
Keeping the Ball from CMUnited-99

David McAllester and Peter Stone

AT&T Labs | Research
180 Park Ave.

Florham Park, NJ 07932
dmac,pstone@research.att.com

http://www.research.att.com/~dmac,~pstone

Abstract. This paper presents preliminary results achieved during our
current development of a team for simulated robotic soccer in the RoboCup
soccer server [2]. We have constructed a team that plays a simpli�ed
\keepaway" game. Playing keepaway against the 1999 RoboCup cham-
pion CMUnited-99 team, our new program holds the ball for an average
of 25 second with an average distance of 24 meters from the opponents
end of the �eld. CMUnited-99 playing against itself holds the ball for an
average of only 6 seconds. Here we describe the design of the keepaway
team. The principal technique used is the vector sum of force-�elds for
governing player motion when they are not in possession of the ball.

1 Introduction

As a �rst step in developing a team for simulated robotic soccer we have con-
structed a team for playing a simpli�ed \keepaway" game. We begin by justi-
fying the use of the keepaway game as a simpli�ed model of full soccer. There
are two reasons for focusing on the keepaway game. First, it is much easier to
measure performance in a keepaway game than in the full game. This means
that a hill-climbing approach to program development is more feasible and high
performance programs can be developed more rapidly. Second, a team that can
hold the ball for extensive periods of time close to the opponent's goal is likely
to have more scoring opportunities than the opponents. So good performance in
keepaway should translate into good performance on the full game.

As mentioned above, the �rst motivation for focusing on keepaway is that
keepaway performance is more easily measured than goal scoring performance.
One of the great frustrations in the development of a team for simulated robotic
soccer is the di�culty of determining whether a given change improves perfor-
mance. When the e�ect of a change is dramatic then one can often tell that the
change is signi�cant (usually bad) by simply watching the modi�ed team play
for a while. However if the e�ect on performance is only moderate, say a 20%
change in scoring rate, then it can be very di�cult to see the e�ect of the change
either by watching the play or by counting goals in simulated play. To get sta-
tistical con�dence intervals for performance measures, such as the rate at which
goals are scored, we view the game as a Markov process and assume that the

P. Stone, T. Balch, and G. Kraetzschmar (Eds.): RoboCup 2000, LNAI 2019, pp. 333-338, 2001.
c Springer-Verlag Berlin Heidelberg 2001

mixing time of this process is comparable to the possession time | the average
period of time between reversals in possession of the ball. We also assume that
the expected time between goals is long compared to the possession time (and
hence the mixing time). Under these assumptions, detecting a 20% change in
scoring rate (up to 95% con�dence) requires a run long enough to contain about
100 goals. In high level play, goals are infrequent and running long enough to
get 100 goals can take days. For smaller improvements the situation is worse.
Detecting a 5% improvement requires about 800 goals.

Using holding time and nearness to the goal as performance metrics results
in a simpli�cation of the game of soccer that we call \keepaway." The keepaway
game does not involve scoring but is similar enough, we hope, to the full game
that good performance in keepaway can be converted into a high scoring team
in the full game.

Our approach to keepaway is based on action generation using vector sums of
\force �elds". For example there sia force �eld \repelling" players from the edge
of the �eld and from each other when players get too close together. Previous
research has explored action generation via vector sums. For example, the Samba
control architecture [3] uses two behavior layers: the reactive layer which de�nes
action maps from sensory input to actuator output; and the task layer which
selects from among the action maps. In the robotic soccer application, a vector
sum of action maps is used to determine the player's actual motion. In this case,
the vector sum is not of forces, but of low-level actions.

A previous force-�eld approach considering sums of attractive and repulsive
forces among players and the ball is called strategic positioning using attraction
and repulsion, or SPAR [6]. In contrast to our work reported here, these forces
were only active over limited regions of the �eld, and boundaries, such as out-of-
bounds and o�sides, were treated as hard constraints. SPAR was implemented
both in simulation and on real robots.

2 The Keepaway Game

For the experiments described in this paper, we use the RoboCup soccer server [2].
In the keepaway game used here, there is a distinguished o�ensive team and a
distinguished defensive team. The game is played in a series of \trials." At the
beginning of a trial, the ball is placed next to the most open o�ensive player,
i.e., the player farthest from the nearest defensive player. The trial lasts until a
defensive player gains control of the ball (is within kicking range of the ball for
half a second); the ball is passed in a way that violates the o�sides rule; or the
ball goes out of bounds. When one trial ends a new trial is started by moving
the ball to the most open o�ensive player.

A �rst objective for the o�ensive team is to hold the ball as long as possible,
i.e., to make each trial last as long as possible. A second objective is to move the
ball as far down�eld as possible. In the experiments described here, the players
are assigned random positions at the start of the �rst trial. However, the runs
are su�ciently long that performance is dominated by an \equilibrium" player

334 David McAllester and Peter Stone

positioning achieved after the �rst few trials. The keepaway game has no rules
other than those ending a trial as described above. When the defensive team
(CMUnited-99) gains possession of the ball, it simply holds the ball in order to
end the trial, rather than trying to pass and score. Otherwise, the CMUnited-99
team plays as it would in tournament play, which includes trying to take the
ball away from the o�ensive team.

3 The Basic Keepaway Program

The players in our experiments are built using CMUnited-99 agent skills [4] as
a basis. In particular, their skills include the following:

HoldBall(): Remain stationary while keeping possession of the ball in a posi-
tion that is as far away from the opponents as possible.

PassBall(t): Kick the ball directly towards teammate t.
GoToBall(): Intercept a moving ball or move directly towards a stationary

ball.

In each of the keepaway programs described here, each o�ensive player is
always in one of three modes: \with-ball", \going-to-ball", or \supporting-ball".
The player is in with-ball mode if it is within kicking distance of the ball. If
no o�ensive player is within kicking distance then the o�ensive player that can
reach the ball the soonest (as determined by a CMUnited-99 primitive) is put
in going-to-ball mode. Since each player is actually in a separate process, each
player must decide separately what mode it is in. Because of sensing errors,
occasionally two players will both think they can each reach the ball soonest
and both go into going-to-ball mode. But this is rare and one can generally
think of mode assignment as being centrally determined.

In all of the keepaway teams described here, the with-ball player either ex-
ecutes HoldBall() or PassBall(). When a pass is kicked, the receiver generally
becomes the player which can reach the ball the soonest and automatically goes
into going-to-ball mode. The player in going-to-ball mode executes GoToBall():
its behavior is identical to that of the CMUnited-99 players in this mode.

In the experiments presented in section 4 the with-ball player is controlled
with a somewhat elaborate heuristic. However, based on our experience with
controlling the with-ball player, we believe that this elaborate heuristic achieves
roughly the same performance as always passing the ball immediately and se-
lecting the receiver that maximizes the minimum angle between the pass and
a defensive player no further from the ball than the intended receiver. In the
experiments described here we hold the with-ball behavior �xed so that all of
the performance di�erences we observe are a result of di�ering behaviors of the
players in supporting-ball mode.

In all versions of the program described here, the movements of the supporting-
ball players are controlled by force �elds | each supporting-ball player moves
in the direction of a sum of vector �elds. Players are kept in bounds with a �eld
that repels the players from the out of bounds lines. This bounds-repellent �elds

335Keeping the Ball from CMUnited-99

becomes in�nitely strong as a player approaches an out-of-bounds line. More
speci�cally, the bounds-repellent �eld is de�ned as follows where Bx and By are
the x and y coordinates of the �eld, x and y are the player's current x and y
coordinates, and xmin, xmax, ymin and ymax de�ne the in-bounds region.

Bx = 5=(x� xmin) � 5=(xmax � x)

By = 5=(y � ymin)� 5=(ymax � y)

In general we arrange that a given �eld will tend to dominate other �elds if it
has a magnitude large compared to 1. The constant 5 in the above equation
causes the out-of-bounds �eld to become strong if a player is within �ve meters
of the edge of the playing �eld. At ten meters or further from any edge the
bounds-repellent �eld is weak.

There is also an o�sides-repellent �eld that operates much like the bounds-
repellent �eld to keep players onsides. This o�sides-repellent �eld acts only on the
x coordinate of the player and is de�ned as follows where Ox is the x coordinate
of the force �eld and xo� is the x coordinate of the o�sides line.

Ox � if
�((xo� � x) �1 5; �5; 0)

if
�(p; x; y) � p � x+ (1� p) � y

x �� y � s((y � x)=�)

s(x) � 1=(1 + e�x)

This fairly complex formula expresses a rather simple idea. If the player is sig-
ni�cantly less than �ve meters from the o�sides line then the force �eld pushes
the player away with a force of �ve. If the player is signi�cantly more than �ve
meters from the o�sides line then the force �eld is negligible. The �eld varies
continuously from a negligible value to a value near 5 as the player crosses a line
�ve meters from the o�sides line.

In addition to the bounds-repellent and o�sides-repellent force �elds, there
are force �elds between players. For a given o�ensive player there is a strategic
inter-player force due to teammate i, denoted Si, and de�ned as follows where
di is the distance (in meters) to teammate i and Ui is the unit vector pointing
in the direction to teammate i (all from the perspective of a player calculating
forces on itself due to its teammates).

Si � [(di =
10 20)� 2(di �10 20)]Ui

(x =� y) � e�(x�y)2=�2

This is a limited range force �eld | the strategic force is negligible when signif-
icantly further away than 20 meters. The basic idea is that players should be

336 David McAllester and Peter Stone

within passing distance of each other but far enough apart so that a pass between
them would move the ball a signi�cant distance. Note that Si is a continuous
function of di and Ui.

Players near the ball are in
uenced by two tactical inter-player force �elds.
The �rst, Ti, is a purely repulsive force between the o�ensive players. The second
tactical force �eld, the get-clear force, denoted C, pushes a potential receiver
away from defenders. The force Ti is de�ned as follows where again di is the
distance to teammate i and Ui is the unit vector in the direction of teammate i.

Ti � if
�(di �3 8; �5; 0)Ui

Note that Ti is again a continuous function of di and Ui. The precise magnitude
and direction for the get-clear force is somewhat complex and could probably
be simpli�ed without in
uencing the performance of the program. We do not
present it here.

Intuitively, the strategic forces apply to players far from the ball and the
tactical forces apply to players near the ball. The shift from \near" to \far"
is done smoothly. The overall force on a supporting-ball player, denoted F is
de�ned as follows where S is the sum over teammates i of Si, T is the sum over
teammates i of Ti, and db is the distance of the player from the ball.

F � B +O + if
�(db �10 20; T + C; S)

A supporting-ball player always tries to run, as fast as possible, in the direc-
tion of the combined force F .

4 Variations on the Basic Program

Here we consider two additional strategic force �elds for controlling the supporting-
ball players. The toward-ball strategic force Sb is a force of unit magnitude di-
rectly toward the ball. This force pushes supporting-ball players that are far from
the ball toward the ball. The forces repelling players from each other, S and T ,
keep them from bunching up around the ball. The down-�eld strategic force, Sd,
is a force of unit magnitude directly toward the opponents end of the �eld. In
all of the variations of the program considered here, the total �eld controlling a
supporting-ball player has the following form where the strategic �eld S� is one
of the �elds, S, S + Sb, S + Sd or S + Sb + Sd.

F � B + O + if
�(db �10 20; T +C; S�)

The possession time and average x position of the ball for CMUnited and
the four variations of the basic program are shown in table 1. The possession
time is given as a \95% con�dence interval" de�ned by the mean possession time
over a sequence of trials plus or minus 2�=

p
n where � is the observed standard

deviation of the possession time of a trial and n is the number of trials in the
run.

337Keeping the Ball from CMUnited-99

Program Possession Time Mean Ball x Position

CMUnited 5.7-6.6 -19.5

S 16.9-18.7 -33.6

S + S
b 24.8-27.9 -35.9

S + S
d 22.2-25.2 25.7

S + S
b + S

d 23.7-26.8 26.6

Table 1. O�ensive possession time and average x position of the ball when the o�ensive
team is CMUnited and four variations of the basic program. The defensive team is
CMUnited in all cases.

Of the four versions of the basic program, all except the basic program have
essentially equivalent possession times (the di�erences in possession times are
not statistically signi�cant). It seems that the basic version of the program gets
stuck in an unusually cramped position on the left end of the �eld. This cramped
con�guration can be \broken" in a variety of ways. e.g., by moving players
nearer to the ball or moving players down�eld. Once the cramped con�guration
is broken, a variety of behaviors have equivalent possession times. In particular,
a much better ball position without signi�cantly changing the possession time.

In summary, we believe that keepaway is a good development task because
holding time, as opposed to goal rate, can be meaningfully measured, and be-
cause being able to hold the ball for longer periods should lead to better scoring
performance. Our results indicate that good performance on the keepaway task
can be achieved with a force �eld approach to action control.

References

1. H.-D. Burkhard, M. Hannebauer, and J. Wendler. AT Humboldt | development,
practice and theory. In H. Kitano, editor, RoboCup-97: Robot Soccer World Cup I,
pages 357{372. Springer Verlag, Berlin, 1998.

2. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Arti�cial Intelligence, 12:233{250, 1998.

3. J. Riekki and J. Roening. Playing soccer by modifying and combining primitive
reactions. In H. Kitano, editor, RoboCup-97: Robot Soccer World Cup I, pages
74{87. Springer Verlag, Berlin, 1998.

4. P. Stone, P. Riley, and M. Veloso. The CMUnited-99 champion simulator team.
In M. Veloso, E. Pagello, and H. Kitano, editors, RoboCup-99: Robot Soccer World

Cup III, Berlin, 2000. Springer Verlag.
5. P. Stone, M. Veloso, and P. Riley. The CMUnited-98 champion simulator team. In

M. Asada and H. Kitano, editors, RoboCup-98: Robot Soccer World Cup II. Springer
Verlag, Berlin, 1999.

6. M. Veloso, P. Stone, and M. Bowling. Anticipation as a key for collaboration in a
team of agents: A case study in robotic soccer. In Proceedings of SPIE Sensor Fusion

and Decentralized Control in Robotic Systems II, volume 3839, Boston, September
1999.

338 David McAllester and Peter Stone

	Introduction
	The Keepaway Game
	The Basic Keepaway Program
	Variations on the Basic Program
	References

