
Pardis

Shahriar Pourazin

Computer Engineering Department,
AmirKabir University of Technology, Tehran, IRAN

Tel: +(9821) 6419411, Fax: +(9821) 6413969
pourazin@ce.aku.ac.ir

1 Introduction

Pardis, was one of the entries in RoboCup-99, simulation league. It had
a optimistic timing in communication with the server. And lost most of the
cycles in the real league, because of relying on the enough network bandwidth.
So unfortunately it had chance to be only in the �rst round robin. It used an
experimental model, consisting of �nite set of categories for each player. Each
softbot in Pardis team, was a player acting as designed in a speci�c category.
The coach had the ability to map each player in the opponent team with one of
the same categories. It dynamically changed the characteristics (category) of the
facing teammate to be e�ective against the analyzed opponent player. Although
in the real league, there was no chance to see the use of the coach and it was
never activated. The players read their behavioral con�guration once at the start
of the game and kept playing that way.

2 Team Development

Pardis was the result of 9 man-month development e�ort, mostly done by three
people, the team leader and two undergraduate students.

Team Leader: Shahriar Pourazin
Team Members:

Ali Ajdari Rad

{ team member, coding and representation of categories
{ IRAN
{ undergraduate student
{ attended the competition

Houman Atashbar

{ team member, coded the low level parts, communication etc.
{ IRAN
{ undergraduate student
{ attended the competition

Web page http://www.pnu.ac.ir/~ pourazin/rc99

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 614−617, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000

3 World Model

The spatial model of the �eld consisted of separated squares making some
regions. Players had patterns which described their behavior in each region. Ac-
cording to (say) their distance to the opponent's goal, they selected their action
among the choices to pass, dribble, kick, etc. The more the player approached to
the opponent's goal, the more eager it would become to kick to goal. The desire
to kick, dribble, pass and other actions, had been stored as fuzzy values in an
array called the desire array. Having no ball, near our own goalie, the player had
to notice the ball and kick it away, and at the middle regions, it keeps trying not
to let opponents receive any pass and if gets the ball passes it to teammates.

The real calculations on the array of fuzzy values for actions, depended on
the exact region the player is in, the result of the game so far, the Boolean ag
indicating that the player has the ball, and the position of other players. The
player will do the action with the highest value.

All the codes were written in C++ from the scratch without any use of
external prewritten libraries such as libsclient.

4 Communication

We had designed a method for message passing between players, by doing
some special actions in front of the teammate, e.g., if the player does four 45
degree turns each one in the opposite direction of the previous, means that,
received ball will be sent back soon. This mechanism was designed to reduce the
SAY messages, but we had no chance to see its e�ect in the quali�cation of teams
when no SAY is possible. They were supposed to receive from the coach some
information (making the inter-player messages unnecessary), and also commands
(to change their desire array).

5 Skills

Pardis has the goalie, as the player which receives the number one. It is di�erent
from the other players, such that, has no desire to take the ball toward opponent's
goal, etc. It stays near the goal, uses fast moves when has the ball and the
opponents are near the goal. So the goalie has no special di�erence in structure.
All it has, is a di�erent desire array.

6 Special Team Features

The players were designed to be as single threaded processes (i.e. no parallel
processing in the players). The coach had to have a huge parallelism. It should
have a plenty of models instead of each opponent, looking which model plays
the same as the real opponent. This lets the coach determine the characteristics
of the opponent player.

615Pardis

7 Conclusion

Our approach to opponent modeling had a severe assumption that the roles
of the players in the opponent team are static or at least not rapidly changing.
The unstructured program was not suitable for maintenance. That's why we had
no chance to come up with the slow network in Stockholm. So the right thing
to do is, throwing away the code and writing a new structured one.

After analyzing the timing of the whole system, we learned that working
with the server could be very complicated. Even in the case that the server
remains unchanged, the e�ect(s) of the networking problems could not be eas-
ily predicted. So how could we start our work? Is it necessary to think of all
anomalies in all of our processes?

- 200m
s

- 100m
s

1

1

1

1

1

1

Tp

Ty
Tx

Tmax

Tr

1

Tr

1

11

 : is the time required in PLTr
to generate the response of
received packet.

 : we generate a predicted
copy of each packet, this much
sooner and pass it up.

Tp

 : is the network delay.Tn

 : is total time required that
a reply for a received packet
become ready (includes Tr plus
propagation delay of layers).

Tc

 : the server will see our
response this much later. When
we don’t predict (Tp = 0).

Ty

 : the server will see our reply
after this amount of time (Tp > 0)
Tx

 : is the maximum value for
Tx. Any response with greater Tx
will be too late for the server.

Tmax

 : is the next cycle period with
respect to packet no. 1 in figure.
(in the simulation league).

D

PL

TML

SL

SCL

Packets

Soccer Server

Network

Time
D

Tn Tn

- 700m
s

Tc

- 600m
s

- 500m
s

- 400m
s

- 300m
s

Fig. 1. The timing of an exchanged packet.

The answer could be found in the isolation of the anomalies. To do so
we have to design a layered architecture for our next generation player. The
structure has four layers: (1) Sense/Control Layer, (2) Synchronization Layer, (3)
Task Management Layer and (4) Planning layer from bottom to top. The lowest
layer (SCL) is to be modi�ed to let us use upper layers in other leagues (F2000,

616 S. Pourazin

F180 or Legged). SL is to isolate the timing anomalies from the upper layers.
TML is to translate abstract plans (of PL) into strings of smaller activities. This
approach lets us, try to work on the (say) intelligent part of our player without
being mixed up with unreliable data. Anyone who wants the corrupted data in
the PL, could modify SL later. Figure 1 shows the four layers, receiving packets
from server and sending back the responses. It is also shown that the response
should be in the D interval. The grayed arrows stand for predicted packets. Tp
should be large enough to shift the gray arrows to the left, making the player on
time. Now we are working on the knowledge representation in the PL and the
dynamic estimation of Tp.

617Pardis

	1 Introduction
	2 Team Development
	3 World Model
	4 Communication
	5 Skills
	6 Special Team Features
	7 Conclusion

