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Abstract. Despite recent advances in model checking and in adapting

model checking techniques to software, the state explosion problem re-

mains a major hurdle in applying model checking to software. Recent

work in automated program abstraction has shown promise as a means

of scaling model checking to larger systems. Most common abstraction

techniques compute an upper approximation of the original program.

Thus, when a speci�cation is found true for the abstracted program, it is

known to be true for the original program. Finding a speci�cation to be

false, however, is inconclusive since the speci�cation may be violated on

a behavior in the abstracted program which is not present in the orig-

inal program. We have extended an explicit-state model checker, Java

PathFinder (JPF), to analyze counter-examples in the presence of ab-

stractions. We enhanced JPF to search for \feasible" (i.e. nondeterminism-

free) counter-examples \on-the-
y", during model checking. Alternatively,

an abstract counter-example can be used to guide the simulation of

the concrete computation and thereby check feasibility of the counter-

example. We demonstrate the e�ectiveness of these techniques on counter-

examples from checks of several multi-threaded Java programs.

1 Introduction

In the past decade, model checking has matured into an e�ective technique for

reasoning about realistic components of hardware systems and communication

protocols. The past several years have witnessed a series of e�orts aimed at apply-

ing model checking techniques to reason about software implementations (e.g.,

Java source code [8,12,24]). While the conceptual basis for applying model check-

ing to software is reasonably well-understood, there are still unsettled questions

about whether e�ective tool support can be constructed that allows for realistic

software requirements to be checked of realistic software descriptions in a prac-

tical amount of time. Most researchers in model checking believe that property-

preserving abstraction of the state-space will be necessary to make checking
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of realistic systems practical (e.g., [6,11,19]). There are a variety of challenges

in bringing this belief to reality. This paper addresses one of those challenges,

namely, the problem of automating the analysis of counter-examples that have

been produced from abstract model checks in order to determine whether they

represent real system defects.

The work described in this paper involves the integration of two recently

developed tools for model checking Java source code : Bandera [8] and Java

PathFinder [24]. Bandera is a toolset that provides automated support for re-

ducing a program's state space through the application of program slicing and

the compilation of abstract de�nitions of program data types. The resulting

reduced Java program is then fed to JPF which performs an optimized explicit-

state model check for program properties (e.g., assertion violations or deadlock).

If the search is free of violations then the program properties are veri�ed. If a

violation is found the situation is less clear. Bandera uses abstractions that pre-

serve the ability to prove all paths properties (e.g., such as assertions or linear

temporal logic formulae). To achieve state space reduction, however, the ability

to disprove such properties is sacri�ced. This means that a check of an abstracted

system may fail either because the program has an error or because the abstrac-

tions introduce spurious executions into the program that violate the property.

The former are of interest to a user, while the latter are a distraction to the user,

especially if spurious results occur in large numbers.

Several approaches have been proposed recently for analyzing the feasibility

of counter-examples of abstracted transition-system models [5,3,4]. While our

work shares much in common with these approaches, it is distinguished from

them in four ways: (i) it treats the abstraction a program's data, as well as the

run-time system scheduler and the property to be checked, (ii) the feasibility of a
counter-example is judged against the semantics of a real programming language

(i.e., Java), (iii) we advocate multiple approaches for analyzing feasibility with

di�erent cost/precision pro�les, and (iv) our work is oriented toward detecting

defects in the presence of abstraction. We will demonstrate the practical utility

of an implementation of our approaches by applying them to the analysis of

counter-examples for several real multi-threaded Java applications.

Safe abstractions often result in program models where the information re-

quired to decide conditionals is lost and hence nondeterministic choice needs to

be used to encode such conditionals (i.e., to account for both true and false re-

sults). Nondeterministic choice is also used to model the possible decisions that a

thread (or process) scheduler would make. Such abstractions are safe for all paths

properties since they are guaranteed to include all behaviors of the unabstracted

system. The diÆculty lies in the fact that they may introduce many behaviors

that are not possible. To sharpen the precision of the abstract model (by elimi-

nating some spurious behaviors) one minimizes the use of nondeterminism and

it can be shown that the absence of nondeterminism equates to feasibility [23].

Section 3 describes how program data, the property and scheduler behavior are

abstracted in Bandera/JPF using nondeterminism.
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JPF can perform a state-space search that is bounded by nondeterministic-

choice operations; a property violation that lies within this space has a counter-

example that is free of nondeterminism and is hence feasible. JPF can also per-

form simulation of the concrete program guided by an abstract counter-example.

If a corresponding concrete program trace exists then the counter-example is fea-

sible. Section 4 describes these two techniques for analyzing program counter-

examples that were added to JPF. Section 5 describes several defective Java

applications whose counter-examples were analyzed using these techniques. In

Section 6 we discuss related and future work and we conclude in Section 7. In

the next section, we give some brief background on Bandera and JPF.

2 Background

Bandera [8] is an integrated collection of program analysis and transformation

components that allows users to selectively analyze program properties and to

tailor the analysis to that property so as to minimize analysis time. Bandera

exploits existing model checkers, such as Spin [16], SMV [20], and JPF [24], to

provide state-of-the-art analysis engines for checking program-property corre-

spondence. Bandera provides support for reducing a program's state-space via

program slicing [15] and data abstraction.
Data abstraction automates the reduction in size of the data domains over

which program variables range [13]. A type inference algorithm is applied to

ensure that a consistent set of abstractions are applied to program data. This

type-based approach to abstraction is complementary to predicate abstraction

approaches that reduce a program by preserving the ability to decide speci�c

user-de�ne predicates; JPF's companion tool implements predicate abstraction

programs written in Java [25].

Java PathFinder is a model checker for Java programs that can check any

Java program, since it is built on top of a custom made Java Virtual Machine

(JVM), for deadlock and violations of user-de�ned assertions [24]. In JPF special

attention is paid to reducing the number of states, rather than execution speed

as is typical of commercial JVMs, since this is the major eÆciency concern in

explicit-state model checking. Users have the ability to set the granularity of

atomic steps during model checking to: byte-codes, source lines (the default)

or explicit atomic blocks (through calls to beginAtomic() and endAtomic()

methods from a special class called Verify). A JPF counter-example indicates

how to execute code from the initial state of the program to reach the error. Each

step in the execution contains the name of the class the code is from, the �le
the source code is stored in, the line number of the source �le that is currently
being executed and the a number identifying the thread that is executing. Using
only thread numbers in each step JPF can simulate the erroneous execution.

3 Program Abstraction

Given a concrete program and a property, the strategy of veri�cation by using

abstraction involves: (i) de�ning an abstraction mapping that is appropriate for
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the property being veri�ed and using it to transform the concrete program into

an abstract program, (ii) transforming the property into an abstract property,

(iii) verifying that the abstract program satis�es the abstract property, and

�nally (iv) inferring that the concrete program satis�es the concrete property.

In this section, we summarize foundational issues that underlie these steps.

3.1 Data Abstraction

The abstract interpretation (AI) [9] framework as described in a large body of

literature establishes a rigorous semantics-based methodology for constructing

abstractions so that they are safe in the sense that they over-approximate the

set of true executable behaviors of the system (i.e., each executable behavior

is covered by an abstract execution). Thus, when these abstract behaviors are

exhaustively compared to a speci�cation and found to be in conformance, we can

be sure that the true executable system behaviors conform to the speci�cation.
We present an AI, in an informal manner, as: a domain of abstract values, an

abstraction function mapping concrete program values to abstract values, and
a collection of abstract primitive operations (one for each concrete operation in
the program). For example, to abstract from everything but the fact that integer
variable x is zero or not one could use the signs AI [1] which only keeps track
of whether an integer value is negative, equal to zero, or positive. The abstract
domain is the set of tokens fneg; zero; posg. The abstraction function maps neg-
ative numbers to neg, 0 to zero, and positive numbers to pos. Abstract versions
of each of the basic operations on integers are used that respect the abstract
domain values. For example, an abstract version of the addition operation for
signs is:

+abs zero pos neg

zero zero pos neg

pos pos pos fzero;pos;negg

neg neg fzero;pos;negg neg

Abstract operations are allowed to return sets of values to model lack of knowl-

edge about speci�c abstract values. This imprecision is interpreted in the model

checker as a nondeterministic choice over the values in the set. Such cases are

a source of \extra behaviors" introduced in the abstract model due to its over-

approximation of the set of behaviors of the original system.

3.2 Property Abstraction

When abstracting properties, Bandera uses an approach similar to [17]. Infor-

mally, given an AI for a variable x (e.g. signs) that appears in a proposition

(e.g.,x>0), we convert the proposition to a disjunction of propositions of the

form x==a, where a are the abstract values that correspond to values that imply

the truth of the original proposition (e.g., x==pos implies x>0, but x==neg and

x==zero do not; it follows that proposition x>0 is abstracted to x==pos). Thus,
this disjunction under-approximates the truth of a concrete proposition insuring

that the property holds on the original program if the abstracted property holds

on the abstract program.
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public class Signs {

public static final int NEG =0;

public static final int ZERO=1;

public static final int POS =2;

public static int abs(int n){

if (n < 0) return NEG;

if (n == 0) return ZERO;

if (n > 0) return POS;

}

public static int add(int a,int b){

int r;

Verify.beginAtomic();

if(a==NEG && b==NEG) r=NEG;

else if(a==NEG && b==ZERO)r=NEG;

else if(a==ZERO && b==NEG) r=NEG;

else if(a==ZERO && b==ZERO)r=ZERO;

else if(a==ZERO && b==POS) r=POS;

else if(a==POS && b==ZERO)r=POS;

else if(a==POS && b==POS) r=POS;

else r=Verify.choose(2);

Verify.endAtomic(); return r; }}

Fig. 1. Java Representation of signs AI (excerpts)

3.3 Scheduler Abstraction

Analyzing concurrent systems requires safe modeling of the possible scheduling

decisions that are made in executing individual threads. Since software is of-

ten ported to operating system's with di�erent scheduling policies, a property

checked under a speci�c policy would be potentially invalid when that system is

executed under a di�erent policy. To address this, the approach taken in existing

model checkers is to implement what amounts to the most general scheduling

policy (i.e., nondeterministic choice among the set of runnable threads). Proper-

ties veri�ed under such a policy will also hold under any more restrictive policy.

Fairness constraints are supported in most model checkers to provide the ability

to more accurately model realistic scheduling policies.

The Java language has a relatively weak speci�cation for its thread scheduling

policy. Threads are assigned priorities and a scheduler must ensure that \all

threads with the top priority will eventually run" [2]. Thus, a model checker that

guarantees progress to all runnable threads of the highest priority will produce

only feasible schedules; JPF implements this policy.

3.4 Abstraction Implementation

In Bandera, generating an abstract program involves the following steps: the user

selects a set of AIs for a program's data components, then type inference is used

to calculate the abstractions for the remaining program data, then the Java

class that implements each AI's abstraction function and abstract operations

is retrieved from Bandera's abstraction library, and �nally the concrete Java

program is traversed, and concrete literals and operations are replaced with calls

to classes that implement the corresponding abstract literals and operations.

Figure 1 shows excerpts of the Java representation of the signs AI. Abstract
tokens are implemented as integer values, and the abstraction function and op-

erations have straightforward implementations as Java methods. For Java base-

types, the de�nitions of abstract operations are automatically generated using

a theorem prover (see [13] for details). Nondeterministic choice is speci�ed by
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Fig. 2. Model Checking on Choose-free Paths

calls to Verify.choose(n), which JPF traps during model checking and returns

nondeterministic values between 0 and n inclusive. Abstract operations execute

atomically (via calls to Verify.beginAtomic() and Verify.endAtomic()) since

they abstract concrete byte-codes (e.g. Signs.add() abstracts iadd).

4 Finding Feasible Counter-examples

We have seen in the previous section that, if a speci�cation is true for the ab-

stracted program, it will also be true for the concrete program. However, if the

speci�cation is false for the abstracted program, the counter-example may be the

result of some behavior in the abstracted program which is not present in the

original program. It takes deep insight to decide if an abstract counter-example

is feasible (i.e. corresponds to a concrete computation). We have developed two

techniques that automate tests for counter-example feasibility: model checking

on choose-free paths and abstract counter-example guided concrete simulation.

4.1 Choose-Free State Space Search

We enhanced the JPF model checker with an option to look only at paths that do

not refer to instructions that introduce nondeterminism (i.e. a Verify.choose()

call).When a choose occurs the search algorithmof the model checker backtracks.

The approach exploits the following theorem from [23]: Theorem.

Every path in the abstracted program where all assignments are deter-
ministic is a path in the concrete program.

In [23], the theorem is used to judge a counter-example feasible, whereas we

use it to bias the model checker to search for feasible counter-examples. The

theorem ensures that paths that are free of nondeterminism correspond to paths

in the concrete program (a more general de�nition of deterministic paths can be

found in [10]). It follows that if a counter-example is reported in a choose-free
search then it represents a feasible execution. If this execution also violates the

property, then it represents a feasible counter-example.

Consider an abstracted program (whose state space is sketched in Figure 2).

Black circles represent states where some assertion is violated. Dashed lines
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class App{

public static void main(...){

[1] new AThread().start(); ...

[2] int i=0;

[3] while(i<2){...

[4] assert(!Global.done);

[5] i++;

}}}

class AThread extends Thread{

public void run(){ ...

[6] Global.done=true;

}}

class App{

public static void main(...){

new AThread().start(); ...

int i=Signs.ZERO;

while(Signs.lt(i,Signs.POS)){...

assert(!Global.done);

i=Signs.add(i,Signs.POS);

}}}

class AThread extends Thread{

public void run(){ ...

Global.done=true;

}}

Fig. 3. Simple Example of Concrete (left) and Abstracted (right) Code

represent transitions that refer to choose, while solid lines refer to instructions

other than choose. Model checking on choose-free paths will report only the error

path 1-3-6, although path 1-2-4 leads to a state where the assertion is false (and

it may correspond to an execution in the concrete program).

We also note that our technique could be implemented in any model checker,

but the design of JPF made this modi�cation particularly easy. JPF is essentially

a special-purpose JVM that interprets each byte code in the compiled version of

a Java program. Since choose operations are represented as static method calls,

trapping and processing those operations specially only required modi�cation

of the code for the static method invocation byte-code. We made sure that the

search on choose-free paths does not introduce deadlocks (choose instructions

are interpreted as in�nite self loops).

Consider checking the fragment of code on the left of Figure 3 against the

assertion at line 4, where initially Global.done is false; the abstracted code

(using signs for i) is shown to the right of the original. In the abstracted pro-

gram, nondeterminism is introduced through method lt that implements the

abstract operation for <: after one pass through the while loop, the abstract

value of i becomes pos and the value returned by Signs.lt(i,Signs.POS) can

be either true or false. However, the abstract program does expose a choose-free

counter-example: if the thread that is an instance of AThread executes line 6

before the main thread begins the execution of the while loop, the assertion in

line 4 is violated when the body of the loop is executed for the �rst time (and

the abstract value of i is zero). This counter-example does not contain nonde-

terministic choices, since the value returned by Signs.lt(i,Signs.POS), when

i is zero, is uniquely true.

4.2 Abstract Counter-example Guided Concrete Simulation

In Bandera, the generation of an abstracted program is automatic and is done

in such a way that there is a clear correspondence between the concrete and

abstracted program: for each line in the concrete program, there is a single line in

the abstracted program. Since byte-codes execute atomically, for each \concrete"
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Fig. 4. Model Checking and Re�nement

byte-code, there is a set of \abstract" byte-codes that execute atomically in

JPF. This property of Bandera abstraction, together with the fact that all Java

variables have known initial values, allows for simulationof the concrete program,

based on an abstract counter-example.

This is done in JPF by executing the steps in the abstract trace. For clarity,

we'll discuss the simulation in terms of the execution of lines of Java source code,

but JPF can also perform simulation on a byte-code level. Each step contains

information about the thread to be run next and the line of the counter-example.

At each step of the concrete execution, JPF checks that the concrete line to be

executed corresponds to the abstract line in the counter-example. If the lines

match throughout the simulation then the abstract trace is feasible, otherwise,

the abstract trace is spurious. To check whether the feasible trace is a counter-

example, we have also to check if it violates the property.

Consider again the example from Figure 3 where the result of model check-

ing the abstracted program is a counter-example where Global.done is set true

after the loop in the main thread is executed two times. This means that the

assertion is reachable (and violated) by the (abstract) trace

1-2-3-4-5-3-4-5-3-4

in the main thread. While this is clearly possible in the abstract program (since,

after the abstract value of i becomes pos, the condition at line 3 can be non-

deterministically true or false), it is not possible in the concrete program. To

see this, we simulate the steps from the abstract trace on the concrete program:

after executing the loop two times, the value of i is 2 so the exit condition of

the loop is true and the loop is exited. At this point a line mismatch is detected

and the simulation stops.

It is possible to detect the infeasibility of an abstract trace earlier, using a

technique similar to forward analysis (e.g.[22]): when simulating each step on

the concrete program, we also check the correspondence between concrete and

abstract values. This can be done in JPF by abstracting the values of variables

(e.g., via calls to Signs.abs()) in the concrete simulation and comparing them

to the abstract values in the counter-example.



292 Corina S. P�as�areanu, Matthew B. Dwyer, and Willem Visser

[1] x=1;

[2] y=x+1;

[3] assert(x<y);

x=Signs.POS;

y=Signs.add(x,Signs.POS);

assert((x==Signs.NEG && y==Signs.ZERO)

||(x==Signs.NEG && y==Signs.POS)

||(x==Signs.ZERO && y==Signs.POS));

Fig. 5. Example of Spurious Error Introduced by Property Abstraction

4.3 Methodology

Our methodology for model checking and abstraction involves the integration of

the above two techniques as illustrated in Figure 4. The input (concrete) program

and the speci�cation are abstracted (using abstractions from Bandera's library)

as described in Section 2 and the transformed program is fed to a model checker.

If the result of model checking is true, then the speci�cation is true for the

concrete program. If the result is false, we re-run the model checker to search

only choose-free paths in the model. If the model checker �nds a choose-free

counter-example, it is reported to the user otherwise we perform counter-example

guided simulation. If the simulation succeeds, a counter-example is reported, but

if a mismatch is detected then abstractions need to be re�ned. The re�nement

involves modifying the selection of abstractions guided by the counter-example

reported in the �rst run of the model checker. For a discussion on how the

abstractions could be re�ned, see Section 6.

4.4 Discussion

In general, the result of model checking an abstract program is false either be-

cause the concrete program does not satisfy the property (in which case the

counter-example is feasible and indicates a real defect), or because the abstrac-

tion is not suitable for checking the property. In the latter case, the abstract

counter-example can be one of the following:

{ not feasible as a result of over-approximation of the behavior of the concrete

program (e.g. the spurious counter-example of the program in Figure 3);
{ feasible but not defective; as a result of the under-approximation of the

property to be checked. This case is illustrated by the code in Figure 5,

where both x and y are abstracted to signs. The predicate in the assertion

is abstracted in such a way that if the assertion is true in the abstracted

program, it follows that it is true in the concrete program. Abstract trace

1-2-3 violates the assertion, since after step 2, both x and y are pos. However,
in the concrete program, the assertion is true.

In our experience this second case is rare, since in Bandera user's are guided to

make abstraction selections that are able to decide both the truth and falsity of

the propositions used in the property to be checked. Only when such a selection

is impossible can a feasible, but not defective, counter-example arise.

We note that both choose-free model checking and abstract counter-example

guided concrete simulation can be directly applied to a executable program slice.
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If a trace is feasible in the sliced program, it is also feasible in the original

program [15]. We also note that the techniques presented here can be applied

for checking safety properties expressed in any universal temporal logic.

5 Experience with Defective Java Applications

To illustrate the potential bene�ts of the techniques described in the previous

section, we applied them to several small to medium-size multi-threaded Java

applications. These applications used both lock synchronization and condition-

based synchronization (i.e., wait/notify). The systems are: RAX (Remote

Agent experiment) [25], a Java version of a component extracted from an em-

bedded spacecraft-control application, Pipeline [7], a generic framework for

implementing multi-threaded staged calculations, RWVSN, Lea's [18] generic

readers-writers synchronization framework, and DEOS [21,25], the scheduler

from a real-time executive for avionics systems that was translated from C++.

The following table gives some basic measures of the size of the system; SLOC
stands for the number of source lines of code.

Program SLOC Classes Methods Fields Threads

RAX 55 4 8 7 3

Pipeline 103 5 10 7 5

RWVSN 590 5 43 10 5

DEOS 1443 20 91 92 6

Most of these programs use the basic features of Java and its concurrency con-

structs, however, the RWVSN application uses abstract classes, inheritance,

and java.util.Vector.

The RAX and DEOS examples had known errors that we checked for. For

the Pipeline and RWVSN examples we seeded faults in the program. For

example, we dropped a negation (!) in one program and changed <= into <

(simulating an o�-by-one error) in the other. It is interesting to note that not

all seeded faults could be detected given the properties we checked for, so we

altered the faults until we generated a property violation.

We now describe several model checks for these systems and the automated

analysis of the resulting counter-examples. Full details for the examples and

model checks is available at |http://www.cis.ksu.edu/ pcorina/case-studies|.

5.1 Description of Experiments

We model checked the RAX example to detect deadlocks using two di�erent

abstractions. Figure 6 shows excerpts from the original and the generated ab-

stract Java program. The abstraction of the program was driven by our se-

lection that the Event.count �eld should be abstracted with signs. Bandera's
abstraction type inference determined that the local count variables in the

FirstTask.run() method should also be abstracted. Running JPF on this ab-

stracted system detects a deadlock and produces a 74 step counter-example.

|
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[ 1]class Event{
[ 2] int count=0;
[ 3] public synchronized void wait_for_event(){

[ 4] try{wait();}
[ 5] catch(InterruptedException e){};

}
[ 6] public synchronized void signal_event(){

[ 7] count = count + 1;
[ 8] notifyAll();

}}
[ 9]class FirstTask extends Thread{
[10] Event event1,event2;

[11] int count=0;
[12] public void run(){
[13] count = event1.count;
[14] while(true){
[15] if(count == event1.count)

[16] event1.wait_for_event();
[17] count = event1.count;
[18] event2.signal_event();

}}}

class Event {
int count = Signs.ZERO;
public synchronized void wait_for_event(){

try {wait();}
catch(InterruptedException e){};

}
public synchronized void signal_event(){

count = Signs.add(count,Signs.POS);
notifyAll();

}}
class FirstTask extends Thread {
Event event1,event2;

int count = Signs.ZERO;
public void run () {
count = event1.count;
while (true){
if(Signs.eq(count,event1.count))

event1.wait_for_event();
count = event1.count;
event2.signal_event();

}}}

Fig. 6. RAX Program with Deadlock (excerpts)

Analysis of this counter-example reveals that it is spurious. After 39 steps in the

counter-example the trace reaches the conditional at line 15. In the real system,

the branch condition is false, but due to the nondeterminism of Signs.eq()

for positive parameters the abstract system enters the conditional. JPF is able

to �nd a 40 step choose-free counter-example. It is clear that the presence of

spurious counter-examples is closely related to the property being checked, the

program and the abstraction's selected. We reran our model checks changing

the abstraction for Event.count �eld to record information about the evenness

or oddness of its values. This produced a 128 step counter-example, but JPF

was unable to �nd a choose-free counter-example. At this point, we ran JPF in

simulationmode guided by the 128 step counter-example and while this counter-

example did contain nondeterministic choices it was shown to be feasible.

The Pipeline example consists of an application that uses the methods of

a Pipeline class to manage execution of a multi-threaded staged computation.

The application constructs and starts execution of a pipeline, calls stop() to end

execution of the pipeline, and calls add() to provide input to the computation.

We model checked a precedence property for the Pipeline system stating that

\no pipeline stage (i.e., thread) will terminate until the stop method is called".

Since JPF does not currently support checking of temporal properties, we en-

coded this using a boolean variable, stopCalled, set to true when the stop()

method had been called and embedded assert(stopCalled) at the return point

of the stage run methods. This example was abstracted by identifying a loop

index variable that controlled the number of times the add() method was called

and abstracting it to signs. Type inference determined that 5 additional �elds

and local variables also needed abstraction. Checking the property on the ab-

stracted system detected an error on a 168 step counter-example. JPF found a

69 step choose-free counter-example that is similar to the example in Figure 3

in that it occurred on the �rst iteration of an abstracted loop.
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RWVSN consists of an application that extends Lea's RWVSN class [18] to

implement an object with a readers-writers synchronization policy. That object

is then shared by several threads that read and write through the RWVSN inter-

face. We checked that access by a reader excluded access by a writer by setting

a boolean variable, in_writer, in the writer's critical section and resetting it

upon exit, and embedding assert(!in_writer) in the reader's critical section.

Abstraction was applied to 3 integer �elds of the RWVSN class abstracting them

to signs. Checking the property on the abstracted system detected an error in

179 steps. JPF found a 76 step choose-free counter-example.

The DEOS system has been the subject of several recent case studies in

model checking code [21,25,13]; we performed the abstraction and analysis as

described in [13]. The property being checked is an assertion that encodes a test

for time partitioning in the scheduler component of the system. We used depen-

dence analysis driven by the location of the assert statement and the data values

it referenced to identify a single �eld (out of 92) as in
uencing the property. We

selected the signs AI for that �eld and type inference determined that 2 more

�elds should be abstracted. Checking the property on the abstracted system de-

tected an error in 471 steps. JPF found a 312 step choose-free counter-example.

5.2 Discussion

While these programs represent a range of di�erent patterns of concurrency (e.g.,

clients and server, pipelines, and peer-groups) and the larger examples are real

applications, we do not claim that our results generalize to a broader class of

multi-threaded Java programs. We do, however, believe the results suggest that

the counter-example analysis techniques we have developed have merit and can

signi�cantly reduce the burden users face when analyzing counter-examples from

checks of abstracted systems.

The data clearly show that counter-examples can be reduced signi�cantly in

length; this alone makes it easier to diagnose the program fault. The fact that

counter-examples are guaranteed to be feasible helps focus the user's attention

on only those counter-examples for which analysis will lead to fault detection.

It should come as no surprise that a choose-free model check is faster than

a typical model check since it is essentially a depth-bounded model check. Most

model checkers can do depth-bounded search and in fact this often allows for

detection of signi�cantly shorter counter-examples. The key di�erence lies in the

fact that a choose-free search uses an adaptive depth-bound that is based on

encountering nondeterministic choice operators. This guarantee of not executing

a choice operator is what assures counter-example feasibility. Without that a

naive depth-bounded search may include execution of a choice operator.

Finally, we observe that choose-free search can be an e�ective way to exploit

more aggressive abstraction approaches. The application of source-level predi-

cate abstraction techniques to the DEOS and RAX is described in detail in

[25]. In that work a predicate abstraction and an invariant for DEOS and 4

di�erent predicate abstractions for RAX were used to produce abstract models

that preserved both truth and falsity of the properties being checked. In contrast,
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the checks described in this paper sacri�ce precision for more aggressive abstrac-

tion, and state-space reduction, while choose-free search enables the recovery of

feasible counter-examples.

6 Related and Future Work

In our previous work [13], we focused on the speci�cation, generation, selection

and compilation of abstractions for Java programs. In this paper, we detail tech-

niques for analyzing counter-examples and provide evidence for their usefulness

on several non-trivial Java programs.

Most existing work on counter-example analysis is oriented towards the goal

of veri�cation; counter-example analysis drives abstraction re�nement for the

purpose of proving a property. In contrast, our work is oriented toward defect

detection. Our biasing of the model checker yields a complete coverage of the

sub-space of guaranteed feasible paths in the system rather than simply assessing

the feasibility of a single counter-example from an unbiased model check.

Our simulation technique works because JPF maintains a correspondence

between the concrete and abstracted programs and Java de�nes default initial

values for all data (thus a program has a single initial state). It is possible to

develop more general simulation techniques that handle multiple initial states,

but we believe these are not necessary for Java. One such technique [5] uses

forward analysis and performs a symbolic simulation of the concrete system using

predicates that characterize the program data values. Since it does not keep a

correspondence between concrete and abstract transitions, rather than determine

the next concrete state it must compute (at each step of the simulation) the set

of all possible next concrete states. This method, which is implemented in SMV,

is limited to �nite-state systems.

In SLAM [3], sequential C programs are abstracted into boolean programs;
symbolic execution is used to map abstract counter-examples to concrete execu-

tions. INVEST [4] and interactive abstractions [22] use theorem proving to rule

out spurious counter-examples. Backward analysis is used to obtain information

to re�ne the abstractions. Unlike our approach, these tools/techniques are not

concerned with property abstraction or scheduling information.

We believe that the methods described in these papers are complementary to

our techniques. For example, we can use backward analysis to obtain feedback

for re�nement of abstractions. Backward analysis computes pre-images of the

violating abstract state over the given trace. For the spurious counter-example

of Figure 3, after the body of the loop is executed two times, the value of the

loop condition is true, which means that the concrete value of x is believed to be

less than 2. The analysis would discover that this happens because the value of

x before the assignment at line 5 is believed to be less than 1 (which is not true

in the concrete program, where the value of x is exactly 1). This implies that a

new abstraction to be selected for variable x has to include a new token for 1

(e.g. signs abstraction should be replaced with range(0..1) abstraction [13]).



Finding Feasible Counter-examples when Model Checking 297

We note that both choose-free search and counter-example guided simulation

techniques could be implemented in any explicit-state model checker. For exam-

ple, Bandera [8] generates Promela models for Spin that can easily be adapted to

perform choose-free search. Path simulation simply requires the ability to asso-

ciate the steps of the concrete and abstract program and to simulate the concrete

program. One can already do this by hand using Spin's simulation facilities, but

automating the process would greatly ease its use. We also note that, although

we set our presentation in the context of Bandera's abstraction, other forms of

data abstraction, like JPF's predicate abstraction, would also be treated prop-

erly. By that we mean that a path through the predicate abstracted code that

is choose-free or that can be mapped to a concrete execution is feasible.

7 Conclusion

In this paper, we have suggested two approaches for analyzing counter-examples

produced by model checks of abstracted programs. These approaches have the

advantage of being very fast (i.e., choose-free search is depth-bounded and the

cost of simulation is related to the length of the counter-example). Based on

experimentation with an implementation of these techniques in a Java model

checking tool we have also found the techniques to be capable of detecting guar-

anteed feasible counter-examples in nearly every case. This enables aggressive

abstractions to be applied without losing the ability to detect errors, thereby

minimizing the need for re�nement of abstractions. This implementation treats

not only abstraction of program data, but also of thread scheduling policies,

and the property to be checked. Finally, we believe that these techniques can

be combined with other counter-example analysis methods to provide a suite of

tools that vary cost and in their ability to precisely analyze counter-examples.

Such a tool suite would be a useful addition to any model checking tool.
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