
K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 417–432, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Taxonomies and Derivation Rules
in Conceptual Modeling

Antoni Olivé

Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Jordi Girona 1-3, C5-D207
08034 Barcelona (Catalonia)
olive@lsi.upc.es

Abstract. This paper analyzes the relationships between taxonomic constraints
and derivation rules. The objectives are to see which taxonomic constraints are
entailed by derivation rules and to analyze how taxonomic constraints can be
satisfied in presence of derived types. We classify derived entity types into
several classes. The classification reveals the taxonomic constraints entailed in
each case. These constraints must be base constraints (defined in the taxonomy)
or be derivable from them. We show how the base taxonomic constraints can be
satisfied, either by the derivation rules (or the whole schema), or by
enforcement. Our results are general and could be incorporated into many
conceptual modeling environments and tools. The expected benefits are an
improvement in the verification of the consistency between taxonomic
constraints and derivation rules, and a guide for the determination of the
taxonomic constraints that must be enforced in the final system.

1 Introduction

Taxonomies are fundamental structures used in many areas of information systems
engineering and other fields [8]. In its most basic form, a taxonomy consists of a set
of (entity or relationship) types and a set of IsA relations among them [11].
Extensionally, an IsA relation is a constraint between the populations of two types [3].
Usually, taxonomies include also other constraints, mainly disjointness and covering,
which are needed to adequately represent domain knowledge [24].

Derived types and derivation rules have a long tradition in conceptual modeling,
starting at least in the early eighties [22]. SDM [20] is recognized as one of the first
languages that emphasized the need and support of derived types. Derivation rules
were also included in the ISO framework [23]. CIAM was a methodology strongly
based on derived types, with a temporal perspective [17]. Many other later conceptual
languages include specific constructs for the definition of derivation rules. Among
them, we mention the family of languages descendants of KL-ONE [11] called
Description (or terminological) Logics [9]. The recent industry standard UML
language [31] also allows derived types but, unfortunately, they are restricted to
attributes and associations.

418 Antoni Olivé

There are some relationships between constraints defined in a taxonomy, that we
call taxonomic constraints, and derived types. As a very simple example, assume a
taxonomy with entity types Clerk, Engineer, Employee and Person, and the constraint
Clerk IsA Employee. Once defined a taxonomy, in general we have several options
concerning derivability of its entity types, and the corresponding derivation rules. For
example, we can make Employee base and Clerk derived. In this case, the derivation
rule of Clerk must entail the constraint, with a rule like "A clerk is an employee such
that its category is 'c'". Another option is to make Employee derived and Clerk base.
In this case, the derivation rule of Employee may or may not entail the constraint. If
the rule is like "An employee is a person that works in some company", then it does
not entail the constraint. If the rule is "An employee is a person who is a clerk or an
engineer" then it entails the constraint. However, in this case the rule entails also
Engineer IsA Employee, and this constraint must be included in the taxonomy. Thus,
we see that there are relationships from taxonomic constraints to derivation rules, and
the other way around. The objective of this paper is to analyze such relationships at
the conceptual level.

Knowledge of the relationships between taxonomic constraints and derivation rules
is important for at least two purposes: (1) During conceptual modeling verification, to
ensure that derivation rules entail some constraints defined in the taxonomy, and that
the taxonomy includes all constraints entailed by derivation rules; and (2) During
information systems design, to determine which taxonomic constraints need to be
explicitly enforced (by database checks, assertions or triggers, or transaction
pre/postconditions) and which are entailed by derivation rules, and need not to be
enforced.

The main contributions of this paper are: (1) a classification of derived entity
types; (2) an analysis of the constraints entailed by derivation rules and that must be
defined in a taxonomy; and (3) an analysis of the possible ways of satisfaction of
taxonomic constraints in presence of derived types. We assume a temporal conceptual
schema and information base, and allow multiple specialization and classification.

We expect our contribution to be useful for the two purposes mentioned above. In
particular, we want to stress the applicability to the enforcement of constraints.
Current methods and techniques for the enforcement of taxonomic constraints do not
take into account derived types [4, 27]. An illustrative example is [21], which details a
wide range of techniques to express any kind of taxonomic constraints into standard
DBMS constructs, but it is assumed that all entity types in the taxonomy are base.
These methods could be extended easily to schemas that include derived types.

To the best of our knowledge, the relationships between taxonomic constraints and
derivation rules have been studied, in conceptual modeling, only in the context of
Description Logics (DL) [7, 9, 12] or similar [14]. This paper differs from most of
that work in several aspects: (1) we deal with taxonomies of entity types in temporal
conceptual schemas; (2) we assume a clearer separation between taxonomy (with
taxonomic constraints) and derivability (with derivation rules); (3) we deal with
derivation rules written in the FOL language, instead of a particular DL language
[10]; (4) even if we use the FOL language, here we focus more on defining the
relationships than on determining automatically them; we hope this will help in
adapting and using the results reported here in several conceptual modeling
languages; and (5) we give a special treatment to the determination of the taxonomic
constraints that must be enforced by the designer.

Taxonomies and Derivation Rules in Conceptual Modeling 419

The structure of the paper is as follows. Section 2 reviews taxonomic constraints
and introduces the notation we will use. Section 3 develops a classification of derived
entity types, based mainly on an analysis of their derivation rules. That analysis also
allows us to determine some taxonomic constraints entailed by the rules. We discuss
how these constraints must be reflected in the taxonomy. Section 4 analyzes how the
constraints defined in a taxonomy can be satisfied, in presence of derived entity types.
Section 5 summarizes the results and points out future work.

2 Taxonomies

A taxonomy consists of a set of concepts and their specialization (subsumption)
relationships [11]. In a conceptual schema, we have a taxonomy of entity types and
one or more of relationship types. In this paper we deal only with the former.
Specializations have an intensional and an extensional aspect. Here, we focus on the
extensional aspect, where a specialization is a constraint between the population of
two entity types. Other constraints related to taxonomies are disjointness and
covering. We call taxonomic constraints the set of specialization, disjointness and
covering constraints defined in a schema. We introduce below the terminology and
notation that will be used throughout the paper.

We adopt a logical and temporal view of the information base, and assume that
entities and relationships are instances of their types at particular time points. In the
information base, we represent by E(e,t) the fact that entity e is instance of entity type
E at time t. Similarly, we represent by R(e1,...,en,t) the fact that entities e1,...,en

participate in a relationship instance of relationship type R at time t [17, 6, 30]. We
say that E(e,t) and R(e1,...,en,t) are entity and relationship facts, respectively.

2.1 Taxonomic Constraints

We denote by S = E' IsA E a specialization constraint between entity types E' and E.
For example, Man IsA Person. E' is said to be a subtype of E, and E a supertype of E'.
An entity type may be supertype of several entity types, and it may be a subtype of
several entity types at the same time. As usual, we require that an entity type may not
be a direct or indirect subtype of itself. Informally, a specialization means that if an
entity e is instance of E' at time t, then it must also be instance of E at t. In the
language of first order logic, the meaning of a specialization S = E' IsA E is given by

the formula1:
E'(e,t) → E(e,t)

We denote by D = E1 disjoint E2 a disjointness constraint (sometimes called
IsNotA) between entity types E1 and E2. For example, Man disjoint Woman. The
informal meaning is that the populations of E1 and E2 at any time are disjoint.
Naturally, E1 disjoint E2 is equivalent to E2 disjoint E1. The formal meaning is given
by the formula:

E1(e,t) → ¬ E2(e,t)

1 The free variables are assumed to be universally quantified in the front of the formula.

420 Antoni Olivé

AdultYoungChildWomanMan

{disjoint,complete} {disjoint,complete}

Person

Fig. 1. Graphical representation in UML of Person Gens Man, Woman, and Person Gens
Child, Young, Adult.

Finally, a covering constraint between an entity type E' and a set of entity types
E1,...,En, will be denoted by C = E' covered E1,...,En. For example, Person covered
Man, Woman. The informal meaning is that if e is instance of E' at time t, it must be
also instance of at least one Ei at t. Formally:

E'(e,t) → E1(e,t) ∨ ... ∨ En(e,t)
Notice that, by itself, E' covered E1,...,En does not imply Ei IsA E'.

A specialization constraint is a covering constraint with only one covering type: E'
IsA E ≡ E' covered E [24]. However, we will treat them separately, because both are
widely used in practice.

We call base the taxonomic constraints explicitly defined in a schema. From the
base constraints other may be derived using a set of inference rules. We are interested
in derived constraints because derivation rules may entail them and, in this case, it
will be necessary to check that such constraints may be derived from the base ones.
We deal with derived constraints in Subsection 3.3.

All modern conceptual models and languages allow defining taxonomies, usually
structured in generalizations [22, 4, 6]. A generalization G = E Gens E1,...,En

corresponds to a set of specialization constraints Ei IsA E, for i = 1,..,n, with a
common supertype E. Gens is a shorthand for Generalizes. A generalization is
disjoint if their subtypes are mutually disjoint; otherwise, it is overlapping. A
generalization is complete if the supertype E is covered by the subtypes E1,...,En;
otherwise it is incomplete. Many conceptual languages provide a graphical
representation of generalizations. Figure 1 shows an example of two generalizations
of Person, in the UML language [31].

2.2 Partitions

A partition is a modeling construct that allows us to define in a succinct way a set of
taxonomic constraints. A partition is a generalization that is both disjoint and
complete. We denote by P = E Partd E1,...,En a partition of entity type E into entity
types E1,...,En. Partd is shorthand for Partitioned. For example, Person Partd Man,
Woman. A partition P = E Partd E1,...,En corresponds to the constraints:

Si = Ei IsA E, for i = 1,..,n
C = E covered E1,...,En

Di,j = Ei disjoint Ej, for i,j = 1,..,n, i ≠ j.
We do not require here to structure a taxonomy in partitions. However, we give a

special treatment to them due to their importance in conceptual modeling [26, 29].

Taxonomies and Derivation Rules in Conceptual Modeling 421

3 Derivation Rules

An information system may know the population of an entity type in three distinct
ways, which are reviewed below. Then, we classify derived entity types according to
the form of their derivation rule, and show the entailed constraints in each case.

3.1 Derivability of Entity Types

The derivability of an entity type is the way how the information system knows the
population of that entity type at any instant. According to derivability, an entity type
may be base, derived or hybrid [5, 26]. We give below a few comments on each of
them:

– Base. An entity type E is base when the population of E at time t is given directly
or indirectly by the users by means of insertion and deletion events. An insertion
event of entity e in E at t means that e is instance of E from t. A deletion event of
e in E at t means that e ceases to be instance of E at t. The information system
knows the population of a base entity type E at t by using a general persistence
(or frame) axiom: the population is the set of entities that have been inserted at
time t1 ≤ t and have not been deleted between t1 and t.

– Derived. An entity type E is derived when the population of E at t is given by a
formal derivation rule, which has the general form:

E(e,t) ↔ ϕ(e,t)

– Hybrid. An entity type E is hybrid when the population of E is given partially by
the users (insertion and deletion events) and partially by a formal derivation rule,
which has the general form:

E(e,t) ← ϕ(e,t)

– We call such derivation rules partial, because they define only part of the
population of E. The information system may know the population of E at any
time by using the persistence axiom and the above rule.

Any hybrid entity type can be transformed easily into an equivalent derived one.
This allows us to simplify our analysis, since we only have to deal with base and
derived types. The procedure for the transformation is described in [5]. Here we show
it by means of an example. Assume that Building is hybrid, with the partial derivation
rule:

Building(b,t) ← House(b,t)

This means that houses are buildings, but that there may be other buildings besides
houses. We define a new base entity type Buildingext, such that its population at time t
is the set of entities that users have defined explicitly as being buildings. Usually, we
will require the constraint Buildingext disjoint House, but this is not mandatory. Now,
Building is derived, with the derivation rule:

Building(b,t) ↔ House(b,t) ∨ Buildingext(b,t)

422 Antoni Olivé

Base

Derived by union
with implicit types

Derived by past
 specialization

Derived by
 union

Derived by
 exclusion

Derived by
specialization

Base
Base

{complete}

{disjoint,
complete}

TopManager

Contract
Employee

Temporary
Employee

Employee

Manager Owner

 Former
Employee

FormerEmployee
disjoint
Employee

Engineer

Fig. 2. Example of entity types with their derivability, and the taxonomic constraints entailed
by their derivation rules.

3.2 Classification of Derived Entity Types

We are going to see that derived entity types can be classified into derived by:
specialization, exclusion, past specialization, union and union with implicit types.

This classification is important to see the taxonomic constraints entailed by
derivation rules. On the other hand, we think that the classification is useful for
reasoning and implementation purposes (especially if entity types are materialized), in
the same way as the classification of integrity constraints (key, referential,
cardinalities, ...) eases reasoning about them and allows their efficient
implementation.

For generality, we assume that derivation rules are written in the FOL language.
However, the results shown below could be of interest to many conceptual modeling
languages.

To illustrate the classification, we use as an example the following derived entity
types and derivation rules:

DR1: Employee(e,t) ↔ Manager(e,t) ∨ Engineer(e,t)
DR2: ContractEmployee(e,t) ↔ HasContract(e,contract,t)
DR3: TemporaryEmployee(e,t) ↔ Employee(e,t) ∧ ¬ ContractEmployee(e,t)
DR4: TopManager(m,t) ↔ (Manager(m,t) ∧ ¬∃super HasSubordinate(super,m,t))
 ∨ Owner(m,t)
DR5: FormerEmployee(e,t) ↔ Employee(e,t1) ∧ Time(t) ∧ t1 < t ∧ ¬ Employee(e,t)

In DR5, Time(t) is a special predicate whose facts are instants of the temporal
domain. Figure 2 summarizes the classification of the above entity types and the
taxonomic constraints (in UML) entailed by the derivation rules. Both results are
obtained by the procedure described below.

The procedure is a simple four-step transformation of each derivation rule into an
equivalent set of (logic programming) clauses [25]. The classification is based on the

Taxonomies and Derivation Rules in Conceptual Modeling 423

number of clauses thus obtained, and the structure of each of them, as we show in
what follows.

Let E(x,t) ↔ φ (x,t) be a derivation rule. Assuming the semantics of the completion,
the rule can be expressed by:

E(x,t) ← φ(x,t)
In general, φ (x,t) can be any valid first order formula, which makes its analysis
difficult. However, using the well-known (at least in the logic programming and
deductive databases fields) procedure proposed in [25], we can transform it (first step)
into an equivalent set of n clauses:

E(x,t) ← Li,1 ∧ ... ∧ Li,m for i = 1...n
where each of the Li,j in the body of the clause is a (positive or negative) literal. Other
auxiliary clauses may be obtained as well, but they are irrelevant for our purposes. As
usual, we require that the resulting clauses are safe and stratified [25, 13], thus
guaranteeing that their computation is safe. We call simple a clause having exactly
one literal of the form:

E(x,t) ← Ei(x,t)
In the example, transformation of DR1and DR4 yields the clauses (the

transformation of the other rules is trivial):

DR1-1: Employee(e,t) ← Manager(e,t)
DR1-2: Employee(e,t) ← Engineer(e,t)
DR4-1: TopManager(m,t) ← Manager(m,t) ∧ ¬HasSuper(m,t)
DR4-2: TopManager(m,t) ← Owner(m,t)
Aux: HasSuper(m,t) ← HasSubordinate(super,m,t)

In the body of a clause E(x,t) ← Li,1 ∧ ... ∧ Li,m, a literal Li,j may be:
– A positive entity fact Ei(x,ti) meaning the x is instance of Ei at time ti.
– A positive relationship fact Ri(x,y,ti) including x as an argument. The position of x

is irrelevant, and y is a vector of arguments. The meaning now is that x and y
participate in a relationship of type Ri at time ti.

– Other literals (positive facts not including x, negative, evaluable, Time). These
are irrelevant for our current purposes. Note that in this paper we do not deal with
aggregates.

There must be at least one positive Ei(x,ti) or Ri(x,y,ti) literal in the clause. This
condition is implied by the safeness of clauses (recall that the head of the clauses is
E(x,t)).

In conceptual modeling, participants pi in relationships of type R(p1:E1,...,pn:En) at
time t must be instance of their corresponding entity type Ei at time t (referential
integrity constraint). Therefore, assuming that Ei is the type corresponding to x,
whenever literal Ri(x,y,ti) is true, Ei(x,ti) must be true also. This justifies our second
step: for each positive relationship fact Ri(x,y,ti) appearing in the body of a clause, we
add the corresponding literal Ei(x,ti). These literals are redundant with respect to
Ri(x,y,ti), but they will allow us to find the entity types specialized by E.

In the example, this step can be applied to DR2. Assuming the relationship type
HasContract(Employee,Contract), we add Employee(e,t) to the body of DR2:

DR2’: ContractEmployee(e,t) ← HasContract(e,contract,t) ∧ Employee(e,t)

424 Antoni Olivé

In the third step we remove redundant positive entity fact literals. If we have a
clause:

E(x,t) ← Li,1 ∧ ...∧ Ei(x,tk)∧ ... ∧ Ej(x,tk)∧ ...∧ Li,m

and we have also a direct or indirect Ei IsA Ej in the schema, then we remove the
redundant literal Ej(x,tk).

In the fourth step, we deal with the literals in the body of a clause which are
positive entity facts including argument x and with a time argument ti distinct from t,
where t is the time argument of the head of the clause, E(x,t). In general, such ti may
range in the interval [1,...,t]. The case ti > t is not permitted, because then E(x,t) would
not be computable at time t. We want to distinguish the case when ti = t and the case
when ti < t. For this purpose, given that ti ≤ t ↔ ti = t ∨ ti < t, we replace each clause
having a Ei(x,ti) literal:

E(x,t) ← Li,1 ∧ ... ∧ Ei(x,ti) ∧ ... ∧ Li,m

by the two equivalent clauses:
E(x,t) ← Li,1 ∧ ... ∧ Ei(x,t) ∧ ... ∧ Li,m (ti is replaced by t)
E(x,t) ← Li,1 ∧ ... ∧ Ei(x,ti) ∧ ti < t ∧ ... ∧ Li,m

If any of the clauses has a contradictory body, it is removed. After this step, all
positive entity facts will have a time argument with t or with a ti such that ti < t. We
call the former current facts, and the latter past facts.

The application of this step to DR5 gives:

DR5-1: FormerEmployee(e,t) ↔ Employee(e,t) ∧ t = t ∧ Time(t) ∧ t < t ∧
¬ Employee(e,t)

DR5-2: FormerEmployee(e,t) ↔ Employee(e,t1) ∧ Time(t) ∧ t1 < t ∧
 ¬ Employee(e,t)

The first clause, DR5-1, is removed because of the contradiction t = t and t < t.
Such contradictions can be easily detected with the algorithms given in [18].

We now have sufficient machinery in place to classify derived entity types. We
start by distinguishing two main cases: the derivation rule is transformed into a single
clause (DR2',DR3,DR5-2) or into multiple clauses (DR1,DR4).

Single Clause. An entity type E is derived by specialization of E1,...,En if the above
transformation of its derivation rule yields the single clause:

E(x,t) ← E1(x,t) ∧ ... ∧ En(x,t) ∧ Res
with n ≥ 1, and Res is a (possibly empty) residual set of literals, none of which is a
positive entity fact Ej(x,t). The above clause cannot be simple (that is, n = 1 and Res
empty) because then E and E1 would be redundant entity types.

If entity type E is derived by specialization of E1, ..., En then the derivation rule of
E entails the n specialization constraints: E IsA E1, ..., E IsA En. If any of the literals in
Res has the form ¬Ep(x,t), then the derivation rule entails also the constraint: E
disjoint Ep.

According to this definition, in our example ContractEmployee and
TemporaryEmployee are derived by specialization of Employee (DR2' and DR3).

Taxonomies and Derivation Rules in Conceptual Modeling 425

In conceptual modeling, many derived entity types are derived by specialization,
and for some conceptual models, this is the only allowed type (for instance, NIAM
[28] and Chimera [13])

A particularly interesting subcase of entity type derived by specialization is when
the clause has exactly the form:

E(x,t) ← E'(x,t) ∧ ¬ E1(x,t) ∧ ... ∧ ¬ Em(x,t)
with m ≥ 1. In this case, we say that E is derived by exclusion, because its instances
are those of E' but excluding those of E1 and ... and Em. Now the derivation rule of E
entails also:
– the disjointness constraints: E disjoint Ei, for i = 1,..,m.
– the covering constraint E' covered E, E1, ..., Em.

In the example, TemporaryEmployee is derived by exclusion (DR3). The set of
constraints entailed by DR3 is:

TemporaryEmployee IsA Employee,
TemporaryEmployee disjoint ContractEmployee, and
Employee covered TemporaryEmployee, ContractEmployee.

Finally, we say that an entity type E is derived by past specialization of E1,...,En if
the transformation of its derivation rule yields the clause:

E(x,t) ← E1(x,t1) ∧ ... ∧ En(x,tn) ∧ Res
with n ≥ 1, all Ei(x,ti) past, and where Res is a (possibly empty) residual set of literals,
none of which is a positive entity fact Ej(x,t). In this case the specializations E IsA Ei

do not hold. If any of the literals in Res has the form ¬Ep(x,t), then the derivation rule
entails the constraint: E disjoint Ep.

The relationship between Ei and E that exists in this case is:
E(x,t) → ∃tk Ei(x,tk) ∧ tk < t

which can be seen as a past specialization. This specialization can be captured by the
expression E WasA Ei, and could be considered a new kind of taxonomic constraint.

In the example, FormerEmployee is derived by past specialization of Employee
(DR5-2). The constraint entailed by DR5-2 is FormerEmployee disjoint Employee.

Derivation by specialization or by past specialization are the two only possible
cases when the original derivation rule is transformed into a single clause. The reason
is that, as we have said before, after the first step the body of the clause must contain
at least one Ei(x,ti) or Ri(x,y,ti) literal. If it is a Ri(x,y,ti) literal, then after the second
step the body will include at least one Ei(x,ti) literal.

Multiple Clauses. Now we deal with the case when the original derivation rule is
equivalent to a set of n clauses (n > 1):

E(x,t) ← Li,1 ∧ ... ∧ Li,m for i = 1...n
An entity type E is derived by union of E1, ..., En if the n clauses are simple; that is,

they have the form:
E(x,t) ← E1(x,t)

...
E(x,t) ← En(x,t)

If entity type E is derived by union of E1, ..., En then the derivation rule of E entails
the n specialization constraints: E1 IsA E, ..., En IsA E and the covering constraint: E
covered E1, ..., En.

426 Antoni Olivé

In the example, Employee is derived by union of Manager and Engineer (DR1-1
and DR1-2). The constraints entailed are: Manager IsA Employee, Engineer IsA
Employee and Employee covered Manager, Employee.

Some conceptual models allow defining entity types derived by specialization and
union. Among them, we mention PSM [19].

If any of the n clauses is not simple, we say that E is derived by union with implicit
types. The non-simple clauses will be either a specialization or a past specialization,
which can be seen as defining an implicit type. If some clause is simple, then the
derivation rule entails a corresponding specialization constraint.

In the example, TopManager is derived by union of implicit types (DR4-1,DR4-2).
The simple clause DR4-2 entails Owner IsA TopManager. Note that we can always
transform a type derived by union with implicit types into one derived by union, with
the introduction of new types. Thus, TopManager could be derived by union of
Owner and TopEmployeeManager, defined as:

DR4-1': TopManager(m,t) ← TopEmployeeManager(m,t)
DR4-2': TopManager(m,t) ← Owner(m,t)
New: TopEmployeeManager(m,t) ← Manager(m,t) ∧ ¬HasSuper(m,t)

where TopEmployeeManager is the implicit type (derived by specialization).
In some special cases, the transformation yields n clauses with one or more

common Ei(x,t) literals. If this occurs, then E is classified as derived by specialization
of Ei. For example, in the derivation rule:

PromotionCandidate(e,t) ↔ Engineer(e,t) ∧
(TemporaryEmployee(e,t) ∨ (HasSalary(e,sal,t) ∧ sal < Min))

where PromotionCandidate becomes derived by specialization of Engineer.

3.3 Taxonomy and Constraints Entailed by Derivation Rules

As we have just seen, a derivation rule may entail taxonomic constraints. Now, the
question is: must these constraints appear in the taxonomy? Our answer is positive,
because for verification, validation, implementation, and evolution purposes it is
important that a taxonomy be as complete as possible. It is also important in order to
ensure the consistency between the taxonomy and the derivation rules. In our
example, this means to check that the taxonomic constraints depicted graphically in
Figure 2 are included in the taxonomy.

A constraint entailed by a derivation rule will be very often a base one. In these
cases, derivation rules and taxonomy match perfectly.

In other cases, however, a constraint entailed by a derivation rule is not a base one.
In these cases, the constraint must be derivable from the base ones, using a set of
inference rules. [3, 24] give the complete and sound set of inference rules for
taxonomic constraints. If a constraint is not derivable using that set of inference rules,
then either the taxonomy or the derivation rules must be modified.

Taxonomies and Derivation Rules in Conceptual Modeling 427

4 Satisfaction of Taxonomic Constraints

In this Section, we analyze how the constraints defined in a taxonomy can be
satisfied. We apply the results to the particular case of partitions.

4.1 Satisfaction of Base Constraints

An information base comprises all temporal base and derived facts that are true in the
domain of the information system. An information base IB satisfies a constraint IC if
IC is true in IB. There are several different meanings of constraint satisfiability in
logic [15, 16], but the differences will not be important in this paper.

Satisfaction of integrity constraints can be ensured by the schema or by
enforcement. We say that a constraint IC is satisfied by the schema (or intensionally)
when the schema entails IC. That is, the derivation rules and the (other) constraints
defined in the schema imply IC or, in other terms, IC is a logical consequence of the
schema. In this case no particular action must be taken at runtime to ensure the
satisfaction of IC. In a way, IC is redundant, but it may be important to keep it in the
schema for verification, validation, implementation or evolution purposes. For
example, if the schema includes:

S = LongPaper IsA Paper
DR: LongPaper(p,t) ← Paper(p,t) ∧ Length(p,pages,t) ∧ pages > 50

then DR entails S, and therefore S is satisfied by the schema.
We say that a constraint IC is satisfied by enforcement (or extensionally) when it is

not satisfied by the schema, but it is entailed by the information base. That is, IC is a
condition true in the information base. In this case, the system has to enforce IC by
means of checking and corrective actions, to be executed whenever the information
base is updated. For example, if Manager and Engineer are base entity types and we
have the constraint D = Manager disjoint Engineer, then D must be enforced. This
means to check at runtime that no entity is classified in both types at the same time
and, if it is, to reject the cause of the constraint violation or to perform some
corrective action.

The enforcement of constraints is expensive, but it may be the only option
available for some constraints. However, methods developed so far assume that all
taxonomic constraints must be enforced [21]. We are going to show that, in some
cases, taxonomic constraints may be satisfied by the schema and, thus, their
enforcement is not necessary. We discuss each kind of taxonomic constraint in turn.

Let S = E' IsA E be a base specialization constraint. We distinguish four cases:
(1) if both E' and E are base, then S must be enforced.
(2) if E' is derived and E is base, then the derivation rule of E' must entail S. The

rationale is that if the derivation rule of E': E'(e,t) ↔ ϕ(e,t) does not entail S, then
we can transform it into the equivalent one E'(e,t) ↔ (ϕ(e,t) ∧ E(e,t)), which now
entails S. Note that this transformation does not change the stratification of E'.

In the particular case that E' is derived by specialization of E, the derivation
rule of E' entails S.

(3) when E' is base and E is derived, S may be entailed by the schema; if it is not,
then S must be enforced.

428 Antoni Olivé

In the general case, it may be difficult to prove that S is entailed by the
schema, see comment below. In many practical cases, however, it suffices to
prove that S is entailed by the derivation rule of E. This happens, for instance,
when E is derived by union of a set of types that includes E'.

(4) when both E' and E are derived, S may be entailed by the derivation rules of E' or
E, or by the schema; if it is not, then S must be enforced.

As an example, consider the five specialization constraints of Figure 1. Assume
that Man and Woman are base, and that the other entity types are derived. The
derivation rules are:

DR1-1: Person(p,t) ← Man(p,t)
DR1-2: Person(p,t) ← Woman(p,t)
DR2: Child(p,t) ← Person(p,t) ∧ Age(p,a,t) ∧ a < 5
DR3: Young(p,t) ← Person(p,t) ∧ Age(p,a,t) ∧ a > 5 ∧ a < 18.
DR4: Adult(p,t) ← Person(p,t) ∧ Age(p,a,t) ∧ a ≥ 18.

S1 = Man IsA Person is entailed by DR1-1 (case 3). Similarly, S2 = Woman IsA
Person is entailed by DR1-2 (case 3). S3 = Child IsA Person; S4 = Young IsA Person
and S5 = Adult IsA Person are entailed by DR2, DR3 and DR4, respectively (case 4).

In cases (3) and (4) it may be necessary to prove that S is entailed by the schema. If
it cannot be proved, then a safe approach is to enforce S. Automation of this proof
requires the use of some reasoner [18, 15]. When derivation rules are written in a
language based on Description Logics, such a reasoner is usually available [7, 9].

Let D = E1 disjoint E2 be a base disjointness constraint. We distinguish three cases:

(1) if both E1 and E2 are base, then D must be enforced.
(2) if E1 is derived and E2 is base, then the derivation rule of E1 must entail D. The

rationale is that if the derivation rule of E1: E1(e,t) ↔ ϕ(e,t) does not entail D,
then we can transform it into the equivalent one E1(e,t) ↔ (ϕ(e,t) ∧ ¬ E2(e,t)),
which now entails D. Note that this transformation does not change the
stratification of E1.

In the particular case that E1 is derived by specialization of some type E and
exclusion of some types including E2, D is entailed by the derivation rule of E1.

(3) when E1 and E2 are derived, D may be entailed by the schema; if it is not, then D
must be enforced.

Continuing our previous example, consider now the disjointness constraint D1 =
Man disjoint Woman. Given that both entity types are base, D1 must be enforced (case
1). In D2 = Young disjoint Child, D3 = Young disjoint Adult and D4 = Child disjoint
Adult both entity types are derived (case 3). It is easy to see that their derivation rules
entail them. In this particular example, the algorithms described in [18] determine the
entailment efficiently.

Let C = E covered E1,...,En be a base covering constraint. We distinguish only two
cases:

(1) if all entity types are base, then C must be enforced.
(2) in any entity type is derived, C may be entailed by the schema; if it is not, then C

must be enforced.

Taxonomies and Derivation Rules in Conceptual Modeling 429

There are two particular subcases, frequently found in practice, for which C is
entailed by a derivation rule. The first is when E is derived by union of E1,...,En.
The second is when some Ej is derived by specialization of E and exclusion of
{E1,...,En} - {Ej}.

Continuing again our previous example, consider now the covering constraint C1 =
Person covered Man, Woman. Given that Person is derived by union of Man and
Woman, C1 is satisfied by the schema. The constraint C2 = Person covered Child,
Young, Adult is entailed by the derivation rules of Child, Young and Adult. Again, in
this particular example, the algorithms described in [18] determine the entailment
efficiently.

Note, on the other hand, that if the derivation rule of Adult were:
Adult(p,t) ↔ Person(p,t) ∧ ¬ Child(p,t) ∧ ¬ Young(p,t)

then Adult would be derived by specialization of Person and exclusion of Child and
Young and, therefore, C2 would be entailed by this derivation rule.

4.2 Satisfaction of Partitions

Partitions can be classified according to the derivability of their supertype and that of
their subtypes. All combinations are possible. The only exception, at least in
conceptual modeling, is when all entity types are base, because in this case the
supertype could be derived by union of its subtypes. The classification is useful in
order to analyze how the partition constraints can be satisfied in each case. We
discuss below the two most popular kinds of partitions.

Partition by Specialization. Let P = E Partd E1,...,En be a partition. We say that P is
a partition by specialization when all Ei, i = 1,..,n, are derived by specialization of E.
We have an example in Figure 1: Person Partd Child, Young, Adult, with all subtypes
derived by specialization of Person, as shown in the derivation rules DR2 - DR4
given above.

Let's see how the partition constraints may be satisfied in this kind of partition.
First, the specialization constraints Si = Ei IsA E are satisfied by the schema. More
specifically, they are entailed by the derivation rule of Ei.

Second, the disjointness constraints Di,j = Ei disjoint Ej should be satisfied by the
derivation rules of Ei and Ej. In the general case, when both Ei and Ej are derived, the
constraint may be entailed by the schema, but in this case it seems sensible to require
it to be entailed and, in particular, to be entailed by the derivation rules. The reason is
that it should not be difficult to write the derivation rules in a way that ensures
disjointness.

In many cases, a partition by specialization has a subtype for each value of some
single-valued attribute of E. In these cases, disjointness is naturally ensured. For
example, the partition Person Partd Single, Married, Divorced, Widower, where
Person has attribute MaritalStatus and the derivation rules are:

Single(p,t) ↔ Person(p,t) ∧ MaritalStatus(p,Single,t)
and similarly for the other subtypes. The difference in the argument ms of the literal
MaritalStatus(p,ms,t) ensures disjointness.

430 Antoni Olivé

Finally, the covering constraint C = E covered E1,...,En should be satisfied by the
derivation rules of E1,...,En, for the same reason as above. In the example, this requires
to check only that there is a subtype for each possible value of MaritalStatus.

When one of the subtypes, Ej, is derived by specialization of E and exclusion of
{E1,...,En}-{Ej}, then C is satisfied by the derivation rule of Ej.

In summary, partitions by specialization does not require enforcement of any
partition constraint. They only require writing carefully the derivation rules, so that
the disjointness and covering constraints are satisfied by the schema.

Partition by Union. Let P = E Partd E1,...,En be a partition. We say that P is a
partition by union when E is derived by union of E1,...,En. We have also an example in
Figure 1: Person Partd Man, Woman, with Person derived by union of Man and
Woman, as shown in the derivation rule DR1 given above.

Let's see how the partition constraints may be satisfied in this kind of partition.
First, the specialization constraints Si = Ei IsA E are satisfied by the schema. More
specifically, they are entailed by the derivation rule of E.

Second, the disjointness constraints Di,j = Ei disjoint Ej can be satisfied, as indicated
in subsection 4.1, either by the schema or by enforcement, depending on the
derivability of Ei and Ej. In the example, Man disjoint Woman must be enforced.

Finally, the covering constraint C = E covered E1,...,En is satisfied by the schema.
More specifically, it is entailed by the derivation rule of E.

In summary, partitions by union may require the enforcement of only some
disjointness constraints. All other partition constraints are enforced by the schema.

5 Conclusions

This paper has focused on the relationships between taxonomic constraints and
derivation rules. The objectives were to see which taxonomic constraints are entailed
by derivation rules, and must be included in a taxonomy, and to analyze how
taxonomic constraints can be satisfied in presence of derived types.

Based on an analysis of their derivation rules, we have classified derived entity
types into derived by specialization, by past specialization, by union or by union with
implicit types. The analysis reveals the taxonomic constraints entailed in each case.
These constraints must be base constraints (defined in the taxonomy) or be derivable
from them. We have shown how the base taxonomic constraints can be satisfied,
either by the derivation rules (or the whole schema), or by enforcement. Our analysis
can be extended naturally to taxonomies of relationship types [1,2].

Our results are general and could be incorporated into many conceptual modeling
environments and tools. The expected benefits are an improvement in the verification
of the consistency between taxonomic constraints and derivation rules, and a guide (to
the information system designer) for the determination of the taxonomic constraints
that must be enforced in the final system.

We see our results as complementary to those of Description Logics [9, 12],
mainly because we assume a different context: temporal conceptual schemas,
taxonomies of entity and relationship types, and derivation rules written in the FOL

Taxonomies and Derivation Rules in Conceptual Modeling 431

language. On the other hand, we deal with the design problem of determining which
constraints must be enforced.

The work reported here can be extended in several directions. The analysis of
derivation rules given in Subsections 3.2 and 5.1 can be completed by taking into
account aggregate literals. The classifications given in these subsections may be
refined, and further entailed constraints may be defined. We have focused on a single
derivation rule to see the constraints entailed by it, but it should be possible to
consider also sets of such rules. The analysis of partitions given in Subsection 4.2 can
be extended to other frequent kinds. Finally, the analysis can be extended to
taxonomies of relationship types.

References

1. Analyti, A.; Constantopoulos, P.; Spyratos, N. "Specialization by restriction and Schema
Derivations", Information Systems, 23(1), 1998, pp. 1 - 38.

2. Analyti, A.; Spyratos, N.; Constantopoulos, P. "Property Covering: A Powerful Construct
for Schema Derivations", Proc. ER’97, LNCS 1331, Springer-Verlag, pp. 271-284.

3. Atzeni, P.; Parker, D.S. "Formal Properties of Net-based Knowledge Representation
Systems", Procs. ICDE'86, Los Angeles, 1986, pp. 700-706.

4. Batini, C.; Ceri, S.; Navathe, S. Conceptual Database Design. An Entity-Relationship
Approach. The Benjamin/Cummings Pub. Co., 1992, 470 p.

5. Bancilhon, F.; Ramakrishnan, R. "An Amateur's Introduction to Recursive Query
Processing Strategies". Proc. ACM SIGMOD Int. Conf. on Management of Data, May
1986, pp. 16-52.

6. Boman, M.; Bubenko, J.A.; Johannesson, P.; Wangler, B. Conceptual Modelling. Prentice
Hall, 1997, 269 p.

7. Bergamaschi, S.; Sartori, C. "On Taxonomic Reasoning in Conceptual Design", ACM
TODS 17(3), 1992, pp. 385-422.

8. Borgida, A.; Mylopoulos, J.; Wong, H.K.T. "Generalization/Specialization as a Basis for
Software Specification". In Brodie, M.L.; Mylopoulos, J.; Schmidt, J.W. (Eds.) "On
Conceptual Modelling", Springer-Verlag, 1984, pp. 87-117.

9. Borgida, A. "Description Logics in Data Management", IEEE Trans. on Knowledge and
Data Eng., 7(5), 1995, pp. 671-682.

10. Borgida, A. "On the Relative Expressiveness of Description Logics and Predicate Logics".
Artificial Intelligence 82(1-2), 1996, pp. 353-367.

11. Brachman, R.J.; Schmolze, J.G. "An Overview of the KL-ONE Knowledge Representation
System". Cognitive Science 9, 1985, pp. 171-216.

12. Calvanese, D.; Lenzerini, M.; Nardi, D. "Description Logics for Conceptual Data
Modeling", In Chomicki, J.; Saake, G. (Eds.) Logics for Databases and Information
Systems, Kluwer Academic Press, 1998, pp. 229-263.

13. Ceri, S.; Fraternali, P. Designing Database Applications with Objects and Rules. The IDEA
Methodology. Addison-Wesley, 1997, 579 p.

14. Delcambre, L.M.L.; Davis, K.C. "Automatic Verification of Object-Oriented Database
Structures". Procs. ICDE'89, Los Angeles, pp. 2-9.

15. Decker, H.; Teniente, E.; Urpí, T. "How to Tackle Schema Validation by View Updating".
Proc. EDBT'96, Avignon, LNCS 1057, Springer, 1996, pp. 535-549.

16. Godfrey, P.; Grant, J.; Gryz, J.; Minker, J. "Integrity Constraints: Semantics and
Applications", In Chomicki, J.; Saake, G. (Eds.) Logics for Databases and Information
Systems, Kluwer Academic Press, 1998, pp. 265-306.

432 Antoni Olivé

17. Gustaffsson, M.R.; Karlsson, T.; Bubenko, J.A. jr. "A Declarative Approach to Conceptual
Information Modeling". In: Olle, T.W.; Sol, H.G.; Verrijn-Stuart, A.A. (eds.) Information
systems design methodologies: A Comparative Review. North-Holland, 1982, pp. 93-142.

18. Guo, S.; Sun, W.; Weiss, M.A. "Solving Satisfiability and Implication Problems in
Database Systems". ACM TODS 21(2), 1996, pp. 270-293.

19. Halpin, T.A.; Proper, H.A. "Subtyping and polymorphism in object-role modelling", Data
and Knowledge Eng., 15, 1995, pp. 251-281.

20. Hammer, M.; McLeod, D. "Database Description with SDM: A Semantic Database
Model", ACM TODS, 6(3), 1981, pp. 351-386.

21. Hainaut, J-L.; Hick, J-M.; Englebert, V.; Henrard,J.; Roland, D. "Understanding the
Implementation of IS-A Relations". Proc. ER'96, Cottbus, LNCS 1157, Springer, pp. 42-57.

22. Hull, R.; King, R. "Semantic Database Modeling: Survey, Applications, and Research
Issues", ACM Computing Surveys, 19(3), 1987, pp. 201-260.

23. ISO/TC97/SC5/WG3. "Concepts and Terminology for the Conceptual Schema and
Information Base", J.J. van Griethuysen (ed.), March, 1982.

24. Lenzerini, M. ”Covering and Disjointness Constraints in Type Networks”, Proc. ICDE'87,
Los Angeles, IEEE, 1987, pp. 386-393.

25. Lloyd, J.W. Foundations of Logic Programming. 2nd Edition. Springer-Verlag, 1987, 212 p.
26. Martin, J.; Odell, J.J. Object-Oriented Methods: A Foundation. Prentice Hall, 1995, 412 p.
27. Markowitz, V.M.; Shoshani, A. "Representing Extended Entity-Relationship Structures in

Relational Databases: A Modular Approach", ACM TODS 17(3), 1992, pp. 423-464.
28. Nijssen, G.M.; Halpin, T.A. Conceptual Schema and Relational Database Design. Prentice

Hall, 1989, 342 p.
29. Olivé, A.; Costal, D.; Sancho, M-R. "Entity Evolution in IsA Hierarchies", Proc. ER’99,

LNCS 1728, Springer, 1999, pp. 62-80.
30. Olivé, A. "Relationship Reification: A Temporal View", Proc. CAiSE’99, LNCS 1626,

Springer, 1999, pp. 396-410.
31. Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified Modeling Language Reference Manual.

Addison-Wesley, 1999, 550 p.

	1 Introduction
	2 Taxonomies
	2.1 Taxonomic Constraints
	2.2 Partitions

	3 Derivation Rules
	3.1 Derivability of Entity Types
	3.2 Classification of Derived Entity Types
	3.3 Taxonomy and Constraints Entailed by Derivation Rules

	4 Satisfaction of Taxonomic Constraints
	4.1 Satisfaction of Base Constraints
	4.2 Satisfaction of Partitions

	5 Conclusions
	References

