
Language Containment Checking with

Nondeterministic BDDs ?

Bernd Finkbeiner

Computer Science Department

Stanford University

Stanford, CA 94305-9045

finkbein@cs.stanford.edu

Abstract. Checking for language containment between nondeterminis-

tic !-automata is a central task in automata-based hierarchical veri�ca-

tion. We present a symbolic procedure for language containment checking

between two B�uchi automata. Our algorithm avoids determinization by

intersecting the implementation automaton with the complement of the

speci�cation automaton as an alternating automaton. We present a �x-

point algorithm for the emptiness check of alternating automata. The

main data structure is a nondeterministic extension of binary decision

diagrams that canonically represents sets of Boolean functions.

1 Introduction

Binary decision diagrams (BDDs) have greatly extended the scope of systems

that can be veri�ed automatically: instead of searching the entire state space

of a model, the veri�cation algorithm works with a symbolic representation of

relevant state sets. Symbolic methods have been developed for many veri�cation

problems, in particular for temporal logic model checking [CGP99].

For the language containment problem L(A) � L(B) between two !-

automata A and B, symbolic algorithms have so far only been proposed in the

case where B is deterministic [TBK95]. This is a serious restriction: in property-

oriented veri�cation it is advantageous to allow for nondeterminism, since it

usually leads to simpler speci�cations (see [THB95] for examples). Having the

same type of automaton for A and B also makes hierarchical veri�cation pos-

sible, where an intermediate automaton appears as an implementation in one

veri�cation problem and as a speci�cation in the next; the veri�cation can fol-

low a chain of increasingly more complex models and ensure that observable

properties are preserved.

The standard approach to the language containment check L(A) � L(B) is

to �rst complement B, and then check the intersection with A for emptiness.

? This research was supported in part by the National Science Foundation grant CCR-

99-00984-001, by ARO grant DAAG55-98-1-0471, by ARO/MURI grant DAAH04-

96-1-0341, by ARPA/Army contract DABT63-96-C-0096, and by ARPA/AirForce

contracts F33615-00-C-1693 and F33615-99-C-3014.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 24{38, 2001.
c
 Springer-Verlag Berlin Heidelberg 2001

Language Containment Checking with Nondeterministic BDDs 25

The diÆculty with this approach is that the classic constructions for the com-

plementation of !-automata are all based on determinization. Determinization

algorithms for !-automata, like Safra's construction [Saf88], use an intricate

structure to describe deterministic states. Such states not only encode sets of

nondeterministic states reachable by the same input pre�x, but also keep track

of the acceptance status of the nondeterministic computations. Safra-trees have

been found to be too complex to be directly encoded in a BDD [THB95].

In our solution we sidestep the determinization construction by intersecting

L(A) and L(B) not in their representation as nondeterministic automata, but

in the more general framework of alternating automata, where complementation

can be achieved by dualizing the transition function and acceptance condition.

This approach makes use of concepts from a new complementation construction

by Kupferman and Vardi [KV97]. The use of alternation not only simpli�es the

algorithm, it also allows us to combine the two automata before any analysis

takes place. Thus, no e�ort is wasted on parts of B that are not reachable in the

combined automaton.

We describe a �xpoint algorithm that checks the resulting alternating au-

tomaton for emptiness. This construction involves reasoning about sets of sets

of states, one level of aggregation above the sets of states that can be repre-

sented by a BDD. We therefore propose an extension to BDDs: by allowing the

underlying automaton to be nondeterministic, sets of (deterministic) BDDs can

be embedded in a single (nondeterministic) structure.

Overview. In the following Section 2 we brie
y survey related work. Sec-

tion 3 provides background on automata over in�nite words. We review de-

terministic BDDs in Section 4 and present our nondeterministic extension in

Section 5. In Section 6 we develop the �xpoint construction for the emptiness

check on alternating automata.

2 Related Work

Language containment checking. There are two systems that provide com-

pletely automatic language containment checking. Omega [BMUV97] is a pack-

age of procedures related to !-automata and in�nite games over �nite graphs.

Omega implements Safra's construction and uses a completely explicit represen-

tation of the state space. HSIS [THB95] is a partially symbolic implementation,

again based on Safra's construction. While the state space is still represented

explicitly, HSIS makes auxiliary use of BDDs to represent relations on states.

Simulation checking. Simulation is a strictly stronger property than

language containment. Tools capable of simulation checking, such as Mocha

[AHM+98], can therefore be used to prove language containment (usually with

some user interaction), but a failed simulation check does not contradict lan-

guage containment.

Nondeterministic BDDs. There is a rich literature on extensions to

BDDs. In particular the idea to add nondeterminism has been exploited be-

fore, but with a di�erent objective: parallel-access diagrams [BD96] interpret

26 Bernd Finkbeiner

a

b

c

0

0; 1

0; 1 0; 1

0; 1 A

B

C D

0

0

0

1

1

0

1

0

1A : � = fag B : � = fBg

Fig. 1. B�uchi automata A and B. Accepting states are shown in gray.

nondeterminism as disjunction to achieve a more compact representation of cer-

tain Boolean functions. Takagi et al. [TNB+97] show that certain methods for

the satis�ability checking of combinatorial circuits and techniques that represent

Boolean functions as sets of product terms can be regarded as nondeterministic

BDDs.

Alternation. Muller and Schupp [MS87] observed that complementing an

alternating automaton corresponds to dualizing the transition function and ac-

ceptance condition. The application of alternation in veri�cation methods has

been studied both for automata-based algorithms [Var95] and in deductive veri-

�cation [MS00]. Alternating automata have been used in a new complementation

constructions for B�uchi automata [KV97].

3 Automata on In�nite Words

Automata on in�nite words di�er from automata on �nite words in their accep-

tance mechanism: there are no �nal states; instead, acceptance is determined

w.r.t. the set of states that are visited in�nitely often. Di�erent types of accep-

tance conditions are studied (see [Tho94] for an overview). In the following we

will work with B�uchi conditions.

De�nition 1. A (nondeterministic) B�uchi-automaton A = h�;Q; �; �; �i con-

sists of a �nite input alphabet �, a �nite set of states Q, a set of initial states

�, a transition function � : Q�� ! 2Q and a set of accepting states � � Q.

A run of A on an input string l0; l1; : : : 2 �! is an in�nite sequence of states

� = v0; v1; : : : s.t. v0 2 � and for every i � 0, vi+1 2 �(vi; li), i.e., the �rst state

is an initial state and each successor state is included in the successor set given

by the transition function.

A run is accepting if some accepting state is visited in�nitely often. The

language L(A) of a B�uchi automaton consists of those input strings that have

accepting runs.

Example 1. The automaton A in Figure 1 accepts all in�nite words over the

alphabet f0; 1g that begin with 0 and contain in�nitely many 0s. Since B does

not accept the word 0!, L(A) 6� L(B).

Language Containment Checking with Nondeterministic BDDs 27

a A

b B C

a D A

b D B C

a D A

b D B C

: : :

a

b

c

0
0; 1

0; 1 0; 1

0; 1

A

B

C D

0

0

0

1

1

0

1

0

1

Fig. 2. Alternating automaton C and a computation for input word 0!. Ac-

cepting states � = fa;A;B;C;Dg are shown in gray, stable states � =

fa; b; c; A;C;Dg as boxes.

The branching mode in a nondeterministic automaton is existential; a word

is accepted if its suÆx is accepted in one of the successor states. Alternating

automata combine existential branching with universal branching. Again, many

di�erent acceptance conditions are studied. We will work with a combined B�uchi

and co-B�uchi condition.

De�nition 2. An alternating automaton is a tuple A = h�;Q; �; �; �; �i with

�;Q;� as before; a set of stable states �, a set of initial state sets � 2 22
Q

; and

the transition function � : Q � � ! 22
Q

, a function from states and alphabet

letters to sets of successor state sets.

A run of an alternating automaton is a directed acyclic graph (dag) (N;E),

where the nodes are labeled with states state : N ! Q. It is often useful to view

the dag as a sequence of sets of nodes which we call slices: the i-th slice is the

set of nodes that are reached after traversing i edges from root nodes. We call

the set of states that occur on the nodes of the i-th slice the i-th con�guration.

Let con�guration 0 be the root con�guration, and, for �nite segments of a run,

call the �rst con�guration source and the last con�guration target.

In a run for the input string l0; l1; : : : 2 �!, the root con�guration is one of

the sets in �, and, for each state v in the i-th con�guration, the set of states on

successor nodes is one of the successor sets in �(v; li). A run is accepting if every

path visits some �-state in�nitely often, and eventually only visits states in �.

Finding a B�uchi automaton that accepts the complement of a nondeterminis-

tic B�uchi automaton is complicated and leads to an exponential blow-up [Saf88].

Alternating automata can be complemented without blow-up by dualizing the

transition function and acceptance condition [MS87]. Thus, it is also very sim-

ple to construct an alternating automaton that accepts those words that are

accepted by the �rst but not by the second automaton:

Theorem 1. For two B�uchi automata A1 = h�;Q1; �1; �1; �1i, A2 =

h�;Q2; �2; �2; �2i (where �2(p; l) 6= ; for all p 2 Q2; l 2 �), the alternating

automaton A = h�;Q; �; �; �; �i with

{ Q = Q1 [Q2;

28 Bernd Finkbeiner

{ � = f�2 [fpg j p 2 �1g;
{ �(s; a) = if (s 2 Q1) then ffpg j p 2 �1(s; a)g else f�2(s; a)g;
{ � = �1 [Q2;
{ � = (Q2n�2) [Q1

accepts the language L(A) = L(A1) \ L(A2).

Example 2. An alternating automaton for the language L(C) = L(A) \ L(B) is

shown in Figure 2.

4 Binary Decision Diagrams

A binary decision diagram (BDD) [Bry86] is a data structure for the representa-

tion of Boolean functions f : Bn ! B . In their reduced and ordered form, BDDs

represent Boolean functions canonically for �xed variable orderings. For many

examples BDDs signi�cantly outperform other representations. BDDs can be

used to store sets of states, represented by their characteristic function: Boolean

\or" corresponds to set union, \and" to intersection. BDDs are also used to rep-

resent relations on states, such as the transition function of an automaton. This

is done by adding a second \primed" copy for each variable.

De�nition 3 (BDD). A (deterministic) binary decision diagram (BDD)

(V; Q;E0; E1; �) is a directed acyclic graph with internal nodes Q, edges E0[E1,

a single root � and two terminal nodes 0;1. Each internal node n 2 Q has ex-

actly two departing edges low(n) 2 E0; high(n) 2 E1. Every internal node n 2 Q

is labeled with a variable var (n) 2 V.

The successor nodes along the low(n) and high(n) edges are referred to as

the low and high successors of n. A BDD d with root node � de�nes a Boolean

function fd = f� : Bn ! B as follows:

{ the terminal node 1 de�nes the constant function true.
{ the terminal node 0 de�nes the constant function false.
{ an internal node n 2 Q represents the function

f : (if var(n) then f1 else f0)

where f0; f1 are the functions represented by the low and high successors,

respectively.

Of special interest are BDDs in a canonical form called reduced and ordered.

De�nition 4. A BDD is ordered (OBDD), if on all paths through the graph the

labeling respects a given linear order on the variables v1 > v2 > � � � > vn; i.e.,

on all paths through the graph, smaller variables are traversed �rst. An OBDD

is reduced (ROBDD) if

1. no two di�erent internal nodes have the same label and the same high and

low successors,
2. no internal node has identical high and low successor.

Theorem 2. [Bry86] For any Boolean function f : Bn ! B and a given variable

ordering, there is (up to isomorphism) exactly one ROBDD d s.t. fd = f .

Language Containment Checking with Nondeterministic BDDs 29

z

y

x x

0 1

z

x

0 1

z

y

x

0 1

z

y

x

0 1

Fig. 3. Nondeterministic BDD (left) and three embedded deterministic BDDs.

Solid edges are high-successors, dotted edges low-successors.

5 Nondeterministic Binary Decision Diagrams

For the analysis of alternating automata we need a more expressive representa-

tion than BDDs. Sets of sets of states as they occur, for example, in the initial

condition or as sets of con�gurations, cannot be represented as a conventional

BDD. The extension we present in this section uses nondeterministic BDDs to

represent sets of Boolean functions. We interpret the nondeterministic BDD to

describe the set of all deterministic BDDs that can be embedded in it.

Example 3. Figure 3 shows a nondeterministic BDD and the three embedded

deterministic BDDs.

Nondeterministic BDDs may have more than one root node, and the out-

degree of internal nodes may be higher than two, so we consider the sets of High

and Low departing edges.

De�nition 5. A nondeterministic binary decision diagram (NBDD)

(V; Q;E0; E1; �) is a directed acyclic graph with internal nodes Q, edges

E0 [E1, a set of root nodes � � Q, and two terminal nodes 0;1. The set of

departing edges from an internal node n 2 Q is partitioned into Low (n) � E0

and High(n) � E1. Every internal node n 2 Q is labeled with a variable

var(n) 2 V.

A NBDD D with root set � de�nes a set of Boolean functions FD = F� �

2B
n
!B as follows:

{ the terminal node 1 de�nes the set F1 = ftrueg.
{ the terminal node 0 de�nes the set F0 = ffalseg.
{ a set of nodes 	 de�nes the union of the sets represented by the individual

nodes: F	 =
S
n2	

Fn.
{ for an internal node n 2 Q, let H;L denote the sets de�ned by its High and

Low successors, respectively. Then n de�nes the set:

F =

�
(if var(n) then f1 else f0)

s.t. f0 2 L and f1 2 H

�

30 Bernd Finkbeiner

BDDs are therefore a special (deterministic) case of NBDDs: for a given

BDD (V; Q;E0; E1; �) the NBDD (V; Q;E0; E1; f�g) characterizes the singleton

set containing the Boolean function de�ned by the BDD.

De�nition 6. A BDD d = (V; Qd; E0
d; Ed

1 ; �
d) is embedded in an NBDD D =

(V; QD; E0
D; ED

1 ; �
D) i� there is a simulation function
 : Qd ! QD with

(0) = 0;
(1) = 1,
(�d) 2 �D and for all nodes n 2 Qd, var (n) = var(
(n)),

if n0 is the lowd-successor of n then
(n0) is a LowD-successor of
(n), if n0 is

the highd-successor of n then
(n0) is a HighD-successor of
(n).

We say that two node sets �1; �2 in an NBDD are mutually exclusive i� there

is no BDD that is embedded in both the NBDD with root node set �1 and the

NBDD with root node set �2. The notions of ordered and reduced diagrams can

now be lifted to NBDDs:

De�nition 7. A NBDD is ordered (ONBDD), if on all paths through the graph

the labeling respects a given linear order on the variables v1 > v2 > : : : > vn. An

ONBDD is reduced (RONBDD) if

1. no two di�erent internal nodes have the same label and the same High and

Low successor sets,

2. the High and Low successor sets of an internal node are mutually exclusive.

Theorem 3. Let d be a OBDD and D a ONBDD with the same variable order.

d is embedded in D i� fd 2 FD.

Proof. By structural induction. ut

RONBDDs are not a canonical representation of sets of Boolean func-

tions. To achieve canonicity, more restrictions on the grouping of functions

(if v then f1 else f0) that have a common negative cofactor f0 or a common

positive cofactor f1 are necessary. One such restriction, which we will call the

negative-normal form, is to require that the functions are grouped by their neg-

ative cofactors f0.

De�nition 8. A RONBDD D = (V; Q;E0; E1; �) is in negative-normal form

i� the following holds for all nodes n 2 Q:

1. there is only one low-successor: Low(n) = flow(n)g,

2. the low-successor is a BDD,

3. no two di�erent High-successors or root nodes are labeled by the same vari-

able and have the same low-successor.

Theorem 4. For any set of Boolean functions F � 2B
n
!B and a given variable

ordering, there is (up to isomorphism) exactly one RONBDD D in negative-

normal form s.t. FD = F .

Language Containment Checking with Nondeterministic BDDs 31

Proof. We show, by induction on m, that for any subset of the set of variables

fv1; : : : ; vmg � fv1; : : : ; vng (with variable order v1 > v2 > � � � > vn), any set of

functions Fm � (2B
n
!B) that only depend on variables in fv1; : : : ; vmg can be

canonically represented by a RONBDD in negative-normal form. In the following

we will assume sharing of subgraphs, and identify NBDDs by their root node

sets, BDDs by their root node.

m = 0: There are four di�erent sets of functions not depending on any

variable: ;; ftrueg; ffalseg; ftrue; falseg. These sets are uniquely represented by

the RONBDDs with root node sets ;; f0g; f1g; f0;1g, respectively.

m! m+1: We construct the set of root nodes F for a set Fm+1, where vm+1

is the least variable some function in Fm+1 depends on. For each function f in

Fm+1 we consider the positive and negative cofactor fb(x1; : : : ; xm+1; : : : ; xn) =

f(x1; : : : ; b; : : : ; xn); b 2 B [the (m+1)st argument is replaced by b]. This allows

us to separate the subset of functions A that do not depend on vm+1:

A = f f j f 2 Fm+1 and f0 = f1 g.

For all other functions we separate the positive and negative cofactor in the fol-

lowing set of pairs:

B = f (f0; f1) j f 2 Fm+1 and f0 6= f1 g.

Next, we group the positive cofactors by the negative cofactors:

C = f (f;X) j 9g : (f; g) 2 B; X = fg j (f; g) 2 Bg g.

The resulting sets of positive cofactors contain only functions that do not de-

pend on vm+1. The same holds for the set of functions in A. By the induction

hypothesis, we can therefore �nd negative-normal RONBDDs as follows:
D = f (df ; DY) j df is the canonical ROBDD for f;

DY is the root node set of the canonical RONBDD

for Y with (f; Y) 2 C g;

E = the root node set of the canonical RONBDD for A:
Finally, we can construct the set of root nodes for Fm+1:

F = fhvar = vm+1; low = df ;High = DY i j (df ; DY) 2 Dg [E.

The constructed NBDD is ordered, reduced and in negative-normal form since

the NBDDs in D and E are, and the newly constructed nodes maintain all

conditions. It remains to show that the RONBDD is unique.

Assume there was a di�erent negative-normal RONBDD with root node set

F 0 de�ning Fm+1. Consider the functions in Fm+1 that do not depend on vm+1:

since the High and Low successors of any node must be mutually exclusive,

they cannot be contained in the set represented by a node labeled by vm+1

(reducedness). By the induction hypothesis we know that the set of all nodes in

F that are not labeled by vm+1 is canonical (the functions represented by the

subset depend only on greater variables). Thus F and F 0 must di�er in nodes

that are both labeled by vm+1.

Suppose there are two functions f1; f2 that are characterized by the same root

node in one diagram but by two di�erent root nodes in the other. All functions

characterized by the same node in a ROBDD in negative-normal form have the

same negative cofactor (conditions 1 and 2 and Theorem 2). Thus the diagram

that represents them on two di�erent nodes cannot be in negative-normal form

(condition 3). ut

32 Bernd Finkbeiner

Union(N;M)

1 R (N [M) \ f0;1g
2 for all n 2 N
3 if 9m 2M : var(n) = var(m); low(n) = low(m)

4 then R R [f hvar(n); low(n);Union(High(n);High(m))i g
5 else R R [fng
6 for all m 2M
7 if @n 2 N : var(n) = var(m); low(n) = low(m)

8 then R R [fmg
9 return R

Fig. 4. Operation Union, computing the union of two sets represented by

negative-normal NBDDs.

It is straightforward to implement traditional BDD operations (like the ap-

plication of boolean operations, variable substitution, or quanti�cation) and set

operations on NBDDs. As an example, consider Union, shown in Figure 4.

We assume sharing of subgraphs and identify BDDs with their root nodes and

NBDDs with their root node sets. The Union operation computes the negative-

normalRONBDD representing the union of two sets represented by two negative-

normal RONBDDs. This is done by considering corresponding nodes in the two

root node sets. Two nodes correspond if they are labeled with the same variable

and have the same low-successor. The union is computed by recursing on pairs of

corresponding nodes and simply adding nodes that do not have a corresponding

node in the other set.

6 Emptiness of Alternating Automata

As discussed in Section 3, the language containment problem between non-

deterministic B�uchi automata is easily reduced to the emptiness problem of

alternating automata. In this section we develop a �xpoint algorithm for the

emptiness problem. The reachable con�gurations of an alternating automaton

can be computed in a forward propagation from �. To decide if the �nite dag

leading to such a con�guration can be completed into an accepting run we

identify gratifying segments, i.e., segments that would, if repeated in�nitely

often, form the suÆx of an accepting run.

Gratifying segments. Consider an alternating automaton A =

h�;Q; �; �; �; �i. A run segment is a �nite dag (N;E), where the nodes are

labeled with states state : N ! Q, such that for each state v in a con�guration,

the set of states on successor nodes is one of the successor sets in �(v; l) for

some input letter l 2 �. We characterize gratifying segments w.r.t. a complete

preorder � on the states in the source con�guration. It will be helpful to iden-

tify nodes that are on some path from a source node p to a target node p0, s.t.

state(p) � state(p0); we call such nodes �xed. A run segment S is gratifying if

Language Containment Checking with Nondeterministic BDDs 33

1. the source and target con�guration are the same,
2. all �xed nodes are labeled by �-states,
3. all paths in S visit a node with an �-state,
4. all paths originating from a source node labeled by a state p lead to nodes

in the target slice that are labeled with states equivalent to, or smaller than

p, and
5. all paths originating from a source node labeled by a state p that visit a non-

�xed node lead to target nodes that are labeled with states strictly smaller

than p.

Example 4. The segment from slice 2 to slice 4 (con�gurations fa;D;Ag,

fb;D;B;Cg, fa;D;Ag) of the computation in Figure 2 is gratifying w.r.t. the

preorder a � D � A. In slices 2 and 4 all nodes are �xed; in slice 3 the nodes

labeled by b, D and C are �xed.

Lemma 1. Let L be a gratifying run segment of an alternating automaton, and

P a �nite run pre�x leading to the source slice of L. Then the dag G = P � L! ,

constructed by appending an in�nite number of copies of L to P , is a computation

of A.

Proof. All paths in L visit an accepting state; the paths in L! therefore visit an

accepting state in�nitely often. A path that does not visit a �xed node in L leads

to a target node that is labeled by a strictly smaller state than the state on the

node it visited in the source slice. Thus, since there are only �nitely many states

in the source con�guration of L, every path in L! eventually visits a �xed node.

From there, a path can either (1) stay forever in �xed nodes (and therefore in

stable states) or (2) visit a non-�xed node and, again, lead to a target node with

a strictly smaller state. Hence, eventually (1) must occur. ut

Lemma 2. Let G be a computation of the alternating automaton A. There is a

preorder � s.t. G can be partitioned into a �nite pre�x P and an in�nite number

of copies of a segment L that is gratifying w.r.t. �.

Proof. For the given computation G we apply a ranking construction by Kupfer-

man and Vardi [KV97]. Consider the following sequence of subgraphs of G.

{ G0 = G.
{ G2i+1 = G2i minus all nodes from which there are only �nitely many nodes

reachable. Assign rank 2i to all the subtracted nodes.
{ G2i+2 = G2i+1 minus all nodes from which only nodes with �-states are

reachable. Assign rank 2i+ 1 to all the subtracted nodes.

G2jQj+1 is empty [KV97], i.e., the number of ranks is bounded. There must be

in�nitely many occurrences of some con�guration x, s.t. the nodes with the same

state label have the same rank in the two occurrences. We select two occurrences

s.t. all paths on the run segment L between them visit an �-state and a node with

odd rank. L is a gratifying segment with the order � induced by the ranking.

The �xed states have odd rank, non-�xed states even rank. Along a path the

rank never increases. ut

34 Bernd Finkbeiner

Annotated Con�gurations. To recognize gratifying segments we keep track

of the grati�cation conditions in con�gurations. An annotated con�guration is a

tuple hx; f; t; u;�i where x is a set of states, f; t; u are subsets of x, and � is a

complete preorder on x. The goal is to capture the states on �xed nodes in f ,

\trapped" states (i.e., states on nodes s.t. all originating paths visit a �xed node)

in t, and \ful�lling" states (i.e., states on nodes s.t. all paths that originate from

this node visit an �-node) in u. We now introduce constraints that ensure that

these sets are propagated consistently in a sequence of annotated con�gurations.

Consider two consecutive con�gurations hx; f; t; u;�i and hx0; f 0; t0; u0;�0i. We

require that there exists a letter l of the input alphabet s.t. for each state v 2 x

there is a set yv 2 �(v; l) so that the following constraints are satis�ed:

1. for all v 2 x, yv � x0,

2. for all v0 2 f 0 there is a v 2 f s.t. v0 2 yv ,

3. for all v 2 f , f 0 \ yv 6= ;,

4. for all v 2 t� f , yv � t0,

5. for all v 2 u� �, yv � u0,

6. for all v0 2 f 0 and v 2 x, s.t. v0 2 yv, there is a w 2 f s.t. v0 2 yw and w � v,

7. for all v0 2 f 0 and all w0 2 x0 with w0 � v0, there exists a v 2 f s.t. v0 2 yv
and for all w 2 x with w0 2 yw, v � w, and

8. for all v 2 f s.t. there is a w 2 x with w � v, there exists a v0 2 f 0 with

v0 2 yv s.t. for all w0 2 yw, w
0 �0 v0.

Let Y be a set of annotated con�gurations. We say that an annotated con�g-

uration a is eventually accepting w.r.t. Y i� there is a sequence of annotated

con�gurations, where a is the �rst and some b 2 Y the last con�guration,

and where every two consecutive con�gurations satisfy the constraints above.

Let EventualAccept(Y) denote the set of annotated con�gurations that are

eventually accepting w.r.t. Y .

Lemma 3. Let S be a gratifying segment leading from a con�guration x back to

x; then there is an annotation for the source con�guration a = hx; f; t = x; u =

x;�i and an annotation for the target con�guration a0 = hx0 = x; f 0 = f; t0 =

f; u0 = x \ �;�i s.t. for every set Y of annotated con�gurations that includes

a0, a 2 EventualAccept(Y).

Proof. First, we construct a segment S0 in which every path visits a �xed node

(by appending as many copies of S as needed). For each slice s in S0 we de�ne

the following annotated con�guration hxs; fs; ts; us;�si:

{ xs contains the states on nodes in s,

{ fs contains exactly the states on the �xed nodes in s,

{ ts contains exactly the states on those nodes for which all paths that originate

from the node visit a �xed node,

{ us contains exactly the states on those nodes for which all paths that origi-

nate from the node visit an �-node,

Language Containment Checking with Nondeterministic BDDs 35

{ �s is the following preorder:

for two states v; w on nodes p; q that are both in fs or both in xs � fs,

v �s w i� there is a target node q0 reachable from q s.t. for all target nodes

p0 reachable from p, state(p0) � state(q0);

for two states v 2 fs; w 2 xs � fs or v 2 xs � fs; w 2 fs on nodes p; q,

v �s w i� there is a target node q0 reachable from q s.t. for all target nodes

p0 reachable from p, state(p0) � state(q0).

The resulting sequence of annotated con�gurations satis�es the constraints. Due

to space limitations we skip the detailed argument here. ut

Let Unmark(X) denote the set of annotated con�gurations, s.t. hx; f; f; x\

�;�i 2 Unmark(X) for hx; f; t; u;�i 2 X. Let Filter(X) be the subset of the

set of annotated con�gurations X s.t. u = x; t = x.

Lemma 4. Let a = hx; f; t; u;�i be an annotated con�guration in a set Y s.t.

a 2 Filter(EventualAccept(Unmark(Y))). Then there is a gratifying seg-

ment S that leads from con�guration x to x.

Proof. Because of constraint (1) there is a run segment S corresponding to the

sequence of con�gurations in the construction of EventualAccept. We show

that S is gratifying. For a slice s, let hxs; fs; ts; us;�si denote the corresponding

annotated con�guration.

Claim 1: For two nodes p; q in the same slice s, if state(q) �s state(p),

state(p) 2 fs then there is a path from p to a node p0 in the target slice labeled

by an f-state, s.t. for all nodes q0 in the target slice that can be reached from q,

state(q0) � state(p0).

Proof by induction on the length of S using constraint (8).

Claim 2: For two nodes p0; q0 in the same slice s, if state(p0) �s state(q0),

state(p0) 2 fs then there is a path from a source node p, with state(p) 2 f , to

p0, s.t. for all nodes q in the source slice that can reach q0, state(p) � state(q).

Proof by induction on the length of S using constraint (7).

Claim 3: For all nodes p0 in the target slice that are reachable from a source

node p: state(p0) � state(p).

Proof: Case (A): state(p) 2 f . Assume there is a path from p to a node p0

in the target slice with state(p) � state(p0). Let q0 be the node in the target

s.t. state(q0) = state(p). By Claim 2, there is a path from a node q in the

source slice with state(q) 2 f to q0 with state(q) � state(p0), state(q) 2 f .

Hence, state(q) � state(p) = state(q0). Let o0 be the node in the target slice

s.t. state(o0) = state(q). Again, using Claim 2, we can �nd a node in the source

slice with an f-state that is smaller than state(q). Since this argument can be

repeated in�nitely often the source con�guration must contain in�nitely many

di�erent states.

Case (B): state(p) 62 f . Let s0 be the �rst slice with a fs0-node p1 on the path

from p to p0, and s the slice with the non-fs predecessor p0 of p1. By constraint

(6) there must be a fs-predecessor p
0
0 of p1, s.t. state(p

0
0) � state(p0). By Claim

2, there is a source node q with state(q) 2 f and state(q) � state(p). By case

36 Bernd Finkbeiner

(A) all target nodes that are reachable from q are labeled by states smaller than

or equivalent to state(q). In particular, state(p0) � state(q) � state(p).

Claim 4: For a node p0 in some slice s with state(p0) 2 fs there is a path from

a source node p to a target node p00 with state(p) � state(p00) and state(p) 2

f; state(p00) 2 f that visits p0.

Proof: An induction on the size of the segment of S up to s using constraint

(2) and a second induction on the size of the segment beginning with s using

constraint (3) shows that there is indeed a source node p 2 f and a target node

p00 2 f s.t. p0 is on a path between them. By Claim 3, state(p00) � state(p).

Now assume state(p00) � state(p). By Claim 2, there is a source node q 2 f s.t.

state(q) � state(q). Let o be the node in the target slice labeled by state(q).

Again, using Claim 2, we can �nd a node in the source slice with an f-state

smaller than state(q). Since this argument can be repeated in�nitely often the

source con�guration must contain in�nitely many di�erent states.

Claim 5: If there is a path from a source node p to a target node p00 with

state(p) � state(p00), then for all nodes p0 on the path (where p0 is a node in slice

s), state(p0) 2 fs.

Proof: Since all states in the source slice are contained in t, we know (because

of constraint 4) that every path in S visits at least one fs0-node in some slice s0.

Consider the case that state(p) 62 f . Now let s0 be the �rst slice with a fs0-node

p1 that is visited on the path from p to p00. Let s be the previous slice containing

p0, the non-fs predecessor of p1. By constraint (6), there is a node q0 in s, s.t. p1
is a successor of q0, state(q0) 2 fs and state(q0) �s state(p0). By Claim 2, there

is a source node q s.t. state(q) � state(p) and there is a path from q to q0. Since

p00 is reachable from q, by Claim 3, state(p00) � state(q). This is in contradiction

to state(p) � state(p00).

Now consider the case that state(p) 2 f . Let s0 be the �rst slice with a non-

fs0-node p1 that is visited on the path from p to p00. Let s be the previous slice

containing p0, the fs-predecessor of p1. By constraint (8) there is a node q1 in

s0, s.t. p0 is a predecessor of p1, state(q1) 2 fs0 , and state(p1) �s0 state(q1). By

Claim 1, there is a target node q00 s.t. state(m00) � state(q00), and there is a path

from q1 to q00. Since q00 is reachable from p, by Claim 3 state(q00) � state(p).

This again is in contradiction to state(p) � state(p00).

Proof of the lemma: By Claims 4 and 5, the �xed nodes are exactly the nodes

labeled by fs-states. Because of u = x and constraint 5 all paths in S visit an

�-node. By Claim 3, all paths lead to smaller or equivalent states in the target.

Paths that visit a non-�xed node lead to target nodes with strictly smaller states

by Claim 5. ut

With these results we can now formulate the algorithm for the emptiness

check of alternating automata, shown in Figure 5. Let Reachable(A) denote

the set of reachable con�gurations. Annotate(X) computes for a set of con-

�gurations X a set of annotated con�gurations, s.t. for a con�guration x all

annotations hx; f; f; x\ �;�i are added where f � x \ �. We state the correct-

ness of the algorithm as the following two theorems.

Theorem 5. If L(A) = ; then Empty(A).

Language Containment Checking with Nondeterministic BDDs 37

Empty(A)
1 A ;
2 B Annotate(Reachable(A))
3 while (A 6= B) do

4 A B

5 B B \ Filter(EventualAccept(Unmark(B)))

6 return (B = ;)

Fig. 5. Fixpoint algorithm for the emptiness check of alternating automata.

Proof. Suppose there is an annotated con�guration hx; f; t; u;�i 2 B. By

Lemma 4 there exists a gratifying segment L leading from con�guration x to

x. Since x 2 Reachable(A) there is a run segment P leading from an initial

con�guration to x. Thus, by Lemma 1, A has a computation P � L!. ut

Theorem 6. If Empty(A) then L(A) = ;.

Proof. Suppose there is a computation G of A. By Lemma 2, G can be par-

titioned into an initial segment P and an in�nitely often repeated gratifying

segment L. Let x be the source con�guration of L. x 2 Reachable(A). By

Lemma 3 there is an annotated con�guration a = hx; f; t = x; u = x;�i that is

included in EventualAccept(Y), if a0 = hx; f; t0 = f; u0 = x \ �;�i 2 Y .

Since a 2 Annotate(Reachable(A)), a0 2 Unmark(Y) if a 2 Y , and

a 2 Filter(Y) if a 2 Y , a is included in every iteration of B. ut

7 Conclusions

The data structures and algorithms presented in this paper are the basis of a

symbolic veri�cation system for language containment. In comparison to the

classic construction, that starts with the determinization of the speci�cation au-

tomaton, our algorithm is both simpler and, for certain problems, more eÆcient:

because the two automata are combined early, no e�ort is wasted on the deter-

minization of parts of the speci�cation automaton that are not reachable in the

intersection with the implementation automaton.

It should be noted, however, that our solution does not improve on the

worst-case complexity of the standard algorithm. While �rst results with our

prototype implementation are encouraging, advanced implementations and case

studies are necessary to determine the characteristics of systems for which the

symbolic approach is useful. The performance of NBDDs depends strongly on

implementation issues like the constraints of the chosen normal form.

EÆcient representations of sets of Boolean functions are of interest beyond

the language containment problem. An example is the state minimization of

incompletely speci�ed �nite state machines [KVBSV94]: the standard algorithm

computes sets of sets of (compatible) states.

38 Bernd Finkbeiner

Acknowledgements: I am grateful to the members of the STeP research group

at Stanford University for our discussions and their comments on drafts of this

paper, as well as to the anonymous referees for their comments and suggestions.

References

AHM+98. R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.

Mocha: modularity in model checking. In A. Hu and M. Vardi, editors,

CAV 98: Computer-aided Veri�cation, Lecture Notes in Computer Science

1427, pages 521{525. Springer-Verlag, 1998.

BD96. V. Bertacco and M. Damiani. Boolean function representation using paral-

lel access diagrams. In The Sixth Great Lakes Symposium on VLSI. IEEE,

1996.

BMUV97. N. Buhrke, O. Matz, S. Ulbrand, and J. V�oge. The automata theory

package omega. In WIA'97, vol. 1436 of LNCS. Springer-Verlag, 1997.

Bry86. R.E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677{691, August 1986.

CGP99. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

KV97. O. Kupferman and M. Vardi. Weak alternating automata are not that

weak. In 5th Israeli Symposium on Theory of Computing and Systems,

pages 147{158. IEEE Computer Society Press, 1997.

KVBSV94. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully

implicit algorithm for exact state minimization. In 31st ACM/IEEE Design

Automation Conference, pages 684{690. ACM, 1994.

MS87. D.E. Muller and P.E. Schupp. Alternating automata on in�nite trees.

Theoretical Computer Science, 54(2{3):267{276, October 1987.

MS00. Z. Manna and H.B. Sipma. Alternating the temporal picture for safety.

In U. Montanari, J.D. Rolim, and E. Welzl, editors, Proc. 27th Intl. Col-

loq. Aut. Lang. Prog., vol. 1853, pages 429{450, Geneva, Switzerland, July

2000. Springer-Verlag.

Saf88. S. Safra. On the complexity of !-automata. In Proc. 29th IEEE Symp.

Found. of Comp. Sci., pages 319{327, 1988.

TBK95. H. Touati, R.K. Brayton, and R. Kurshan. Testing language containment

for !-automata using BDDs. Inf. and Comp., 118(1):101{109, April 1995.

THB95. S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using

non-deterministic omega-automata. In Proc. of CHARME '95: Advanced

Research Working Conference on Correct Hardware design and veri�cation

methods, vol. 987 of LNCS. Springer-Verlag, 1995.

Tho94. W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science. Elsevier Science Publishers

(North-Holland), 1994.

TNB+97. K. Takagi, K. Nitta, H. Bouno, Y. Takenaga, and S. Yajima. Compu-

tational power of nondeterministic ordered binary decision diagrams and

their subclasses. IEICE Transactions on Fundamentals, E80-A(4):663{669,

April 1997.

Var95. M.Y. Vardi. Alternating automata and program veri�cation. In J. van

Leeuwen, editor, Computer Science Today. Recent Trends and Develop-

ments, vol. 1000 of LNCS, pages 471{485. Springer-Verlag, 1995.

	Introduction
	Related Work
	Automata on Infinite Words
	Binary Decision Diagrams
	Nondeterministic Binary Decision Diagrams
	Emptiness of Alternating Automata
	Conclusions

