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Abstract. This article introduces our current research efforts to build a multi-agent
system for cooperation and learning of multiple Sony legged robots in the RoboCup
domain. A behaviour-based hierarchy is proposed for our Essex Rovers robot soccer
team to achieve intelligent actions in real time, which includes both a neural network
based color detection algorithm and a fuzzy logic controller.

1. Introduction

RoboCup (Robot World Cup Initiative) provides a challenging environment for
research in a team of robotic systems that need to achieve concrete objectives,
particularly in the presence of an adversary team. In the Sony Legged Robot League
[2], there are three Sony legged robots in each team. According to the competition
rules, the field size and other teams' experience [9], our team, Essex Rovers, has
adopted the team formation with two robots playing as attackers and one as goalie.
For the first time to take part in the competition, it was too much to set down for our
team. Fortunately we have manuals and support from Sony [8] and the reports from
other teams competed in RoboCup99 [1]. All these were really helpful.

Our preparation for the competition can be divided into three stages. At the 1st stage,
we read every piece of information available to see how to program and tested each
example that Sony provided in order to see how the robot operates. Then we came to
the 2nd stage to construct our team strategies. We targeted two goals under the
pressure of time limit: to quickly set up everything for the robot to play soccer and to
gradually modify the program that appeared not reasonable. This strategy does reduce
the stress we faced and it took us about three months to have a fully working team. In
the 3rd stage, we refined our sensing and control strategies gradually. Our team
showed the abilities to play the match and challenges during the last few days before
leaving for Melbourne. Our research is focused on learning and evolving of the Sony
legged robots based on the behaviour structure.

2. Architecture for building the intelligent robot

We have designed agent-based control architecture for our robots, which consists of
three modules: Perception, Cognition, and Action [3]. As shown in figure 1, three
modules are placed under the OPEN_R structure and communicate with each other
through their connections. The Perception module takes all sensor information as
inputs, including images from a CCD camera, ranges from an infrared range finder,
postures from gyros, pressures from a head touch sensor. It maintains a local map
relative to the robot centre and a global map relative to the left corner of the field by
updating the localization of different objects defined in the map based on different
sensory information. Both the local map and the global map are C++ objects shared
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behaviours. The low-level Figure 1 Agent architecture for Essex Rovers
behaviours in the Action module are called basic behaviours, each of which can
complete a primitive action such as APPROACH_TO_BALL according to the
information from the maps. The fuzzy logic controller is used here to implement the
action while handling uncertainty [6].

3. Vision

We developed a tool called YUVC by using Microsoft Visual C++ to generate the
Colour Detection Table (CDT) for image thresholding based on the built-in threshold
hardware of the robot. The CDT has 8 tables for 8 colours, each of which has 32
levels of luminance value (Y) for 4 min-max threshold colour values of U, V in the
YUV colour space. YUVC is a window-based tool and makes manual colour
separation easy by moving mouse only. Furthermore it also provides the ability to
simulate the image processing with same C++ code employed in real robots.

4. Object recognition
The procedures for object recognition [3] are:

—  Image capture — AIBO provides the colour images in YUV space and each pixel
in the image is represented by 3 bytes of Y, U, and V values. It also provides 8
colour images after each captured image being threshold by hardware. The
hardware threshold makes use of 32 Y levels and there are 2 thresholds for U and
other 2 thresholds for V at each level. This will lead to 32 rectangles in U and V
frames for each colour. In order to select the thresholds for the hardware, we
developed a software tool that can manually label the different colour and find
the thresholds among the labeled pixels.

— Image segmentation — The threshold image may contain noise due to the
luminance condition. We use morphology filters to de-noise the image since the
detected object’s shape is known a prior [7]. For a binary image, there are two
operators normally used in a morphology filter, namely dilation and erosion.
Morphologically filtering an image by an opening or closing operation
corresponds to the ideal non-realizable band-pass.
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— Image representation — Before object understanding the similar adjacent pixels
have to be grouped into the connected regions. This is typically expensive
operation that severely impacts real time performance. We calculate the run
length encoding (RLE) to represent the image in order to make our next image
operation based on RLE not on individual pixels. Region identification can be
performed in two passes, see [3] for more details.

5. Localization

There are two maps for localization in our team, namely the local map relative to the
robot center and the global map relative to the left corner of the field, both of which
maintained by the sensory information. The object features are kept in the maps, for
example, the distance, view angle, pixel size in the local map and 2-D co-ordinations
and orientation in the global map. A certainty value (CV) that is exponentially
decayed is assigned to each object in the map. The purpose of CV is to equip the
robots with memory in order for them to make decisions when the desired objects are
lost from their sight. For the attackers, the triangulation that is calculated by
recognizing three poles is used for localization. The condition for activating the
localization is limited in only a few cases, such as losing ball for a certain time, in
order to save time to react with the dynamic environment. For the goalie, a set of
heuristic rules is developed for localization. The rule set takes the goals, poles,
ground, and white lines in both the local map and global map as inputs and is more
efficient than triangulation in some situations in which some poles are perhaps
obscured by other robots or not recognized due to the changing lighting condition.
The localization will be trigged when the robot has no ball or cannot see the ball.

6. Behaviours

There are two level behaviours in our robots. The high-level behaviours contained in
the Cognition module as the states of a non-linear dynamic process actuated by the
two maps, which will be stabilized either in one state such as FINDBALL behaviour
or in the limit cycle states formed by different behaviours. The low-level behaviours
in the Action module are called basic behaviour, each of which can complete a
primitive action such as APPROACH_TO_BALL according to the information from
the maps. Both the attackers and the goalie have their different Cognition modules,
and these modules then form team behaviours such as localization, co-operation, etc.

A reactive control scheme [3] is employed in the low level for each behaviour with
the sensory data from the local map as inputs and moving command from OPEN-R
moving modular as outputs. The sensor data from the local map is corrupted with
noise, which forces us to use a fuzzy controller to complete the behaviour issued from
the Cognition module.

7. Action/Execution

After testing for different walking styles provided by MoNet object of Aperios, we
use the normal walking command as our team’s motion styles. The two custom
walking commands, SideWalking and Rolling, are designed by trial and error to make
the robot move more flexibly. The kick command of MoNet is not efficient in testing
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due to its slow moving and inaccurate angle. Therefore we use the fast walking style
for kicking instead. Head motion for finding the ball is also difficult to control since
there is a time delay between the time when the robot finds the ball and the time when
the command is executed. The head angles are recorded when the ball is founded and
then head is moved back to that position after the current command is finished.

8. Conclusion

In this article, we present our effect on training Sony legged robots for the
competition in RoboCup-2000. The vision processing and the behaviour construction
are two key aspects being focused by our team. A morphology filter is employed for
image pre-processing. The behaviours serve as basic building blocks for our modular
software system. The structure of two level behaviours can de-composite the task into
contextually meaningful units that couple perception and action tightly. Fuzzy logic
implementation further enhances the abilities of the system in face of the uncertain
situation [10].

Based on the current system, we will focus on the robot’s learning and evolving
abilities for the next competition, particularly on the vision system and cooperative
behaviours. The main shortcomings for our team in RoboCup-2000 are the slow
motion and inefficient kicking. We will try to modify the walking style to improve its
mobility and accuracy, and add effective kicking behaviours like the UNSW team.
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