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Abstract. The growing popularity of sequence charts, first of all Mes-
sage Sequence Charts and UML Sequence Diagrams, for the description
of communication behavior has evoked criticism regarding the semantics
of the charts which led to extensions of these standardized visual for-
malisms. One such extension are Live Sequence Charts which allow to
distinguish mandatory and possible behavior in protocol specifications.
In the original language definition for LSCs the semantics are only de-
scribed informally, although a sketch for a possible formalization has
been provided as well. In this paper we intend to fill in the semantic
blanks of the original LSC definition. Following the sketched path we de-
fine the semantics of an LSC by deriving a Timed Biichi Automata from
it. We also consider qualitative and quantative timing aspects. We finally
show how LSCs are integrated into a verification tool set for STATEMATE
designs.

1 Introduction

In recent years the use of Embedded Control Units (ECUs) has become more and
more widespread in industry, especially in automotive and avionics applications.
Many of these ECUs have to satisfy safety critical requirements. Developing such
systems requires non-trivial effort to ensure correctness of the design. Therefore
many companies have come to realize the usefulness of (semi-)formal methods
in the development process of safety critical ECUs.

One example of a semi-formal specification technique are Message Sequence
Charts (MSCs), a graphical formalism which is concerned with the communi-
cation behavior of protocols. MSCs have been standardized by the ITU (Inter-
national Telecommunications Union) in Recommendation Z.120 ([IT96b]). De-
signed to capture protocol scenarios in the telecommunication area, MSCs can
also be used to sketch scenarios of general interprocess communication.

Notwithstanding the fact that there exists a formal semantics [IT96al], we
consider MSCs only a semi-formal specification technique, because there are
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still a lot of questions unanswered. For example, one MSC only specifies one
scenario, i.e. one possible communication sequence of the system. But: What
does a collection of MSCs for some system mean? Is progress along the instance
axis enforced?” What happens when a condition is evaluated to false? These and
other open questions have been identified by several researchers (see e.g. [Krii99],
[DH99]).

We follow the Live Sequence Charts (LSC) approach of [DH99[Y which is
an conservative extension of standard MSCs. As explained in [DH99] LSCs can
be used to distinguish between accepted and non-accepted sequences of variable
valuations of systems (runs). LSCs extend the formalism of MSCs along the
following lines:

— conditions are interpreted, they are not only treated as comments as in MSCs

— distinction between possible (standard MSC) and mandatory behavior. This
includes the ability to

e enforce progress along each instance axis,

e specify if a message has to be received or not,

e distinguish between LSCs which show only one possible communication
(existential interpretation) and LSCs which show mandatory communi-
cation, i.e. it has to be exhibited by all system runs (universal interpre-
tation),

e distinguish between conditions that have to be satisfied and those that
may be violated without generating an error.

— specification of activation conditions guarding the activation point of the
LSC, and whether an LSC should be activated only at system start (ini-
tial activation mode) or whenever the activation condition evaluates to true
(invariant activation mode)

The parts of an LSC which may be interpreted either as mandatory or possi-
ble are assigned a temperature, hot for mandatory and cold for possible elements.
Thus we have messages, conditions and instance locations with temperatures.
Graphically cold elements are depicted by dashed lines whereas hot ones are
represented as solid lines (see figure [T).

We will substantiate the original paper [DH99] in two ways: We will on one
hand provide a more concrete semantics for a subset of the original features using
Timed Biichi Automata. On the other hand we will introduce timing annotations
which are not covered by [DH99]. Our notion of time is discrete as we base our
time model on the steps of a system exhibiting time-discrete behavior.

Before we go into the details of the process of transforming the LSC into
an automata format (which we call unwinding) we need to explain the context
in which we want to use LSCs. At the University of Oldenburg/ OFFIS the
STATEMATE Verification Environment (STVE) has been developed over the last
years which allows to verify safety-critical properties of STATEMATE designs (see
[BBea99], [DDK99] or [DKOI1] for details). The STATEMATE tool from i-Logix
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is a commercial case tool which is based on Harel’s statecharts [HP96] and is
widely used in industry. The STVE translates the STATEMATE design into the
input format of the underlying symbolic modelchecker and also lets the designer
specify the properties to be verified in a graphical way. For this purpose Symbolic
Timing Diagrams (STDs) are used, which have been developed at OFFIS as well.
STDs allow to state constraints on the changes of values of inputs and outputs
of the system under design; see [Fey96|, [F.I97] for more information. The STD
specification is translated into propositional temporal logic (see [Fey96]) which
serves as input for the modelchecker.

The algorithm of unwinding LSCs explained in this paper is already imple-
mented in a tool (cf. section b)), which is integrated into the STVE at the moment
of writing. The roles of LSCs and STDs are complementary, STDs talk about
one component (black box view) whereas LSCs are obviously much better suited
to express properties about the interactions of components (white box view).

The paper is structured as follows: In section 2 we define the subset of LSC
features considered here. Section Bl describes how the unwinding structure for
an LSC is constructed and section [ shows the subsequent transformation into
a Timed Biichi Automaton. In section [{ we give an overview about the tool
environment for verification of STATEMATE designs against LSC specifications.
We give a summary and identify directions of further research in section

2 LSC Subset

LSCs as presented in [DH99] provide a rich set of features. We will only treat
a subset of these in the present paper in order to focus on the core concepts.
The integration of LSCs into the STVE entails some other restrictions which are
caused by STATEMATE. But we also add two features which were not covered
in the original paper: timing annotations which allow to specify a lower and an
upper bound between two subsequent locations on one instance. We borrow the
interval notation used in both STDs [Fey96] and MSCs [AHP96]. Timer dura-
tions are consequently interpreted as a multiple of our discrete base time unit.
Our interpretation of timing annotations and timers allows the user to specify
runs of a system not only in a qualitative manner, but also to constrain event se-
quences by quantitative time bounds. The second new concept are simultaneous
regions, which allow to specify the simultaneous observation of several events. In
contrast, the non-deterministic symbolic transition system presented in [DH99],
implements a pure interleaving interpretation of LSCs: only a single instance is
allowed to proceed at a time. We feel that such an interpretation is not powerful
enough in the context of STATEMATE, where the communicating activities run in
parallel and can change arbitrary many variable values at the same time. Besides
explicit simultaneous regions, our interpretation considers unordered events of a
coregion or of different instances observable in any order including simultaneity.

In this paper we do not treat existential LSCs, because the universal inter-
pretation seems to be the natural choice for formal verification as we want to
prove that the entire system fulfills the specification. We feel that the intention
of using an existential LSC is to get a satisfying run as a witness. This would
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entail a modified unwinding algorithm which is out of scope for the present pa-
per. Our algorithm can also handle sub-charts, the details of which we omit here
due to limited space.

The following concepts are contained in our approach (see figure [ for the
graphical representation of the concepts): Hot and cold locations, hot and cold
messages, hot and cold conditions, coregions, simultaneous regions, timer, timing
annotations.
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Fig. 1. LSC example

We restrict the setting of a timer to be bound (via a simultaneous region)
to some sort of event. This is what we feel is the intention which was so far not
expressible in MSCs: A timer is set when some event is observed and we then
wait for some subsequent event.

3 Constructing the Unwinding Structure

In order to generate the unwinding structure from an LSC we first need to
identify its building blocks. They are those elements of the chart which have
to happen simultaneously, i.e which are indivisible. In our case the simultane-
ous region construct covers the majority of these elements since it encompasses
both regular messages and regular conditions. The other two elements left, the
instance head and the instance end, are of a more auxiliary nature. They are
not unwound explicitly but the set of all instance heads/instance ends forms
the start state/end state for the unwinding structure. The other elements of our
LSC subset are either irrelevant for the structure or can be stated using the
simultaneous region. Timer and timing annotations are not treated in the un-
winding, as their timing information is considered later when transforming the
unwinding structure into an automaton. Actions are disregarded because they
hold no information relevant for the run. Coregions are not treated as constructs
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of their own but as the separate simultaneous region constructs of which they
are comprised. Neither do sub-charts form a separate construct as they can be
expressed by their enclosed simultaneous region constructs as well.

The construction of the unwinding structure borrows the basic technique
from the unwinding of Symbolic Timing Diagrams (cf. [Fey96]) using Phases.
Informally a Phase shows how far the unwinding of the LSC has progressed.
Starting with the Initial Phase all possible successor Phases are computed and
this is iterated until the Final Phase is reached.

For the formal definition of the unwinding procedure we first introduce the
concept of a position in an LSC: A position is simply a graphical point in an
LSC. The atomic building blocks of an LSC are events which may be one of
the following: (1) instance head , (2) instance end, (3) sending a message, (4)
receiving a message, (5) the valuation of a condition, (6) setting a timer, (7)
expiration of a timer or (8) the reset of a timer

In order to formally define events we introduce a number of sets. The
first group of sets contains elements which are related to sets of positions,
whereas the second group contains elements which are related to single positions.

Sets of objects of LSC [

related to sets of positions related to single positions
Instances(l) set of instances Msgsend(l) set of message sendings
Messages(l) set of messages M sgrecv(l) set of message receipts
Conditions(l) set of conditions Set_Timer(l) set of timer settings
Reset_Timer(l) set of timer resets
Timeouts(l)  set of timeouts
Timer(l) Set_Timer(l) U Reset_Timer(l)

U Timeouts(l)

Analogously to the chart-oriented sets of the second group we define the same
sets for each instance ¢ of the LSC [. For conditions we define the set of condition
valuations which are local to instance ¢ as the restriction of the shared condition
for the whole chart to instance i: Conds(i) := Conditions(l) | i. We write
Conds(l) for U;ernstancesry Conds(i). We denote the instance head of instance
i by L; and the instance end of i by T;.

Events Given these basic definitions we now formalize events:

For LSC [ : For instance i :
Events(l) := Events(i) :=
{ L; | i € Instances(l) } U {L;} U
Msgsend(l) U Msgrecv(l) U Msgsend(i) U Msgrecv(i) U
Timer(l) U Conds(l) U Timer(i) U Conds(i) U
{ T;| i€ Instances(l) } {T:}

With each event e € Events(i) we associate its position given by the function
position(e). In order to handle simultaneous observation of multiple events we
introduce for instance ¢ the maximal set:

Sim_Regions(i) := {sr C Events(i)| Yx,y € sr: position(z) = position(y)}.
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We also associate a position with each sr € Sim_Regions(i) by the func-
tion position(sr). Note that simultaneous regions are sets of basic events. Single
events are treated as singleton simultaneous regions. Positions along one instance
axis are totally ordered.

We now cousider the set Coregions(i) of coregions of instance i. A coregion
er € Coregions(i) starts at the graphical position x of instance ¢ and ends at
graphical position y. We define for er : startpos(cr) := x and endpos(cr) :=y

and position(cr) := startpos(cr). For each cr € Coregions(i) we then de-
fine contents(cr) := {sr € Sim_Regions(i) | position(cr) < position(sr) <
endpos(cr)}.

In addition to a graphical position we associate a logical position with each
simultaneous region which is used to determine the order along the instance
axis. We call this logical position the location of the simultaneous region. For
sr € Sim_Regions(i) we define :

position(sr), if =3 cr € Coregions(i) : sr € contents(cr)

location(sr) := {position(cr), if 3 cr € Coregions(i) : sr € contents(cr)

Let Locations(i) := { location(sr) | st € Sim_Regions(i)} be the set of locations
of instance i. Note that for distinct sr, sr’ € Sim_Regions(i) not located in the
same coregion either location(sr) < location(sr') or location(sr’) < location(sr)
holds. Moreover, for distinct sr, sr’ € Sim_Regions(i) located in the same core-
gion: location(sr) = location(sr’). Thus, with respect to coregions locations
along one instance axis are ordered only partially. Concerning simultaneous re-
gions and coregions we formulate the following well-formedness rules:

— Simultaneous regions located in a coregion must be singleton sets, or in other
words, must be single events, because otherwise they would impose an order
(simultaneity) on some of the events in the coregion.

— At most one condition valuation may be located in a simultaneous region.
Several condition valuations can always be merged into one.

— Timer settings must only occur in simultaneous regions together with at
least one non-timer setting event, because there has to be some reference
point for the timer.

For the unwinding procedure we furthermore need to know the predecessors
of each simultaneous region which are determined by the following function
(sr € Sim_Regions(i) Bk

@ 7Zf 8T = {Ll}

{sr'| sr’" € Sim_Regions(i) A
predecessor(sr) = location(sr’) < location(sr)A

-3f € Sim_Regions(i) :
location(sr’) < location(f)

< location(sr)} ,else

3 Note that the set of predecessors usually contains just one element. Only a coregion
as predecessor produces a set containing several elements.
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This definition of a predecessor set for each location allows us to determine sets
of legal event sequences along one instance axis. But simultaneous regions of
one instance can be bound to other simultaneous regions on other instances.
For example, shared conditions involve a simultaneous region on each instance
sharing the condition. If one of the simultaneous regions of this set occurs, the
other simultaneous regions of the set must occur simultaneously. This leads to
the definition of

Simultaneous Classes Let <>, g¢ denote the equivalence relation “has to hap-
pen simultaneously”, then:
Sim_Classes(l) :=

{scl € Uicrnstancesqy Stm-Regions(i)| Vsr, sr' € scl : sr < psc sr'}
The simultaneous classes impose the ordering between different instances. Here
the constructs that satisfy < sc are

— shared condition valuations ¢ € Conditions(l) which form a synchronization
barrier, since ¢ has to be evaluated simultaneously at each involved instance

— sending and receiving a message m € Messages(l). This is only legal for
models with zero delay communication like STATEMATE. For delayed (syn-
chronous or asynchronous) communications sending and receipt of a mes-
sage have to be treated separately. For simplicity’s sake we only consider
non-delayed communication in the remainder of this paper.

— a singleton simultaneous region

Note that Vsr € U,crnsiances() Sim_Regions(i)3'scl € Sim_Classes(l) :

sr € scl. For scl € Sim_Classes(l) we now define the set of simultaneous classes
which have to be unwound before scl. We call this set the prerequisites for scl.

0 7Zf scl € {p(Uielnstances(l){Li})}
prerequisite(scl) := { {scl’ | scl’ € Sim_Classes(l) A sr € scl 3 s’ € scl’ :
sr' € predecessor(sr) },else

With these definitions we are now fully equipped to formally define the unwind-
ing procedure. The procedure unwinds a LSC step by step by constructing sets
of simultaneous classes.

Unwinding Sets Each step in the unwinding process is characterized by three
sets:

— History C Sim_Classes(l), the set of simultaneous classes which have al-
ready been unwound

— Ready C Sim_Classes(l), the set of simultaneous classes whose prerequisites
have already been unwound:

— Fired € p*(Ready), the set of simultaneous classes which are unwound in
the current phasﬁ

4 o1 denotes the power set without the empty set.
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In addition to these three sets we introduce the Cut through the LSC which
keeps track of the progress of the unwinding, i.e. the Cut identifies the border
line between elements which have already been unwound and those that still
have to be considered. A cut can be visualized as a piece of rope lying across the
LSC touching exactly one location of each instance. More formally we define the
set of all cuts of an LSC [ as:

Cuts(l) == {(z1,...,zn) | ; € Sim_Regions(j),1 < j < n = |Instances(l)| }

An unwinding phase Phase; consists of the sets Ready;, History; and the
vector Cut;. Each phase is represented as a node in the unwinding structure
which is therefore annotated with the the triple (Ready;, History;, Cut;); the
phases are connected by edges annotated with elements of Fired. Thus we have
the following sets:

— Phases(l) - set of all possible phases for LSC [
— Fireds(l) - set of all possible fired-sets for LSC [
— Cuts(l) - set of all possible cut-vectors for LSC |

Computing the Phases Each unwinding step entails the computation of the
successor phase(s) from the present one starting with the initial phase and ending
with the final phase. The ready set of the initial phase contains all simultaneous
classes, which have only instance heads as prerequisites, its history and cut
contain all instance heads:

Phasey = (Readyo, Historyg, Cutgy) , where
Readyo = {a € Sim_Classes(l)| prerequisite(a) € {p*(Uielnsmmes(l){Li})}

HiStOTyO = {Uielnstances(l){{J‘i}}}
Cutg = (L1,.., L), where n is the Number of instances of LSC [

A non-initial and non-final phase Phase; is characterized by

Phasej = (Ready;, History;, Cut;) , where
Ready; = {a € Sim_Classes(l)|
Vb € prerequisite(a) : b € History; A a ¢ History;}
History; C Sim_Classes(l)
Cutj = (1, ..,xn), Vk € Instances(l) : i € Sim_Regions(k)

The final phase Phasefinai is characterized by

Phasefina = (Readyfinal, History rinat, Cut final), where

Rea’dyﬁ”al = {Uielnstances(l) {{Tl}}}
Historyfina = Sim_Classes(l) \ {Uie]nsmmes(l){{Ti}}}

An unwinding-step from Phase; to Phase; is thus defined by the function

Step : Phases(l) x o (Sim_Classes(l)) — Phases(l)
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where Step((Ready;, History;, Cut;), Fired;) =
(Ready;, History; U Fired;, upd(Cut;, Fired;)), with

upd : Cuts(l) x Fireds(l) — Cuts(l) and

upd(Cut;, Fired;) := (1, .., Zn), where

/ o -
xk{xkﬂzerredlﬂscl€z.xkescl’k17“,n

Ty else

For each subsequent unwinding step first a subset of the ready set is selected.
This subset represents the simultaneous classes which are unwound in the current
step. All possible subsets except the empty set are considered to determine the
set of next nodes in the unwinding structure. The source node is connected to
all its successor nodes by an edge annotated with the set of simultaneous classes
unwound in this step. The new ready set is then computed for all successor nodes
in the following manner: First the simultaneous classes which have just been
unwound have to be removed from the ready set, then all simultaneous classes
whose prerequisites are now fulfilled are added. In the history the just unwound
simultaneous classes are recorded, whereas for the Cut the simultaneous classes
that have just been unwound are added and the ones just left are removed. The
unwinding structure concludes with the final node. Notice that the resulting
structure contains one path for each possible ordering — including simultaneity!
— of unordered events.

Component
1

‘Component
2

‘Component
3

mi

cond1 {cond1}

m2 {m3}

(a) example LSC (b) corresponding unwinding
structure

Fig. 2. Simple unwinding example
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Figure [2 shows a simple unwinding example. We have omitted the node
annotations to increase readability. m2 and m3 are located in a coregion - they
may be observed in any order and in our interpretation also Simultaneouslyﬁ.

Optimizing the Structure The unwinding structure for an LSC can become
very broad if the LSC contains large coregions or many elements which may
be executed in parallel. As a consequence it may contain identical substruc-
tures in different branches. In order to streamline the structure these identical
substructures should be merged. But this merge may only be performed if the
substructures represent the same unwinding step, i.e. they must have the same
history and ready sets.

Temperatures Each location is annotated with a temperature indicating if
progress is enforced along the instance axis. When the events associated with
a location are observed, a hot temperature at the location requires the events
located at the following location to occur eventually. A cold temperature allows
the events located at the following location not to occur at all, but if they are
observed they must be observed after the events of the previous location.

Let temp(i, z) — {hot, cold} be the temperature of location = at instance i. We
now define the temperature of a cut by

hot, if 3 i € Instances(l) 3 x; € Locations(i) : z; € Cut,
temp(Cut;) = A temp(i, location(z;)) = hot
cold, else

The temperature of a phase is defined to be the temperature of its Cut. We can
now define the set of cold phases of LSC I:

ColdPhases(l) := {ph € Phases(l) | ph = (Readypn, Historyyn, Cutyy) A
temp(Cutpp) = cold}. By definition: temp(Phase finar) = cold.

4 From the Unwinding Structure to a Timed Biichi
Automaton

The unwinding structure is an intermediary data structure which is incomplete
since it cannot express time. This motivates the following transformation of the
unwinding structure into a Timed Biichi Automaton (TBA) which serves as
intermediate format to the STVE. There exists a translation of the TBA format
into propositional temporal logic (for details see [Fey96]).

Before we formally introduce Timed Biichi Automata we describe how tim-
ing information is added, since this is the key procedure in transforming the
unwinding structure into a TBA.

5 For delayed communication we would have to put the send and receive events of the
messages in separate simultaneous classes.
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4.1 Adding Timing Information

Hot locations can be annotated by timing annotations which are interval nota-
tions of the form [n, m], where n, m are non-negative integers and n < m. The
notation is similar to the one used for constraint intervals in STDs [Fey96] or
for specifying delays in MSCs [AHP96]. The meaning of a timing annotation is:
After having observed the events located at the annotated location at least n and
at most m steps later the events located at the following location are observed.

For each location of the LSC an integer clock is introduced. This clock is
reset when the location is unwound, i.e. when an event located at this location is
observed. A boolean expression constrains the clock value to be in the specified
range when the next location along the instance axis is entered (i.e. when an
event located at the following location is observed). The boolean expression is
simply true if the location does not have a timing annotation. For treatment of
timing annotations we therefore define:

— For i € Instances(l) and « € Locations(i) let clk(i,x) be the unique clock
identifier denoting the clock associated with the location x of instance 4

— The set of clock names is given by
CZOCkS(l) = Uielnstances(l) U;EELOC(Lti()"S(i) Clk(l’ 1‘)

— For ¢ € Instances(l) and = € Locations(i) let t_ann(i,xz) be the timing
annotation for location z of instance . Note that t_ann(i, x) = € if location x
of instance i is not annotated with a timing annotation. Otherwise t_ann(i, )
is of the form [n,m], with n < m, n, m integers.

— Let clk_resets(Fired;) = { clk(i,x) | 3 z € Fired; 3 scl € z 3 sr €
scl : location(sr) = x A x € Locations(i)}, scl € Sim_Classes(l), sr €
Sim_Regions(i) be the set of names of clocks which are reset when Fired,;
is unwound. Le. for each location reached with Fired; the corresponding
clocks are reset.

— Let Clk_Resets(l) := U e pireas clk-resets(f) be the set of all clocks which
are reset in LSC .

— Let clk_conds(Fired;) := { t_ann(i,z) | 32 € Fired; 3 scl € z 3 sr €
sl : x € predecessor(location(sr))}, scl € Sim_Classes(l), sr €
Sim_Regions(i) be the set of timing annotations to be considered when
unwinding Fired;.

— Let Clk_Conds(l) := Uye pireasq clh-conds(f) be the set of all timing an-
notations in LSC .

Finally let us note that timers may be treated in a way quite similar to timing
annotations. Figure Bl shows an example; note that we are dealing with a TBA
instead of an unwinding structure here. The TBA definition as well as the exact
treatment of clocks will be demonstrated in section [4.2]

4.2 Timed Biichi Automaton Definition

A Timed Biichi Automaton ([ATu98],[AD92]) A is a tuple
A= (27 S, 80,C, —1BA, F)a where
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N
notm1
m1 {z0}

@TRUE
\.

cond1 {z1}

Component

Component
2

Component
3

not m3

cond1 m3 [z1>2 AND z1<=7]

not m2

(2,7]

m2

m3 TRUE
TRUE [20<11]

(a) example LSC with timing (b) corresponding
info TBA

Fig. 3. Unwinding timing annotations and timers

— X is the alphabet

— S is the set of states

— 8o € S is the initial state

— (' is a set of clocks

— —7pa: S X Pred x pt(C) x p(Conds(C)) — S is the transition function.
Pred are predicates ranging over X. Conds(C') are predicates constraining
clocks of C. A transition (s, p, ¢, cond) —r1pa s represents the change from
state s to state s’ for observation p. The clocks in ¢ are reset when taking
the transition and the transition can only be taken if the clock constraints
in cond hold.

— Finally F' C S is the set of accepting states

Informally the TBA for an LSC is derived from its unwinding structure by

— renaming the nodes with a fresh set of phase names

— changing the edge annotation to the conjunction of the elements of the cor-
responding fired set

— adding a dedicated Fxit state for violated cold conditions

— determining the set of accepting states according to the Biichi acceptance
condition

— adding self loops on each state and labeling them with the condition which
has to hold while the TBA stays in the associated statdd.

A TBA Apgce for an LSC is a tuple Apsc = (X, S, so,C, —r1pBa, F'), where
— XY= Sim_Classes(l)

5 The self loops are needed because time only passes when a transition is taken. Oth-
erwise time could not progress in a state.
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— S := Phmnames(l) U {Ezit}, where Ph_names(l) is a set of fresh identi-
fiers and phname is the function that associates a name from Ph_names(l)
with each phase of the unwinding structure, i.e. V p € Phases(l) 3'p’ €
Ph_names(l) : p’ = phname(p).

— 80 := phname(Phasey)

— C := Clocks(l)

— —rpa: S X Pred x ot (Clk_Resets(l)) x p(Clk-Conds(l)) — S, where
the Pred is built from f € Fireds(l) by conjunction (and negation) of the
elements of f.

— F := { phname(cph) | cph € ColdPhases(l))}

Up to here we did not mention how we handle activation mode and activa-
tion condition of a LSC. The language definition [DH99] provides the activation
modes initial and invariant. An initial LSC is activated at system initialization,
while an invariant LSC is activated whenever its activation condition evaluates
to true; note that the kernel automata are identical in both cases. Activation
mode and condition must be regarded when generating the temporal logic for-
mulae from the TBAs|Fey96]. Thus we need to preserve this information in the
TBA format and extend the it with an activation predicate.

4.3 Determinism in the TBA

Adding the self loops for each state in the TBA raises the question of what
annotation should be put on the self loop. This is closely related to the question
of determinism of the TBA. There are three options of what the transition
annotation should be: First, the annotation could be omitted altogether — this
would be equivalent to a true annotation — resulting in a very non-deterministic
TBA. The true annotation does not require the TBA to take a transition when
the corresponding message has been observed. This non-deterministic behavior
is obviously too weak, so we need a stronger interpretation.

s not m1 AND not m2 AND not m3
not m1
mi m1
(Component] (Component
1 2

Component]
3 not m1 AND not m2 AND not m3 AND TRUE
TRUE
m1
cond1 cond1

cond notm3 not m1 AND not m2 AND not m3
m3 m3
not m2 not m1 AND not m2 AND not m3
m3
m2
oo m2 m2
Il B s e e

(a) A simple LSC (b) weak (c) strict

Fig. 4. Different annotation types for self loops
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The interpretation corresponding to [DH99], where each occurrence of a mes-
sage has to be explicitly noted in the LSC and no other occurrence is allowed,
we call strict. This is achieved by annotating each self loop with the conjunction
of the negation of all messages appearing in the LSC (cf. ﬁgure. This inter-
pretation may be too strong in certain cases where we do not care if messages
visible in the LSC occur anytime else, as long as the ordering imposed by the
LSC is satisfied. This leads to the weak interpretation where the self loop anno-
tation only contains the negation of the next message(s). This forces the TBA
to react to the first occurrence of the message that is expected next, but does
not restrain the occurrence of this message at other times (cf. figure .

These different degrees of determinism only concern messages. For conditions
we always annotate the self loop with true (cf. figures emd7 because we
do not know when to evaluate a condition. This problem is inherent in the LSCs
where there is only the possibility to specify if a condition has to be reached —
and therefore evaluated — at all. Even if all locations before a condition are hot
this does not tell us anything about when exactly the condition is evaluated.
The designer would have to use a timing annotation to force a condition to be
evaluated at a certain time or within a certain time interval.

5 Integration with STVE

The further incorporation of LSCs into the STVE is currently under way. The
transformation of LSCs into TBAs described above is only one issue when con-
necting LSCs to the tool set. We have also developed an editor and a mapping
tool for LSCs. Since LSCs should not only be used in the context of STATEMATE,
the LSC identifiers for instances, messages and those used in conditions are only
symbolic names, i.e. place holders for concrete identifiers of the model to be ver-
ified. Based on the internal representation of STATEMATE designs in the STVE
(cf. [BBea99]) the mapping tool allows the user to associate the activities of the
STATEMATE design with the instances of a LSC. The interfaces of the selected
activities are computed and also offered to the user for identification of messages
and conditions with certain variables and their valuations. The mapping of LSC
objects to design items yields boolean expressions as atomic propositions of the
temporal logic formulae.

Figure [f] gives an overview over the LSC tools in the STATEMATE context.
For a given STATEMATE design LSC requirements are created with the LSC
editor. The requirements thus created are then translated by the LSC compiler
which implements the unwinding procedure described in this paper into the
intermediate TBA format from which the temporal logic formula is generated.
Since only symbolic names are used in LSCs, the TL formula only contains
propositions which regard these symbolic names. Therefore we need the LSC
mapper to relate the STATEMATE identifiers to the LSC identifiers. The result is
a table which gives for each proposition (which consists of symbolic names) the
concrete model elements. This table together with the formula generated from
the LSC form the input for the modelchecker (@ in figure Bl). The STVE also
translates the STATEMATE model into the input format for the modelchecker
which then determines, if the model satisfies the requirement.
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6 Conclusion

We have shown in this paper how the rather high-level semantics for LSCs pre-
sented in [DH99] can be elaborated. We only considered a subset of LSC features,
which consists of what we feel are the LSC core concepts. We made some fur-
ther restrictions either for simplicity’s sake or due to limitations imposed by
STATEMATE (zero-delay messages). We then demonstrated how this subset may
be efficiently transformed into an automaton with the focus on the technical pro-
cedure of unwinding the LSC. Having arrived at the TBA format the gateway
to the STVE is wide open. This format is also used for code generation from
STDs in conjunction with a STATEMATE design and to synthesize state charts
from STDs. These routes are possible for LSCs as well, although at the moment
we have only used LSCs for formal verification as described in section Bl

The verification of STATEMATE models against LSCs has at the moment of
writing not been tested extensively, so that more experience is needed in this re-
spect. Especially the issue of complexity needs further investigation. While STDs
are used to specify properties of components in a black box view, the benefit of
LSCs is the ability to specify protocols in a glass box view of the system. There-
fore it is quite natural to consider the whole model at once, while STDs allow the
user to scale down the verification task by system verification (cf. [BBea99]). To
verify large models against LSC specifications we will need powerful abstraction
techniques to reduce the state space for the verification. Complexity also has to
be investigated on the requirement side, where the formula may become very
large depending on the size of the LSC and the degree of parallelism it contains.

In the future we plan to extend both LSCs and the verification tool set to
also cope with UML models. In this respect not only the concept of synchronous
and asynchronous communication has to be reflected in LSCs, but we will also
need to develop strategies for verification in the object-oriented world.
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