
Using a Metadata Software Layer
in Information Systems Integration�

Mark Roantree1, Jessie B. Kennedy2, and Peter J. Barclay2

1 School of Computer Applications, Dublin City University, Dublin, Ireland
mark.roantree@compapp.dcu.ie

2 School of Computing, Napier University, Edinburgh, Scotland

Abstract. A Federated Information System requires that multiple (of-
ten heterogenous) information systems are integrated to an extent that
they can share data. This shared data often takes the form of a federated
schema, which is a global view of data taken from distributed sources.
One of the issues faced in the engineering of a federated schema is the
continuous need to extract metadata from cooperating systems. Where
cooperating systems employ an object-oriented common model to inter-
act with each other, this requirement can become a problem due to the
type and complexity of metadata queries. In this research, we specified
and implemented a metadata software layer in the form of a high-level
query interface for the ODMG schema repository, in order to simplify the
task of integration system engineers. Two clears benefits have emerged:
the reduced complexity of metadata queries during system integration
(and federated schema construction) and a reduced learning curve for
programmers who need to use the ODMG schema repository.

1 Introduction

Many database applications require a mechanism by which ‘generic’ applications
can determine a database’s structure at runtime, for functions such as graphical
browsers, dynamic queries and the specification of view schemata. This property,
often referred to in programming languages as reflection, has been a feature of
databases for many years, and the 2.0 specification of the ODMG metamodel [3]
has provided a standard API for metadata queries in object-oriented databases.
As part of our research into federated databases, we specified and implemented a
global view mechanism to facilitate the creation of views for ODMG databases,
and the subsequent integration of view schemata to form federated schemata.
Please refer to [6,10] for a complete background on federated databases. In this
paper we do not concentrate on the topic of federated databases but instead
focus on the construction of a metadata interface to ODMG information systems.
This paper is structured as follows: the remainder of this section provides a brief
overview of the nature of our research, the importance of metadata to our view
mechanism, and the motivation for this research; in Sect. 2 the main concepts in

� Supported by Forbairt Strategic Research Programme ST/98/014

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 299–314, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

300 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

this form of research are discussed, together with an informal description of the
metadata layer; in Sect. 3 the pragmatics of the language are presented through
a series of examples; in Sect. 4 we present details of the implementation; and
finally in Sect. 5 we offer some conclusions.

In this paper we use the term view (or ODMG view) to refer to an ODMG
subschema which may contain multiple classes, and is defined on an ODMG
database, or on another view which has been defined on an ODMG database.

1.1 Background and Motivation

The main focus of our research was to extend the ODMG 2.0 model to provide
views in a federated database environment. This work yielded the specification
and implementation of a global view mechanism, using the ODMG model as
the common model for a federation of databases. The concept of a federation of
databases [10] is one where heterogeneous databases (or information systems)
can communicate with one another through an interface provided by a com-
mon data model. In our case, the common data model is the ODMG model,
the standard model for object-oriented databases since 1993 [3]. The most com-
mon architecture for these systems is as follows: data resides in many (generally
heterogeneous) information systems or databases; the schema of each Informa-
tion System (IS) is translated to an O-O format, and this new schema is called
the component schema; view schemata are defined as shareable subsets of the
component schema; the view schemata are exported to a global or federated
server where they are integrated to form many global or federated schemata.
Our focus was to extend the ODMG model so that it was possible to define the
view schemata on top of each component schema, and define integration oper-
ators which facilitated the construction of federated schemata. This extension
provided a layer of ODMG views on top of the component schema. However, it
was also necessary to provide a mapping language which could bind the compo-
nent schema to its local model representation. This facilitates the translation of
ODMG queries (to the their local IS equivalent), and enables data transfer to
the ODMG database when views are defined.

The classes which comprise the database schema are used to model the real
world entities which are stored in the database. Additionally, there is a set of
metaclass instances which are used to describe the database classes. Thus, we
can think of an ODMG database as having two distinct sets of classes: those
which reside in the database schema, and the abstract classes (metaclasses) which
reside in the schema repository. Whenever we process and store a view defini-
tion, a set of metaclass instances are stored in the database. Where a view
definition involves multiple classes, each with their own extents, this combina-
tion of meta-objects can become quite complex. Thus, the request to display
a view, or extract data from the local IS often requires powerful query facili-
ties in order to retrieve the required meta-information. In Fig. 1 the role of the
schema repository within a federated database environment is illustrated. Both
the Component Database and Federated Database Server are ODMG databases.
The schema repository contains a description of the database classes, hence the

Using a Metadata Software Layer in Information Systems Integration 301

Local information system

ODMG representation
of local information

system
(database classes)

Descriptions of
database classes,

wrapper definitions to local IS,
and view definitions

(metaclasses)

mappings

View definitions

Component Database

Federated Database Server

Descriptions of imported views
and federated view definitions

(metaclasses)

D.S.

S.R. : Schema Repository

S.R.

D.S.S.R.

D.S. : Database Schema

Software Layer Information Systems Layer

Metadata
Query

Interface

Global
Query

Interface

Local
Query

Interface

Fig. 1. Metadata architecture within ODMG information systems.

arrow towards the database schema. However, in this type of architecture, the
schema repository will contain a large amount of additional data required by
view definitions.

This research involved extending the ODMG metamodel in order to construct
view schemata. However, due to the complex nature of both the base metamodel
and extensions, many of the OQL queries which were required both to retrieve
base and view class metadata would necessitate long expressions. For this reason
we specified some language extensions to OQL for the specific purpose of easy
retrieval of metadata from the schema repository. The contribution of this work
is to provide a software metadata layer which facilitates the easier expression
of ODMG metadata queries. In fact all metadata queries can be expressed in a
single line. In addition, we believe it is possible to improve the performance of
metadata queries as some of our experiments (discussed briefly in Sect. 4) have
shown.

2 Metadata Objects and Queries

In this section we provide a description of the main concepts involved in this
research: the metadata objects and the queries used to manipulate metadata.
Metadata objects are used to describe both the structural elements of the par-
ticipating systems (base metadata objects), and the virtual elements which are
defined using a view language and are mapped to base metadata objects. Meta-
data queries are categorized into groups representing the type of metadata in-
formation required.

302 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

d_Property d_Type d_Constant

d_Relationship d_Attribute d_Derived

d_Ref_Type d_Collection_type d_Primitive_Type

d_Scope d_Meta_Object

d_Inheritance d_Class

Fig. 2. The ODMG metamodel (subset).

2.1 Metadata Elements

In Fig. 2 a brief outline of the ODMG schema repository interface (or ODMG
C++ metamodel) is illustrated. For integration engineers the main points of in-
terest are classes and their properties, and issues such as scoping and inheritance.
The illustration attempts to show a hierarchy of metaclasses with the d Scope,
d Inheritance and d Meta Object metaclasses at the top of the hierarchy. Oth-
erwise, all metaclasses derive from d Meta Object (identified by arrows) and
multiple inheritance occurs where some metaclasses derive from d Scope. By
deriving from a d Scope object, meta-objects can place other meta-objects in-
side a (conceptual) container class. For example, a d Class object derives from
d Scope, and can use its properties to bind a set of d Attribute objects to it.
Specifics of the roles of each of the metaclasses is best described in [5].

In an ODMG database that contains a view mechanism, it is necessary to be
able to distinguish between base and virtual classes, and for virtual classes one
must be capable of obtaining the same information regarding structure as can be
obtained for base classes. The view mechanism, its specification language, and
implementation are described in [8][9]. This paper assumes that view definitions
have already been processed and stored, and a requirement exists to retrieve
meta-information in order to display views or process global queries. A view or
wrapper is represented by the meta-objects outlined below.

1. Subschema or Wrapper Construction. The definition of a virtual sub-
schema requires the construction of a v Subschema instance.

2. Class Construction.Where it is necessary to construct new virtual classes,
a v Class object is instantiated for each new virtual class.

3. Attribute and Relationship Construction. A v Attribute instance and
a v Primitive Type instance is constructed for each attribute property, and

Using a Metadata Software Layer in Information Systems Integration 303

a v Relationship and v Ref Type instance is constructed for every rela-
tionship property.

4. Inheritance Construction. This type of meta-object connects classes
to subclasses.

5. Class Scope Update. When v Attribute and v Relationship instances
are constructed, it is necessary to associate these properties with a specific
(virtual) v Class instance. This is done by updating the v Scope object
which the v Class object inherits from.

6. Subschema Scope Update. When v Class instances are constructed, it
is necessary to associate these virtual classes with a specific v Subschema
instance.

2.2 Metadata Query Language

The Schema Repository Query Language (SRQL) is an extension to ODMG’s
Object Query Language, and has been implemented as a software layer which
resides between the client database application and the ODMG database. The
language comprises fifteen productions detailed in an appendix in [7]. In this
section we provide an informal description of the types and usage of query lan-
guage expressions. The language resembles OQL in the fact that it employs a
select expression. However, SRQL expressions employ a series of keywords, and
are always single line expressions. As shall be demonstrated in the next section,
this has practical advantages over using standard OQL to retrieve metadata
information.

– Subschema Expressions. This type of query is used to retrieve subschema
objects, which are container objects for all elements contained within a view
definition. The subschema keyword identifies this type of expression.

– Class Expressions. This type of query can be used to retrieve specified
base or virtual class objects, the entire set of base class objects, the entire
set of virtual class objects, or the set of virtual classes contained within a
specified schema. The class keyword identifies the type of expression, with
the qualifier virtual specified for virtual classes, and the qualifier in used
when retrieving virtual classes for a specific subschema (or view).

– Attribute Expressions. This type of query is used to retrieve single base
or virtual attribute objects, the entire set of base or virtual attribute ob-
jects, or all attributes for a specific base or virtual class, by specifying the
attribute keyword. The query can also be expressed as a shallow retrieval
(only those attributes for the named class) or a deep retrieval (attributes for
the named class and all derived classes). The qualifiers (virtual and in) are
used in attribute query expressions, and a further qualifier inherit is used
to determine between shallow and deep query expressions.

– Relationship Expressions. This type of query is semantically identical to
attribute queries. Syntactically, the attribute keyword is replaced with the
relationship keyword.

304 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

– Link and Base Expressions. These queries return the meta-objects to
which virtual objects are mapped. In a view mechanism, each virtual element
which has been generated as a result of a view definition must map to an
equivalent base or virtual element. For example, a virtual attribute object
may map to another virtual attribute object, which in turn maps to a base
attribute object. The link query expression will return either a virtual class,
attribute or relationship object if the specified object is mapped to a virtual
element, or NULL, if it is mapped directly to a base element. The base query
expression will always return either a base class, attribute or relationship
object, nut never NULL as all virtual elements must eventually map to a
base element.

– MetaName and MetaCount Expressions. Both query expressions take
a single SRQL expression as an argument and return the names of the meta-
objects and the count of the meta-objects respectively.

– Type Expressions. This query is used to return the type of (base or virtual)
attribute or relationship meta-objects. Each ODMG attribute and relation-
ship type is taken from a predefined set of types.

3 Pragmatics of SRQL Usage

Although the ODMG model provides a specification for access to the schema
repository, it is quite complex and often not easy to formulate OQL metadata
queries as we shall later demonstrate. Since metadata queries can be regarded as
a small static group of queries, we have developed a query sub-language for the
ODMG schema repository. This query language is based on OQL but extends
the base language with a series of constructs which are specifically employed in
metadata querying. For this reason, we called this metadata sub-language, the
Schema Repository Query Language (SRQL).

3.1 Sample Metadata

In our previous work [9] we described how view schemata can be defined using
our subschema statement. The resulting view can have any number of base or
(newly derived) virtual classes, and some of these classes are connected using
inheritance or relationship links. Where a view contains both base and virtual
classes, it is not possible to connect classes from both sets. In this case, the
view contains disjoint schema subsets. A view definition is placed inside an Ob-
ject Definition Language file (ODL file), passed through the View Processor1,
and the result is the storage of the view definition as a set of meta-objects in
the database’s schema repository. It is these meta-objects which are queried by
system integrators as they seek to discover similarities and differences between
schemata which are due to be merged, as it is generally view schemata that are
merged, rather than the entire base schemata of participating systems. Most of

1 This is the same process as is used for defining the base schema.

Using a Metadata Software Layer in Information Systems Integration 305

Drug
DrugRef : string
Description : string
Default Dosage : string
Default Frequency : string
Class : string
Prescription : set [Prescription]

Diagnose

Code : string
Patient Number : Patient
Description : string
HIV Base Level : string
HIV stage : string
Episode Type : small int
Episode Status : string

Prescription
PatientRef : Patient
RefNo : string
DrugRef : set [Drug]

Patient
Patient Number : string
MRN : string
Marital Status : string
Occupation : string
Date of Birth : date
GP Name : string
Diagnosis : Diagnose
Prescribed : set [DRUGS]

Person

Fname : string
Lname : string
Sex : char
Addr1 : string
Addr2 : string
Addr3 : string
Town : string

Fig. 3. The v3 view of the PAS database.

our work has involved healthcare systems, and one of these systems is the Patient
Administration System (PAS) database at a hospital in Dublin. This database
contains a wide range of information including a patient’s demographic data,
treatment of each illness, consultant information, and details of prescribed med-
ication. For the purpose of the examples used later in this paper, assume that
the view illustrated in Fig. 3 as patients, details of a particular illness, and the
medication prescribed, is stored as v3 in the database. The types of meta-objects
constructed for this view were described in Sect. 2.1.

As it stands, the ODMG metamodel or its C++ API provides an ‘open’
standard for retrieving ODMG metadata, and a basis for developing a method to
insert data into the schema repository. This provides a powerful mechanism both
for creators of dynamic software applications (views and dynamic querying), and
federated database engineers, whose role it is to extract schema information from
participating systems. This work necessitates executing many metadata queries
during the course of the schema integration process.

3.2 Metadata Query Samples

In this section, we argue the requirement for the proposed language by illus-
trating a series of metadata queries using conventional OQL, and demonstrate
how these queries might be simplified using an extension to OQL. In addition to
using ‘pure’ OQL syntax which appears to treat all derived attributes as local to
each specialized class [3] (pp. 84), we have also opted to use the C++ bindings

306 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

as provided by the Versant O-O database product [12]2. Our motivation is to
ensure that these OQL queries can actually be expressed in at least one vendor
product, and to demonstrate the mappings between ‘native’ OQL and a typical
O-O database vendor.

Example 3.1: Retrieve a base class object called ‘Person’.

This query is expressed by again querying its d Meta Object superclass, but
in this example, a set of references to d Class objects should be generated as
output.

Example 3.1(a): ODMG OQL
select C from d Class
where C.name = ‘Person’

Example 3.1(b): Vendor OQL
select oid from d Class
where d Meta Object::name = ‘Person’

The mapping between the ODMG specification and the C++ implementa-
tion is also clear as shown by the vendor OQL expression in 3.1(b). Its SRQL
equivalent is provided in 3.1(c) below.

Example 3.1(c): SRQL
select class Person

The result of this query will be the set of base class (d Class) instances
which have the name attribute value of Person. For base class instances, this will
always be a single object reference, but for virtual classes it is possible for many
to share the same name, providing they belong inside different subschemata. This
is explained in [9] where each subschema has its own scope and class hierarchy,
and thus class names can be repeated across different subschema definitions.

Example 3.2: Retrieve virtual class object called ‘Person’ from subschema v3.

Assume we now wish to retrieve a specific class Person from subschema v3.

Example 3.2(a): ODMG OQL
select C from v Class
where C.name = ‘Person’
and C.SchemaContainer =

(select S from v SubSchema where S.name = ‘v3’)
Example 3.2(b): Vendor OQL

s oid = (select oid from v Subschema
where v Meta Object::name = ‘v3’);
select oid from v Class
where v Meta Object::name = ‘Person’
and SchemaContainer = s oid;

2 With one small exception: we use the term oid instead of the vendor term SelfOid,
as we feel that oid is more generic. Before executing any of the queries in this section
the term oid should be replaced with SelfOid.

Using a Metadata Software Layer in Information Systems Integration 307

Example 3.2(c): SRQL
select virtual class v3.Person

In this example, the SRQL makes the OQL query easier as we use a sub-
schema qualifier to specify the correct class. Although the query can be expressed
easily in OQL, it was necessary to break the vendor query into two segments
as it was not possible to pass object references from an inner query. With our
SRQL approach in Example 3.2(c), any implementation is hidden behind the
language extensions.

Example 3.3: Retrieve a virtual attribute ‘name’ from class ‘Person’ in sub-
schema v3.

In this example we again have the problem of first selecting the correct
v Class reference and then selecting the appropriate v Attribute object ref-
erence. Assume that the virtual class is from the same subschema (v3) as the
previous example.

Example 3.3(a): ODMG OQL
select A from v Attribute
where A.in class in
(select C from v Class
where C.name = ‘Person’
and C.SchemaContainer in

(select S from v SubSchema where S.name = ‘v3’))
Example 3.3(b): Vendor OQL

s oid = (select oid from v Subschema
where v Meta Object::name = ‘v3’);
c oid = (select oid from v Class
where v Meta Object::name = ‘Person’
and SchemaContainer = s oid);
select oid from v Attribute
where v Meta Object::name = ‘name’
and in class = c oid);

In Example 3.3(a) the pure OQL version of the query is expressed by simply
adding another layer to the nested query. However, the vendor product in 3.3(b)
requires three separate queries, and thus, it will be necessary to embed the
OQL inside a programming language such as C++ or Java. Since this is the
most likely scenario for an O-O database program, it does not raise any major
problems, but it does demonstrate the unwieldy nature of using some of the
OQL implementations when building O-O database software. In Example 3.3(c)
the SRQL version of the query is a simple expression.

Example 3.3(c): SRQL
select virtual attribute v3.Person.name

308 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

These examples demonstrate how a query language based on OQL could be
used to simplify querying operations against the schema repository. These types
of queries are crucial to schema integrators who require metadata information in
order to determine the structural makeup of a schema, before subsequently re-
structuring and merging different schemata. Initial queries when connecting to a
database for the first time will be: what are the names of export schemata? What
are the names of classes within a specific export schema? How many attributes
does a particular class contain? What is the type of attribute x? Previous queries
assumed that this type of data had already been acquired. In the following ex-
amples we will illustrate these types of queries, and will now express queries in
OQL and SRQL only as the problem regarding vendor-specific versions of OQL
has already been shown.

Example 3.4: Retrieve all classes within subschema v3

In Examples 3.4(a) and (b) the syntax for both expressions to retrieve all
references to v Class objects within the subschema v3 is illustrated. As these
queries are simpler than those in previous examples, the OQL expressions are
fairly straightforward.

Example 3.4(a): ODMG OQL
select C from v Class
where C.SchemaContainer.name = ‘v3’

Example 3.4(b): SRQL
select virtual class in v3

The keyword virtual is used to distinguish between base and virtual classes,
and similar to the select subschema expression, this predicate can be dropped
in circumstances where all instances are required. In Example 3.4(c) five possible
formats are illustrated. The semantics for the selection of base classes is clear:
in example (i) the complete set of d Class object references is returned, and
in example (ii) a single d Class reference is returned. For virtual classes, there
are three possibilities with examples (iii) and (v) similar to their base query
equivalents. However, example (iv) is different: all virtual classes called Person
are returned.

Example 3.4(c): class selection formats
(i) select class
(ii) select class Person
(iii) select virtual class
(iv) select virtual class Person
(v) select virtual class v3.Person

A subschema can comprise both base and virtual classes [9]. The in keyword
was used in the previous section to select classes within a specified subschema.
If base classes are required, the keyword virtual is dropped. Both formats are
illustrated in Example 3.4(d).

Using a Metadata Software Layer in Information Systems Integration 309

Example 3.4(d): retrieve classes within a specified subschema
select class in v3
select virtual class in v3

Example 3.5: retrieve all relationships within Person within the v3 schema.

In this example we require a reference to all relationship objects inside the
Person class.

Example 3.5(a): ODMG OQL
select R from v Relationship
where R.defined in class in
(select C from v Class
where C.name = ‘Person’ and C.SchemaContainer =

(select S from v SubSchema where S.name = ‘v3’)
Example 3.5(b): SRQL
select virtual relationship in v3.Person

In Example 3.5(b) it is clear that the SRQL format is far easier to express
than the base OQL query. Additionally, queries regarding inheritance can be a
little unwieldy due to the complexity of the O-O model.

Example 3.6: Retrieve all attributes, including derived ones for the class e.

Suppose it were necessary to retrieve all attributes for class e, which is derived
from classes a,b,c, and d (in subschema v3). (Please refer to [5] for a description
on inheritance in the ODMG metamodel.)

Example 3.6(a): ODMG OQL
select A from v Attribute
where A.in class in
(select C from v Class
where C.name = ‘e’
and C.SchemaContainer in

(select S from v SubSchema where S.name = ‘v3’)
union
select A from v Attribute
where A.in class in
(select i.inherits to from v Inheritance
where i.inherits to.name = ‘e’
and i.inherits to.SchemaContainer in
(select S from v SubSchema where S.name = ‘v3’))

In Example 3.6(a) the OQL query to return the required v Attribute ref-
erences for the class e is illustrated. In the first segment (before the union op-
erator is applied) it is necessary to provide nested queries to obtain the cor-
rect v Subschema instance, and then the correct v Class instance, before the
attributes for class e are retrieved. In the second segment, it is necessary to re-
trieve all v Class references which are superclasses of class e, and perform the
same operations on these classes.

310 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

Example 3.6(b): SRQL
select virtual attribute in v3.Person inherit

Using the SRQL, the query expression is very simple: the keyword inherit
is applied to the end of the expression to include the additional v Attribute
objects in the result set.

The select attribute and select relationship expressions can take dif-
ferent forms as illustrated in Example 3.6(c). Only examples (iii) and (vii) will
definitely return a collection containing a single object reference3.

Example 3.6(c): attribute selection formats
(i) select attribute
(ii) select attribute age
(iii) select attribute Person.sex
(iv) select virtual attribute
(v) select virtual attribute age
(vi) select virtual attribute Person.sex
(vii) select virtual attribute v3.Person.sex

Finally, the area of query transformation and the resolution of mappings
between virtual and (other virtual objects and) base objects requires a different
form of metadata query expression. Suppose it is necessary to retrieve the base
attribute to which a particular virtual attribute is mapped.

Example 3.7: retrieve mapped attribute (without SRQL)

Assume that v3.Person.name is mapped to Person.Fullname in the base
schema. It is necessary to retrieve the mapped attribute name to assist in the
query transformation process. Assuming the query expressed in Example 3.3
returns an object reference R (the name attribute in Person class in v3), then
Example 3.7(a) can be used to retrieve its mapped base attribute.

Example 3.7(a): ODMG OQL (requires result set Q)
select A.VirtualConnector from v Attribute
where A in Q

Example 3.7(b): SRQL (full query expression)
select link attribute v3.Person.name

In Example 3.7(b) the entire query expression is illustrated. Whereas the
basic OQL expression requires three nested queries, the entire expression using
SRQL can be expressed in a single select link statement (identical syntax
to Example 3.7(b)). The resolution of mappings becomes even more complex
when there are a series of mappings from virtual entities to the base entity,
eg. where a number of subschema definitions are stacked on top of each other.
To retrieve the base attribute in this type of situation requires an unwieldy

3 or possibly NULL.

Using a Metadata Software Layer in Information Systems Integration 311

v_Subschema v_Wrapper v_Property v_Type v_Constant

v_Relationship v_Attribute v_Derived

v_Ref_Type v_Collection_type v_Primitive_Type

v_Scope v_Meta_Object

v_Inheritance v_Class

Fig. 4. ODMG metamodel extensions (subset)

OQL expression, whereas a single select statement will suffice if we provide the
appropriate extensions to OQL.

In [7] we provide the production rules for the schema repository query lan-
guage. The same publication contains the syntax for further queries such as
the retrieval of subschema and wrapper objects, the retrieval of attribute and
relationship type data, and the retrieval of object names and object counts.

4 Implementation of Metadata Interface Layer

The extensions to the C++ metamodel make provision for virtual schemata,
any component virtual classes, and their properties and types. The ODMG 2.0
standard uses the ‘d ’ prefix to denote metaclasses and to avoid confusion with
standard metaclasses we employ a ‘v ’ prefix to denote virtual metaclasses. The
schema repository for ODMG databases was illustrated in Fig. 2. Two design
goals were identified before planning our extension to the ODMG metamodel:
virtual metaclasses need contain only mapping information to base (or virtual)
metaclasses; yet virtual subschemata must contain enough information for high-
level graphical tools to browse and display virtual types. This has been well-
documented in the past: for example [11] stating that modern database systems
require a richer means of querying data than that offered by simple ASCII-based
query editors.

In Fig. 4 the segment of metamodel extensions which contains the most useful
metaclasses is illustrated. For the purpose of clarity, the base metaclasses are not
shown but the top layer in the hierarchy (containing v Scope, v Inheritance
and v Meta Object metaclasses) is placed at the same level in the metaclass
hierarchy as their base metaclass equivalents. We deliberately chose to extend the

312 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

metamodel by adding virtual classes rather than extending existing metaclasses,
in order to keep our base metamodel compatible with the ODMG standard. In
Fig. 4 a list of the metaclass types added to the set specified by the ODMG is
illustrated. Please refer to [9] for a description of virtual metaclasses and their
functions.

4.1 Metadata Software Layer

An object library was built using Visual C++ 6.0 for the Versant O-O database
running on NT platforms. It is assumed that client applications may be either
software modules or user interfaces that have a requirement for dynamic queries.
In Example 4.1 a query is required to return the names of all classes inside
a subschema named v3. The object library parses the expression, opens the
appropriate database, and generates the result set as a collection of objects of
type Any4, to which the program has access. The objects in each collection can
then be ‘repackaged’ as objects of a specific metaclass depending on the type of
query.

Example 4.1 Repository Query
database PAS
srql {
MetaName (select virtual class in v3) ; };

Internally, the program accesses the metadata query layer by creating an
instance of type srql and passing the query string to the constructor. The same
srql instance provides access to the result set.

Ideally, all ODMG databases should provide a standard interface for func-
tions such as opening the database and accessing the schema repository. How-
ever, this is not the case, and it was necessary to develop an adaptor for the
Versant ODMG database for all I/O actions. A suitable adaptor will be neces-
sary for all ODMG implementations. However, we have isolated those functions
which are non-generic and placed them inside the srql class implementation.
Thus, to use the metadata software layer with other implementations of ODMG
databases, it is necessary to implement only those functions isolated within the
srql class. Specifically, these functions are opening and closing the database,
query execution, the construction of the result set, and the transfer of data from
database-specific (eg Versant) objects to C++ objects. The SRQL parser, and
the semantic actions for each production are all generic, and thus require no
modification.

When developing semantic actions (C++ program code) for each produc-
tion, it was possible to take one of two routes: map the SRQL expression to
the equivalent OQL expression (shown informally in Sect. 3), and then to the
vendor implementation of OQL (VQL for the Versant product in our case); or
4 Most databases and template software will use an Any (or similarly named) class

as an abstract class for all possible return types. In this object library, the small
number of possible return types keeps the type conversion simple.

Using a Metadata Software Layer in Information Systems Integration 313

alternatively, use C++ to retrieve the objects from the database directly. Our
initial prototype used the former approach but this lead to problems as not all
SRQL (or OQL) queries could be expressed in the vendor implementation of
the language. For this reason we adopted the latter solution and bypassed the
ODMG OQL and vendor specific OQL query transformations. By doing so we
had more control over the performance of queries as we could take advantage
of the structure of the schema repository, and construct intermediate collections
and indices depending on the type of query expression. Space restrictions pre-
vent a further discussion on this subject here but can found in a forthcoming
technical report.

The parser component was developed using ANTLR [1] and the semantic
actions for each of the query expressions were written in C++. Thus many of
the federated services (such as querying and data extraction from local ISs) use
the SRQL for metadata retrieval. All of the SRQL examples in this paper were
tested using our prototype: the Versant O-O database was used to test vendor
OQL queries; and a research O-O database [4] (the closest implementation of
OQL to the ODMG specification) was used to test each of the native OQL
queries. All of this work is based on the ODMG 2.0 specification [3].

5 Conclusions

In this paper we described the construction of a metadata software layer for
ODMG databases. Due to the complex nature of the schema repository interface,
we defined simple constructs to facilitate the easy expression of metadata queries.
It was felt that these extensions provide a far simpler general purpose interface
to both the ODMG schema repository, and the extended repository used by
our view mechanism. In particular, these extensions can be used by integration
engineers who have a requirement to query metadata dynamically, the builders
of view (and wrapper) software, and researchers and developers of high-level
query and visualization tools for ODMG databases.

Although the ODMG group has not addressed the issue of O-O views, their
specification of the metamodel provides a standard interface for metadata storage
and retrieval, a necessary starting point for the design of a view mechanism.
Our work extended this metamodel to facilitate the storage of view definitions,
and provided simple query extensions to retrieve base and virtual metadata. A
cleaner approach would have been to re-engineer the schema repository interface
completely rather than implement a software layer to negotiate the complexity
problem, and this has been suggested by some ODMG commentators. Perhaps
this could be regarded as a weakness in our approach, but we chose to retain
the standard (now at version 3.0), and attempt to make its metadata interface
more usable. Standards are an obvious benefit to systems interoperability, but
quite often that standard can be improved.

The complex nature of the ODMG metamodel requires a substantial learning
curve for programmers and users who require access to metadata: we believe that
we have reduced this learning curve with our metadata language extensions. By

314 Mark Roantree, Jessie B. Kennedy, and Peter J. Barclay

implementing a prototype view system, we have also shown how this metadata
query service can be utilized by other services requiring meta-information.

References

1. ANTLR Reference Manual. http://www.antlr.org/doc/ 1999.
2. Booch G., Rumbaugh J., and Jacobson I. The Unified Modelling Language User

Guide. Addison-Wesley, 1999.
3. Cattell R. and Barry D. (eds), The Object Database Standard: ODMG 2.0. Morgan

Kaufmann, 1997.
4. Fegaras L., Srinivasan C., Rajendran A., and Maier D. λ−DB: An ODMG-Based

Object-Oriented DBMS. Proceedings of the 2000 ACM SIGMOD, May 2000.
5. Jordan D. C++ Object Databases: Programming with the ODMG Standard. Addi-

son Wesley, 1998.
6. Pitoura E., Bukhres O. and Elmagarmid A. Object Orientation in federated

database Systems, ACM Computing Surveys, 27:2, pp 141-195, 1995.
7. Roantree M. A Schema Repository Query Language for ODMG Databases. OASIS

Technical Report OAS-09, Dublin City University, (www.compapp.dcu.ie/˜oasis),
July 2000.

8. Roantree M. Constructing View Schemata Using an Extended Object Definition
Language. PhD Thesis. Napier University, March 2001.

9. Roantree M., Kennedy J., and Barclay P. Defining Federated Views for ODMG
Databases. Submitted for publication, July 2000.

10. Sheth A. and Larson J. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22:3, pp
183-236, ACM Press, 1990.

11. Subieta K. Object-Oriented Standards: Can ODMG OQL be extended to a Pro-
gramming Language? Proceedings of the International Symposium on Cooperative
Database Systems for Advanced Applications, pp. 546-555, Japan, 1996.

12. Versant Corporation. Versant C++ Reference Manual 5.2, April 1999.

	1 Introduction
	1.1 Background and Motivation

	2 Metadata Objects and Queries
	2.1 Metadata Elements
	2.2 Metadata Query Language

	3 Pragmatics of SRQL Usage
	3.1 Sample Metadata
	3.2 Metadata Query Samples

	4 Implementation of Metadata Interface Layer
	4.1 Metadata Software Layer

	5 Conclusions
	References

