Gould, S. J. Boies, and C. H. Lewis, "Making Usable, Useful, Productivity-
Enhancing Computer Applications," Communications of the ACM, vol. 34, 1991, pp. 75-
85.

2. F. de Souza and N. Bevan, "The Use of Guidelines in Menu Interface Design: Evaluation
of a Draft Standard," Human-Computer Interaction - INTERACT ‘90, 1990, pp. 435-440.

3. M. Y. Ivory, R. R. Sinha, and M. A. Hearst, "Empirically Validated Web Page Design
Metrics," Proc. Human Factors in Computing Systems (CHI 2001), Seattle, WA, 2001, pp.
53-60.

4. D. Scapin, C. Leulier, J. Vanderdonckt, C. Mariage, C. Bastien, C. Farenc, P. Palanque,
and R. Bastide, "A Framework for Organizing Web Usability Guidelines," 6th Conference
on Human Factors and the Web, Austin, TX, 2000.

5. S. Henninger, "A Methodology and Tools for Applying Context-Specific Usability
Guidelines to Interface Design," Interacting With Computers, vol. 12, 2000, pp. 225-243.

6. P. A. Billingsley, "Starting from Scratch: Building a Usability Program at Union Pacific
Railroad," interactions, vol. 2, 1995, pp. 27-30.

7. S. Henninger, "Case-Based Knowledge Management Tools for Software Development,"
Journal of Automated Software Engineering, vol. 4, 1997, pp. 319-340.

8. J. D. Gould and C. H. Lewis, "Designing for Usability - Key Principles and What
Designers Think," Communications of the ACM, vol. 28, 1985, pp. 300-311.

9. Apple Computer Inc., Macintosh Human Interface Guidelines. Reading, MA: Addison-
Wesley, 1992.

10. Microsoft Corporation, The Windows Interface: An Application Design Guide. Redmond,
WA: Microsoft Press, 1992.

11. IBM, Object-Oriented Interface Design: IBM Common User Access Guidelines. Carmel,
IN: Que, 1992.

12. OSF, OSF/Motif Style Guide: Revision 1.2. Englewood Cliffs, NJ: Prentice Hall, 1993.
13. Sun Microsystems, Open Look Graphical User Interface Application Style Guidelines.

Reading, MA: Addison-Wesley, 1989.
14. C. M. Brown, Human-Computer Interface Design Guidelines. New Jersey: Ablex, 1988.
15. P. Heckel, The Elements of Friendly Software Design. San Francisco: Sybex, 1991.

154 Scott Henninger

16. S. L. Smith and J. N. Mosier, "Guidelines for Designing User Interface Software,"
Technical Report, The MITRE Corporation ESD-TR-86-278, 1986.

17. J. Vanderdonckt, "Towards a Corpus of Validated Web Design Guidelines," Proceedings
of the 4th ERCIM Workshop on 'User Interfaces for All', 1998, pp. 16-31.

18. B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 2nd ed. Reading, MA: Addison-Wesley, 1992.

19. ISO/WD 9241, "Ergonomic Requirements for Office Work with visual Displays Units,"
International Standard Organization 1992.

20. E. Rosenweig, "A Common Look and Feel or a Fantasy?," interactions, vol. 3, 1996, pp.
21-26.

21. S. Weinschenk and S. C. Yeo, Guidelines for Enterprise-Wide GUI Design: Wiley &
Sons, 1995.

22. P. J. Lynch and S. Horton, Web Style Guide : Basic Design Principles for Creating Web
Sites. Princeton, NJ: Yale Univ Press, 1999.

23. J. A. Borges, I. Morales, and N. J. Rodriacuteguez, "Guidelines for Designing Usable
World Wide Web Pages," Proc. Human Factors in Computing Systems (CHI '96) Short
Papers, 1996, pp. 277 - 278.

24. D. Grammenos, D. Akoumianakis, and C. Stephanidis, "Integrated support for working
with guidelines: the Sherlock guideline management system," Interacting with Computers,
vol. 12, 2000, pp. 281-311.

25. J. Vanderdonckt, "Accessing Guidelines Information with SIERRA," Proceedings Fifth
IFIP International Conference on Human-Computer Interaction INTERACT '95,
Lillehammer, 1995, pp. pp. 311-316.

26. R. Iannella, "HyperSAM: A Practical User Interface Guidelines Management System,"
Proceedings of the Second Annual CHISIG (Queensland) Symposium - QCHI ‘94, Bond
Univ., Australia, 1994.

27. L. Alben, J. Faris, and H. Saddler, "Making it Macintosh: Designing the Message When
the Message is Design," interactions, vol. 1, 1994, pp. 10-20.

28. G. Perlman, "Asynchronous Design/Evaluation Methods for Hypertext Development,"
Hypertext ‘89 Proceedings, 1989, pp. 61-68.

29. L. Tetzlaff and D. R. Schwartz, "The Use of Guidelines in Interface Design," Proc.
Human Factors in Computing Systems (CHI '91), 1991, pp. 329-333.

30. H. Thovtrup and J. Nielsen, "Assessing the usability of a user interface standard," Proc.
Human Factors in Computing Systems (CHI '91), New Orleans, LA, 1991, pp. 335-341.

31. S. Henninger, K. Haynes, and M. W. Reith, "A Framework for Developing Experience-
Based Usability Guidelines," Proc. Designing Interactive Systems (DIS ‘95), Ann Arbor
MI, 1995, pp. 43-53.

32. M. van Welie, G. van der Veer, and A. Eliens, "Patterns as Tools for User Interface
Design," Workshop on Tools for Working With Guidelines, Biarritz, France, 2000.

33. M. J. Mahemoff and L. J. Johnston, "Principles for a Usability-oriented Pattern
Language," Proc. Australian Computer Human Interaction Conference OZCJI 98,
Adelaide, 1998, pp. 132-139.

34. G. Casaday, "Notes on a Pattern Language for Interactive Usability," Proc. Human
Factors in Computing Systems (CHI '97), Atlanta, GA, 1997, pp. 289-290.

35. J. Borchers, "CHI Meets PLoP: An Interaction Patterns Workshop," SIGCHI Bulletin, vol.
32, 2000, pp. 9-12.

36. C. Alexander, The Timeless Way of Building. New York: Oxford Univ. Press, 1979.
37. A. Granlund and D. Lafreniere, "UPA 99 Workshop Report: A Pattern-Supported

Approach to the UI Design Process,", 1999.
38. T. Erickson, "Lingua Francas for Design: Sacred Places and Pattern Languages," Proc.

Designing Interactive Systems (DIS 2000), New York, 2000, pp. 357-368.
39. J. Tidwell, "The Gang of Four are Guilty,"., 1999.
40. TFWWG, Tools for Working With Guidelines Workshop (TFWWG2000), Biarritz, France,

2000.

An Organizational Learning Method for Applying Usability Guidelines and Patterns 155

41. L. G. Terveen, P. G. Selfridge, and M. D. Long, "From ‘Folklore’ To ‘Living Design
Memory’," Proceedings InterCHI '93, Amsterdam, 1993, pp. 15-22.

42. J. L. Kolodner, "Improving Human Decision Making through Case-Based Decision
Aiding," AI Magazine, vol. 12, 1991, pp. 52-68.

43. L. G. Terveen, P. G. Selfridge, and M. D. Long, "Living Design Memory’ - Framework,
Implementation, Lessons Learned," Human-Computer Interaction, vol. 10, 1995, pp. 1-37.

44. J. P. Walsh and G. R. Ungson, "Organizational Memory," Academy of Management
Review, vol. 16, 1991, pp. 57-91.

45. E. W. Stein and V. Zwass, "Actualizing Organizational Memory with Information
Systems," Information Systems Research, vol. 6, 1995, pp. 85-117.

46. V. R. Basili, G. Caldiera, and G. Cantone, "A Reference Architecture for the Component
Factory," ACM Transactions on Software Engineering and Methodology, vol. 1, 1992, pp.
53-80.

47. G. Fischer, R. McCall, J. Ostwald, B. Reeves, and F. Shipman, "Seeding, Evolutionary
Growth and Reseeding: Supporting the Incremental Development of Design
Environments," Proc. Human Factors in Computing Systems (CHI '94), Boston, MA,
1994, pp. 292-298.

48. J. Ratner, E. M. Grose, and C. Forsythe, "Characterization and Assessment of HTML
Style Guides," Proc. Human Factors in Computing Systems (CHI '96), 1996, pp. 115-116.

49. D. A. Schön, The Design Studio: An Exploration of its Traditions and Potentials.
London: RIBA Publications Limited, 1985.

Discussion

P. Smith: Your approach is to have a set of guidelines and then examples.
Commercial systems use the reverse.
S. Henninger: Pattern work uses this approach, generalise and then examples. There is
not too much difference. The end goal is the same. Communicate a design principle to
get a better interface.

	An Organizational Learning Method for Applying Usability Guidelines and Patterns
	1 Introduction and Motivation
	2 Usability Guidelines and Patterns
	2.1 Context and Usability Patterns
	2.2 Integrating Usability Guidelines and Patterns

	3 An Organizational Learning Approach for Usability Guidelines and Patterns
	3.1 The GUIDE Process for Applying Usability Resources
	3.2 The GUIDE Architecture
	3.3 Using GUIDE to Develop Interactive Software Systems
	3.4 Representing Context with Applicability Rules
	3.5 Incremental Acquisition of Design Knowledge

	4 Conclusions and Future Research
	Acknowledgments
	References
	Discussion

