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Abstract. Observability and reachability are important concepts in for-
mal software development. While observability concepts allow to specify
the required observable behavior of a program or system, reachability
concepts are used to describe the underlying data in terms of data type
constructors. In this paper we show that there is a duality between ob-
servability and reachability, both from a methodological and from a for-
mal point of view. In particular, we establish a correspondence between
observer operations and data type constructors, observational algebras
and constructor-based algebras, and observational and inductive prop-
erties of specifications. Our study is based on the observational logic
institution [7] and on a novel treatment of reachability which introduces
the institution of constructor-based logic. The duality between both con-
cepts is formalised in a category-theoretic setting.

1 Introduction

An important role in software specification and program development is played
by observability and reachability concepts which deal with different aspects of
software systems. While observational approaches focus on the observable prop-
erties of a system, reachability notions describe the underlying data manipulated
by the system. Both concepts are treated in a formal way in various algebraic
specification frameworks.

Considering observability, one can distinguish two main approaches: The first
one is based on an observational equivalence relation between algebras which is
used to abstract from the (standard) model class of a specification; cf. e.g. [17].
The second approach relaxes the (standard) satisfaction relation so that all alge-
bras are accepted as observational models of a specification which satisfy a given
set of axioms up to observational equality of the elements of the algebra. (This
idea was originally introduced by Reichel; cf. e.g. [16].) Thereby two elements
are considered to be observationally equal if they cannot be distinguished by a
set of observable experiments.

Concerning reachability, the standard approach is to introduce a set of data
type constructors and to consider those algebras which are reachable w.r.t. the
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given constructors. Most algebraic specification languages incorporate features
to express reachability like, for instance, the CASL language [15]. Since observ-
ability and reachability are used for different purposes both concepts look quite
unrelated. It is the aim of this study to show that there is a methodological and
even formal duality between the two concepts which we believe contributes to a
clarification of specification methodologies and their semantic foundations.1 The
correspondence will be based on the following working hypothesis (in the spirit
of Hoare [9]):

The model class of a specification SP describes
the class of all correct realizations of SP.

The underlying paradigm of the algebraic approach is to model programs by
(many-sorted) algebras and to describe the properties of these algebras by log-
ical axioms provided by some specification SP. Then a program is a correct
realization if it is a model of SP. Based on these assumptions we will study al-
gebraic frameworks for observability and for reachability and we will compare
both concepts.

First, in Section 2, we give an overview of the observational logic institu-
tion [7] which we will use as the basis for formalising observability. Then, in
Section 3, we discuss reachability and we introduce a new institution, called
constructor-based logic, to express reachability issues in accordance with the
above working hypothesis. For this purpose we introduce, in particular, the no-
tions of a constructor-based algebra and the constructor-based satisfaction rela-
tion. Section 4 exhibits the syntactic and semantic correspondences between all
notions used in observational logic and in constructor-based logic. In Section 5,
we focus on the properties that are valid consequences of an observational or
constructor-based specification. In each case these properties can be character-
ized by the standard first-order theory of a class of algebras which represent the
“idealized” models (also called “black box view”) of a specification. By compar-
ing the black box views of observational and constructor-based specifications it
turns out that fully abstract models correspond to reachable models.

The results obtained so far show a syntactic, semantic and methodological
analogy between observational and constructor-based specifications. In Section 6,
we show that this correspondence can even be characterized by a formal duality
in a category-theoretic setting. Thereby the syntactic aspects of the observa-
tional and the constructor-based notions are expressed by appropriate (pairs
of) functors and the semantic aspects are expressed by using algebra-coalgebra
pairs; cf. also [14]. Finally, some concluding remarks are given in Section 7.

We assume that the reader is familiar with the basic notions of alge-
braic specifications (see e.g., [13]), like the notions of (many-sorted) signature
Σ = (S,OP) (where S is a set of sorts and OP is a set of operation sym-
bols op : s1, . . . , sn → s), (total) Σ-algebra A = ((As)s∈S , (opA)op∈OP ), class
Alg(Σ) of all Σ-algebras, Σ-term algebra TΣ(X) over a family of variables X
and interpretation Iα : TΣ(X) → A w.r.t. a valuation α : X → A.
1 In the context of automata theory a similar duality was already investigated by

Arbib and Manes in [2].
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2 The Observational Logic Institution

Observability concepts provide a means to specify the observable behaviour of
software systems in an abstract, implementation independent way. They take
into account our working hypothesis (of the Introduction) in the sense that any
program which satisfies the observable behaviour described by a specification SP
is considered as a correct realization of SP. Observability concepts are particu-
larly suited to specify the observable properties of state-based systems since they
allow us to abstract from concrete state representations and to consider any two
states which cannot be distinguished by observable experiments as “observation-
ally equal”. A flexible approach to formalise observable experiments is suggested
(in a similar way) e.g. in [7] and [6] where the operations of an algebraic signature
are split into a set of “observer operations” for building observable experiments
and the “other” operations which can be used to manipulate states. In this
study we will use the observational logic institution to formalise observability.
An overview of observational logic is given in the remainder of this section (for
more details see [7]).

Definition 1 (Observational signature). Let Σ = (S,OP) be a signature
and SObs ⊆ S be a set of observable sorts. An observer is a pair (op, i) where
op : s1, . . . , sn → s ∈ OP, 1 ≤ i ≤ n, and si 6∈ SObs.2 (op, i) is a direct observer
of si if s ∈ SObs, otherwise it is an indirect observer. If op : s1 → s is a unary
observer we will simply write op instead of (op, 1). An observational signature
ΣObs = (Σ, SObs,OPObs) consists of a signature Σ = (S,OP), a set SObs ⊆ S
of observable sorts and a set OPObs of observers (op, i) with op ∈ OP.

Any observational signature determines a set of observable contexts which
represent the observable experiments. In the following definition observable con-
texts are defined in a co-inductive style

Definition 2 (Observable context). Let ΣObs be an observational signature,
let X = (Xs)s∈S be a family of countable infinite sets Xs of variables of sort s
and let Z = ({zs})s∈S\SObs be a disjoint family of singleton sets (one for each
non observable sort). For all s ∈ S \ SObs and s′ ∈ SObs the set C(ΣObs)s→s′ of
observable ΣObs-contexts with “application sort” s and “observable result sort”
s′ is inductively defined as follows:

1. For each direct observer (op, i) with op : s1, . . . , si, . . . , sn → s′ and pairwise
disjoint variables x1 : s1, . . . , xn : sn,
op(x1, . . . , xi−1, zsi

, xi+1, . . . , xn) ∈ C(ΣObs)si→s′ ,
2. For each observable context c ∈ C(ΣObs)s→s′ , for each indirect observer

(op, i) with op : s1, . . . , si, . . . , sn → s, and for each pairwise disjoint vari-
ables x1 : s1, . . . , xn : sn not occurring in c,
c[op(x1, . . . , xi−1, zsi

, xi+1, . . . , xn)/zs] ∈ C(ΣObs)si→s′

where c[op(x1, . . . , xi−1, zsi , xi+1, . . . , xn)/zs] denotes the term obtained
from c by substituting the term op(x1, . . . , xi−1, zsi

, xi+1, . . . , xn) for zs.

2 Non-observable sorts are also called “state-sorts”.
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The syntactic notion of an observable context induces, for any Σ-algebra A a
semantic relation, called observational equality, which expresses indistinguisha-
bility of states w.r.t. the given observable contexts.

Definition 3 (ΣObs-equality). Let ΣObs be an observational signature. For
any Σ-algebra A ∈ Alg(Σ), the observational ΣObs-equality on A is denoted by
≈ΣObs,A and defined by:
For all s ∈ S, two elements a, b ∈ As are observationally equal w.r.t. ΣObs, i.e.,
a ≈ΣObs,A b, if and only if

1. a = b, if s ∈ SObs ,
2. for all observable sorts s′ ∈ SObs, for all observable contexts c ∈

C(ΣObs)s→s′ , and for all valuations α, β : X ∪ {zs} → A with α(x) = β(x)
if x ∈ X, α(zs) = a and β(zs) = b, we have Iα(c) = Iβ(c), if s ∈ S \ SObs.

Note that only the observer operations are used to build observable contexts
and hence to define the observational equality. As a consequence we require that
the non-observer operations should not contribute to distinguish states. This
requirement is guaranteed by observational algebras defined as follows.

Definition 4 (Observational algebra). Let ΣObs be an observational signa-
ture. An observational ΣObs-algebra is a Σ-algebra A such that ≈ΣObs,A is a
Σ-congruence on A. The class of all observational ΣObs-algebras is denoted by
AlgObs(ΣObs). 3

In the next step we define an observational satisfaction relation for observa-
tional algebras and first-order Σ-formulas. The underlying idea of the observa-
tional satisfaction relation is to interpret the equality symbol = occurring in a
first-order formula ϕ not by the set-theoretic equality but by the observational
equality of elements.

Definition 5 (Observational satisfaction relation). The observational sat-
isfaction relation between observational ΣObs-algebras and first-order Σ-formulas
is denoted by |=ΣObs and defined as follows:
Let A ∈ AlgObs(ΣObs).

1. For any two terms t, r ∈ TΣ(X)s of the same sort s and for any valuation
α : X → A, A, α |=ΣObs t = r holds if Iα(t) ≈ΣObs,A Iα(r).

2. For any arbitrary Σ-formula ϕ and for any valuation α : X → A, A, α |=ΣObs

ϕ is defined by induction over the structure of the formula in the usual way.
3. For any arbitrary Σ-formula ϕ, A |=ΣObs ϕ holds if for all valuations α :

X → A, A, α |=ΣObs ϕ holds.

Definition 6 (Basic observational specification). A basic observational
specification SPObs = 〈ΣObs,Ax〉 consists of an observational signature
ΣObs = (Σ, SObs,OPObs) and a set Ax of Σ-sentences, called the axioms of
SPObs. The semantics of SPObs is given by its signature SigObs(SPObs) and by
its class of models ModObs(SPObs) which are defined by:

SigObs(SPObs)
def= ΣObs,ModObs(SPObs)

def= {A ∈ AlgObs(ΣObs) | A |=ΣObs Ax}
3 Observational morphisms are defined as relations; see [7].
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The definitions stated above provide the basic ingredients for defining the
observational logic institution which is detailed in [7]. Thereby it is particularly
important to use an appropriate morphism notion for observational signatures
which guarantees encapsulation of observable properties (formally expressed by
the satisfaction condition of institutions; cf. [5]). The basic idea for achieving this
is to require that no “new”observations are introduced for “old” sorts when com-
posing systems via signature morphisms. Thus the observational logic institu-
tion provides a suitable framework for instantiating the institution-independent
specification-building operators introduced in [18], hence for defining structured
observational specifications.

3 The Constructor-Based Logic Institution

Reachability concepts are used to describe the underlying data manipulated by
a program. For this purpose, a standard approach is to declare a distinguished
subset OPCons of the operation symbols OP (of a signature Σ = (S,OP)) as
constructor symbols and to restrict the admissible models of a specification to
those algebras which are reachable w.r.t. the given constructors. Syntactically
we will follow this approach which leads to the notion of a constructor-based
signature (see Definition 7 below). However, from the semantic point of view we
do not adopt the above interpretation which we believe is too restrictive w.r.t.
our working hypothesis (of the Introduction). Let us illustrate our viewpoint by
a simple example.

Let NAT be a standard specification of the natural numbers with signature
ΣNAT = ({nat}, {zero : → nat, succ : nat → nat, add : nat × nat → nat})
and with standard axioms. We declare zero and succ as constructor symbols.
Then a ΣNAT -algebra A is reachable w.r.t. the given constructors if any element
of A is denotable by a term succi(zero) with i ≥ 0. Obviously the set N of the
natural numbers (equipped with the usual operations) is a reachable algebra.
But note that the set Z of the integers (equipped with the usual interpretations
of zero, succ and add) is not reachable w.r.t. the given constructors and there-
fore is not an admissible (standard) model of NAT . Nevertheless the integers
can obviously be used as an implementation of the natural numbers which just
happens to contain the negative integers as junk elements. Hence, in order to
satisfy our working hypothesis, the integers should be admitted as a model of
NAT . As a consequence we are interested in a more flexible framework where
the constructor symbols are still essential, in the sense that they determine the
data of interest, but nevertheless non-reachable algebras can be accepted as
models if they satisfy certain conditions which are formalised by our notion of
constructor-based algebra (see Definition 10 below).

In this way we obtain a novel treatment of reachability in algebraic specifica-
tions which finally leads to the institution of constructor-based logic. All steps
performed in this section are quite analogous to the development of the obser-
vational logic institution. The correspondence will be analysed in Section 4 and
formalised in Section 6.
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Definition 7 (Constructor-based signature). A constructor-based signa-
ture ΣCons = (Σ, SCons,OPCons) consists of a signature Σ = (S,OP), a set
SCons ⊆ S of constrained sorts and a set OPCons ⊆ OP of constructor symbols
such that, for any op ∈ OPCons with arity op : s1, . . . , sn → s, s ∈ SCons. We
assume also that for each constrained sort s ∈ SCons, there exists at least one
constructor in OPCons with range s.

Any constructor-based signature determines a set of constructor terms.

Definition 8 (Constructor term). Let ΣCons be a constructor-based signa-
ture, and let X = (Xs)s∈S be a family of countable infinite sets Xs of variables
of sort s. A constructor term is a term t ∈ TΣ′(X ′), where Σ′ = (S,OPCons),
and X ′ = (X ′

s)s∈S with X ′
s = Xs if s ∈ S \ SCons and X ′

s = ∅ if s ∈ SCons. The
set of constructor terms is denoted by T (ΣCons).

The syntactic notion of a constructor term induces, for any Σ-algebra A,
the definition of a family of subsets of the carrier sets of A, called reachable
part, which consists of those data which are relevant according to the given
constructors.

Definition 9 (Reachable part). Let ΣCons be a constructor-based signature.
For any Σ-algebra A ∈ Alg(Σ), the reachable part 〈A〉Cons = (〈A〉Cons,s)s∈S of
A is defined by:
For each s ∈ S, 〈A〉Cons,s = {a ∈ As | there exists a term t ∈ T (ΣCons)s and a
valuation α : X ′ → A such that Iα(t) = a}. 4

Note that only the constructor symbols are used to build constructor terms
and hence to define the reachable part. Since the reachable part represents the
data of interest we require that no further elements should be constructible by
the non-constructor operations:

Definition 10 (Constructor-based algebra). Let ΣCons be a constructor-
based signature. A constructor-based ΣCons-algebra is a Σ-algebra A such that
〈A〉Cons, equipped with the canonical restrictions of the operations opA of A to the
carrier sets of 〈A〉Cons, is a Σ-subalgebra of A. The class of all constructor-based
ΣCons-algebras is denoted by AlgCons(ΣCons).

Definition 11 (Constructor-based morphism). Let A, B ∈ AlgCons(ΣCons)
be two constructor-based ΣCons-algebras. A constructor-based ΣCons-morphism
h : A → B is a Σ-morphism between 〈A〉Cons and 〈B〉Cons.

For any constructor-based signature ΣCons, the class AlgCons(ΣCons) to-
gether with the constructor-based ΣCons-morphisms is a category.

4 Note that for any non-constrained sort s, 〈A〉Cons,s = As.
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The underlying idea of the constructor-based satisfaction relation is to re-
strict the valuations of variables to the generated values (i.e. to the elements
of the reachable part) only.5 Hence the following definition is quite similar to
the definition of the standard satisfaction relation. The only difference concerns
valuations: “α : X → A” is replaced by “α : X → 〈A〉Cons”.

Definition 12 (Constructor-based satisfaction relation). The construc-
tor-based satisfaction relation between constructor-based ΣCons-algebras and
first-order Σ-formulas is denoted by |=ΣCons and defined as follows:
Let A ∈ AlgCons(ΣCons).

1. For any two terms t, r ∈ TΣ(X)s of the same sort s and for any valuation
α : X → 〈A〉Cons, A, α |=ΣCons t = r holds if Iα(t) = Iα(r).

2. For any arbitrary Σ-formula ϕ and for any valuation α : X → 〈A〉Cons,
A, α |=ΣCons ϕ is defined by induction over the structure of the formula in
the usual way.

3. For any arbitrary Σ-formula ϕ, A |=ΣCons ϕ holds if for all valuations α :
X → 〈A〉Cons, A, α |=ΣCons ϕ holds.

As an example consider again the specification NAT and the integers which
satisfy w.r.t. the constructor-based satisfaction relation the following Peano ax-
iom

Z |=ΣCons ∀x : nat. succ(x) 6= zero

Indeed this is true since the reachable part of Z w.r.t. the constructors zero and
succ is just N and hence the universally quantified variable x is only interpreted
in N. Thus the integers will be an admissible model of NAT considered as a
constructor-based specification w.r.t. the constructors zero and succ.

Definition 13 (Basic constructor-based specification). A basic construc-
tor-based specification SPCons = 〈ΣCons,Ax〉 consists of a constructor-based
signature ΣCons = (Σ, SCons,OPCons) and a set Ax of Σ-sentences, called
the axioms of SPCons. The semantics of SPCons is given by its signature
SigCons(SPCons) and by its class of models ModCons(SPCons) which are defined
by:

SigCons(SPCons)
def= ΣCons

ModCons(SPCons)
def= {A ∈ AlgCons(ΣCons) | A |=ΣCons Ax}

To obtain the constructor-based logic institution we still need an appropriate
morphism notion for constructor-based signatures which guarantees encapsula-
tion of properties w.r.t. the constructor-based satisfaction relation. The basic
idea to achieve this is to require that no “new” constructors are introduced for
“old” sorts when composing systems via signature morphisms which is formally
captured by the following definition.
5 This idea is related to the ultra-loose approach of [19] where the same effect is

achieved by using formulas with relativized quantification.
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Definition 14 (Constructor-based signature morphism). Let ΣCons =
(Σ, SCons,OPCons) and Σ′

Cons = (Σ′, S′
Cons,OP ′

Cons) be two constructor-based
signatures with Σ = (S,OP) and Σ′ = (S′,OP ′). A constructor-based signature
morphism σCons : ΣCons → Σ′

Cons is a signature morphism σ : Σ → Σ′ such
that:

1. For all s ∈ S, s ∈ SCons if and only if σ(s) ∈ S′
Cons.

2. If op ∈ OPCons, then σ(op) ∈ OP ′
Cons.

3. If op′ ∈ OP ′
Cons with op′ : s′

1, . . . , s′
n → s′ and s′ ∈ σ(S) then there exists

op ∈ OP such that op ∈ OPCons and op′ = σ(op).

Constructor-based signatures together with constructor-based signature
morphisms form a category which has pushouts. Moreover, for any constructor-
based signature morphism σCons : ΣCons → Σ′

Cons, one can associate a
constructor-based reduct functor |σCons : AlgCons(Σ′

Cons) → AlgCons(ΣCons)
in a straightforward way. One can also show that the constructor-based
satisfaction condition holds, i.e., for any constructor-based signature morphism
σCons : ΣCons → Σ′

Cons, constructor-based Σ′
Cons-algebra A′ ∈ AlgCons(Σ′

Cons)
and Σ-sentence ϕ:
A′ |=Σ′

Cons
σ(ϕ) if and only if A′|σCons |=ΣCons ϕ.

This means that the definitions stated above provide the necessary ingre-
dients for defining an institution (cf. [5]) which is called the constructor-based
logic institution. As in the observational case this institution provides a suitable
framework for instantiating the institution-independent specification-building
operators introduced in [18], hence for defining structured constructor-based
specifications.

4 A First Comparison

The observational logic institution and the constructor-based logic institution
were developed step by step in a totally analogous way. Indeed there is a close
correspondence between all notions of the observability and reachability concepts
which is summarized in Table 1.

First, there is an obvious syntactic correspondence between an observational
signature and a constructor-based signature which, on the one hand, leads to the
notion of an observable context and, on the other hand, leads to the definition
of a constructor term.

In any case the syntactic notions induce a semantic relation on any Σ-algebra
A. In the observational case we obtain a binary relation ≈ΣObs,A, called observa-
tional equality, and in the constructor case we obtain a unary relation 〈A〉Cons,
called reachable part. Then we require that the operations of an algebra are
compatible with the given relations. This means, in the observational case, that
the observational equality is a Σ-congruence thus leading to the notion of an ob-
servational algebra. In the constructor case this means that the reachable part
is a Σ-subalgebra thus leading to the notion of a constructor-based algebra.

In order to satisfy our working hypothesis we have relaxed the standard
satisfaction relation such that, in the observational case, equality is considered
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Table 1. Comparing Observability and Reachability

Observability Reachability

observational signature

ΣObs = (Σ, SObs,OPObs)

constructor-based signature

ΣCons = (Σ, SCons,OPCons)

observable context constructor term

observational equality

≈ΣObs,A⊆ A × A

reachable part

〈A〉Cons ⊆ A

observational algebra

≈ΣObs,A is a Σ-congruence

constructor-based algebra

〈A〉Cons is a Σ-subalgebra of A

observational satisfaction

A |=ΣObs φ

interpret “=” by “≈ΣObs,A”

constructor-based satisfaction

A |=ΣCons φ

use valuations α : X → 〈A〉Cons

observational specification

SPObs = 〈ΣObs, Ax〉

ModObs(SPObs)
def=

{A ∈ AlgObs(ΣObs) | A |=ΣObs Ax}

constructor-based specification

SPCons = 〈ΣCons, Ax〉

ModCons(SPCons)
def=

{A ∈ AlgCons(ΣCons) | A |=ΣCons Ax}

observational logic institution constructor-based logic institution

as observational equality and, in the constructor case, variables are interpreted
only by values of the reachable part. Then it is straightforward to introduce the
notions of observational and constructor-based specifications whose semantics
are defined according to the generalized satisfaction relations. Finally we have
pointed out that both frameworks lead to an institution by using appropriate
notions of signature morphisms.

It is still important to stress that there are also corresponding specification
methods when writing observational and constructor-based specifications. In the
observational case the idea is to specify the effect of each non-observer opera-
tion (in a co-inductive style) by a (complete) case distinction w.r.t. the given
observers. A general schema for observer complete definitions is studied in [3].
As a standard example consider an observational specification of an alternating
merge function merge: stream x stream → stream on streams with observers
head: stream → elem and tail: stream → stream. Then the merge func-
tion is specified by the following complete case distinction w.r.t. the observers
head and tail:
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head(merge(s1, s2)) = head(s1)

tail(merge(s1, s2)) = merge(s2, tail(s1))

Analogously it is well-known that in the constructor case it is a standard tech-
nique to specify the non-constructor operations in an inductive-style by a (com-
plete) case distinction w.r.t. the given constructors. In the categorical framework
of algebras and co-algebras this analogy is described in [11].

5 Logical Consequences of Specifications: The Black Box
View

So far we have emphasized the fact that the model class semantics of a spec-
ification should reflect all its correct realizations. According to our working
hypothesis, a program P is a correct realization of SPX if it determines a
SigX(SPX)-algebra which belongs to ModX(SPX).6 In the following we will refer
to ModX(SPX) as the glass box semantics of a specification since it reveals its
correct realizations. Glass box semantics is appropriate from an implementor’s
point of view.

Of equal importance are the logical consequences of a given specification.
In this section we focus on the properties ϕ that can be inferred from a given
specification SPX . This means that we are interested in statements SPX |=X ϕ
which express that ModX(SPX) |=X ϕ holds.

For this purpose it is convenient to abstract the models of a specification
into “idealized” models, such that the consequences of the actual models of the
specification of interest, in the chosen logic, are exactly the consequences of the
idealized models, in standard first-order logic. Hence to any specification SPX

we will associate the class of its “idealized” models (which lie in the standard
algebraic institution), and this class will be called the black box semantics of the
specification. Black box semantics is appropriate from a client’s point of view.

5.1 Black Box Semantics of Observational Specifications

Let ΣObs be an observational signature. Since for any ΣObs-algebra A, the ob-
servational equality ≈ΣObs,A is a Σ-congruence, we can construct its quotient
A/≈ΣObs,A which identifies all elements of A which are indistinguishable “from
the outside”. A/≈ΣObs,A can be considered as the “black box view” of A and rep-
resents the “observable behaviour” of A w.r.t. ΣObs. A/≈ΣObs,A is fully abstract
in the sense that the observational equality (w.r.t. ΣObs) on A/≈ΣObs,A coincides
with the set-theoretic equality. By considering A/≈ΣObs,A just as a Σ-algebra
we obtain (for any observational signature ΣObs) a functor from the category
AlgObs(ΣObs) of observational algebras into the category Alg(Σ) of (standard)
Σ-algebras which establishes a one to one correspondence between observational
morphisms h : A → B and standard morphisms k : A/≈ΣObs,A → B/≈ΣObs,B ,
i.e., this functor is full and faithful.
6 We use the subscript X to denote the fact that we work either in the observational

logic institution or in the constructor-based logic institution.
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Theorem 1 (Behavior functor). For any observational signature ΣObs with
underlying standard signature Σ, the following defines a full and faithful functor
FAΣObs : AlgObs(ΣObs) → Alg(Σ):

1. For each A ∈ AlgObs(ΣObs), FAΣObs(A) def= A/≈ΣObs,A and is called the
observational behavior of A.

2. For each observational morphism h : A → B, FAΣObs(h) : A/≈ΣObs,A →
B/≈ΣObs,B is defined by FAΣObs(h)([a]) = [b] if a h b.

Definition 15 (Black box semantics). Let SPObs be an observational speci-
fication with signature SigObs(SPObs) = ΣObs. Its black box semantics is defined
by [[SPObs]]

def= FAΣObs(ModObs(SPObs)).

It may be interesting to note that the black box semantics of an observational
specification is exactly the class of its fully abstract models (viewed as ordinary
algebras).

Fact 2 (Black box semantics relies on fully abstract models)
Let SPObs = 〈ΣObs,Ax〉 be a basic observational specification. Then
[[SPObs]] = {Σ−algebra A | A |= Ax and A is fully abstract w.r.t. ≈ΣObs,A}.

Theorem 3 (Observational consequences). Let ΣObs be an observational
signature with underlying standard signature Σ, let ϕ be a Σ-formula, let A be
a ΣObs-algebra, and let SPObs be an observational specification with signature
ΣObs.

1. A |=ΣObs ϕ if and only if FAΣObs(A) |= ϕ.
2. SPObs |=ΣObs ϕ if and only if [[SPObs]] |= ϕ.

This theorem shows the adequacy of the black box semantics in the observa-
tional case. The theorem is a variant of Theorem 3.11 in [4] and it is related to
similar results in [10].

5.2 Black Box Semantics of Constructor-Based Specifications

Let ΣCons be a constructor-based signature. Since for any ΣCons-algebra A, the
reachable part 〈A〉Cons of A is a Σ-algebra, which by definition contains only
those elements that are generated by the given constructors (for the constrained
sorts), we can consider the reachable part 〈A〉Cons of A as its black box view
(abstracting away from all junk values that may lie in A). This restriction to
the reachable sub-algebra provides (for any constructor-based signature ΣCons)
a functor from the category AlgCons(ΣCons) of constructor-based algebras into
the category Alg(Σ) of (standard) Σ-algebras which is full and faithful.

Theorem 4 (Restrict functor). For any constructor-based signature ΣCons
with underlying standard signature Σ, the following defines a full and faithful
functor RΣCons : AlgCons(ΣCons) → Alg(Σ):
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1. For each A ∈ AlgCons(ΣCons), RΣCons(A) def= 〈A〉Cons and is called the reach-
able part of A.

2. For each constructor-based morphism h : A → B, RΣCons(h) : 〈A〉Cons →
〈B〉Cons is defined by RΣCons(h)(a) = h(a).

Definition 16 (Black box semantics). Let SPCons be a constructor-based
specification with signature SigCons(SPCons) = ΣCons. Its black box semantics is
defined by [[SPCons]]

def= RΣCons(ModCons(SPCons)).

Again, it may be interesting to note that the black box semantics of a
constructor-based specification is exactly the class of its reachable models.
Thereby an algebra is called reachable w.r.t. a set OPCons of constructor symbols
if all elements of A are denotable by a constructor term.

Fact 5 (Black box semantics relies on reachable models)
Let SPCons = 〈ΣCons,Ax〉 be a basic constructor-based specification. Then
[[SPCons]] = {Σ−algebra A | A |= Ax and A is reachable w.r.t. OPCons}.

Theorem 6 (Inductive consequences). Let ΣCons be a constructor-based sig-
nature with underlying standard signature Σ, let ϕ be a Σ-formula, let A be a
ΣCons-algebra, and let SPCons be a constructor-based specification with signature
ΣCons.

1. A |=ΣCons ϕ if and only if RΣCons(A) |= ϕ.
2. SPCons |=ΣCons ϕ if and only if [[SPCons]] |= ϕ.

This theorem shows the adequacy of the black box semantics in the
constructor-based case.

6 Formalising the Duality

In this section we establish a formal duality of the observability and reachability
concepts considered in the previous sections. For this purpose we first need a
precise notion of duality. This is provided by using category theory.

6.1 Categorical Duality

We briefly review categorical duality, for more details see e.g. [1]. A category C
consists of a class of objects, also denoted by C, and for all A, B ∈ C of a set
of arrows (or morphisms) C(A, B). The dual (or opposite) category Cop has the
same objects and arrows Cop(A, B) = C(B, A). We write Aop and fop for A ∈ C
and f ∈ C(B, A) to indicate when we think of A as an object in Cop and of f
as an arrow in Cop(A, B). Duality can now be formalised as follows: Let P be a
property of objects or arrows in C. We then say that

an object A (arrow f , respectively) in C has property co-P
iff Aop (fop, respectively) has property P .
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For example, an object A is co-initial in C (usually called terminal or final) iff A
is initial in Cop; C = A + B is a co-product iff Cop is the product Aop × Bop.

The duality principle can also be extended to functors. The dual of a functor
F : C → D is the functor F op : Cop → Dop which acts on objects and morphisms
as F does. For instance, for an endofunctor F , the category of F -coalgebras is
(isomorphic to) the dual of the category of F op-algebras (cf. [11] for a study of
algebras and co-algebras).

6.2 The Duality Principle for Observability and Reachability

We first give a categorical account of the signatures and models in the observa-
tional and in the constructor-based approach. The formal duality principle will
then be an immediate consequence.

Motivated by the approach in [8], we represent a signature (over a base
category X ) by two functors Ω, Ξ : X → X . A model is an algebra-coalgebra
pair ΩX → X → ΞX (cf. also [14]). We call Ω the algebraic signature and Ξ
the coalgebraic signature.

Next, we introduce signatures for constructors and observers, given by func-
tors R,O : X → X , respectively. That is, for formalizing the observational
signatures, we consider signatures (Ω, Ξ) = (Ω, Ξ ′ × O) and models

ΩX
ω - X

〈ξ′, o〉- (Ξ ′ × O)X

where ω, ξ′ are operations and o are observers.
On the other hand, for formalizing constructor-based signatures, we consider

signatures (Ω, Ξ) = (Ω′ + R, Ξ) and models

(Ω′ + R)X
[ω′, ρ]- X

ξ - ΞX

where ω′, ξ are operations and ρ are constructors.

Definition 17 (Observational models). Let X be a category with binary
products. An observational signature (Ω;Ξ ′,O) over X consists of functors

Ω, Ξ ′,O : X → X such that a final O-coalgebra Z
ζ−→ OZ exists. O is called the

observability constraint. An algebra-coalgebra pair (ω, 〈ξ′, o〉) for (Ω, Ξ ′ ×O)
satisfies the observability constraint O and is called a model for (Ω;Ξ ′,O) iff
there are dotted arrows such that the following diagram commutes

ΩX
ω- X

ξ′
- Ξ ′X

ΩZ

Ω!
?

........- Z

!
?

.......- Ξ ′Z

Ξ ′!
?

where ! : X → Z is the unique coalgebra morphism from the observers X
o−→ OX

to the final O-coalgebra. A morphism between models is an arrow which is
simultaneously a morphism for the algebra and the coalgebra part. The resulting
category of models is denoted by Mod(Ω;Ξ ′,O). A model is fully abstract
iff ! is an embedding (injective).
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Remark 1. The diagram expresses in an abstract way that the model satisfies the
condition for observational algebras of Definition 4. Indeed, for any observational
signature ΣObs (in the sense of Section 2) whose observers have only one non-
observable argument sort, appropriate polynomial functors Ω, Ξ ′,O over the
base category Setn can be found such that the observational equivalence induced
by O is a congruence w.r.t. Ω and Ξ ′ (and anyway w.r.t. O). This is due to the
fact that ! identifies precisely all observationally equivalent points.

Definition 18 (Constructor-based models). Let X be a category with bi-
nary coproducts. A constructor-based signature (Ω′,R;Ξ) over X consists
of functors Ω′,R, Ξ : X → X such that an initial R-algebra RI

ι−→ I exists.
R is called the reachability constraint. An algebra-coalgebra pair ([ω′, ρ], ξ)
satisfies the reachability constraint R and is called a model for (Ω′,R;Ξ) iff
there are dotted arrows such that the following diagram commutes

Ω′X
ω′
- X

ξ- ΞX

Ω′I

Ω′?
6

.........- I

?
6

.........- ΞI

Ξ?
6

where ? : I → X is the unique algebra morphism from the initial R-algebra to the
constructor-algebra RX

ρ−→ X. A morphism between models is an arrow which
is simultaneously a morphism for the algebra and the coalgebra part. The resulting
category of models is denoted by Mod(Ω′,R;Ξ). A model is reachable iff ?
is a quotient (surjective).

Remark 2. The diagram expresses in an abstract way that the model satisfies
the condition for constructor-based algebras of Definition 10: Indeed, for any
constructor-based signature ΣCons (in the sense of Section 3) appropriate poly-
nomial functors Ω′,R, Ξ over the base category Setn can be found such that
the image of I under ? is the reachable part and whenever one of the operations
ω′, ξ takes all its arguments from the image of I under ? the results are in the
image again (and this is anyway true for ρ).

Definitions 17 and 18 give rise to a duality principle for constructor-based
and observational models which is stated formally by the following isomorphisms
of categories:

Mod(Ω;Ξ ′,O)op ' Mod(Ξ ′op,Oop;Ωop),

Mod(Ω′,R;Ξ)op ' Mod(Ξop;Ω′op,Rop).

The isomorphisms map models (α, β)op = (α, β) to (βop, αop). In the following,
we identify (α, β)op with (βop, αop).
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As a consequence of the duality principle we obtain, for example:

Theorem 7.

1. An algebra-coalgebra pair M for (Ω, Ξ ′ × O) satisfies the observability con-
straint O iff Mop satisfies the reachability constraint Oop.

2. An algebra-coalgebra pair M for (Ω′ + R, Ξ) satisfies the reachability con-
straint R iff Mop satisfies the observability constraint Rop.

3. A model M is reachable iff Mop is fully abstract.

The first theorem similar to (3) is due to Kalman [12] and was proved for
linear systems in control theory. Later, Arbib and Manes [2] brought to light the
general principles underlying this duality by considering—essentially—systems
(automata) as Ω-algebras for arbitrary functors Ω. Compared to [2] the main
point of our formalization consists in the use of coalgebras to formalise our
notion of observation and in the consideration of observability and reachability
constraints.

7 Conclusion

In this paper we have studied and formalised the duality between observability
and reachability concepts used in algebraic approaches to software development
taking into account observability and reachability constraints. We hope that the
exhibition of this duality contributes to a clarification of specification method-
ologies and of their semantic foundations.

As a particular outcome we have presented the novel institution of
constructor-based logic. The formal dualisation of the categorical representa-
tion of observational logic in [8] gave us the intuition for the adequate notions of
constructor logic which provide sufficient flexibility to describe the semantically
correct realizations of a specification from the reachability point of view (in the
same way as observational logic does from the observational point of view). In
this paper we have focused on a comparison of the two concepts and not on their
integration. The combination of the two concepts offers a promising perspective
of future reserach. We believe that such an integration will be strongly related to
(a generalization of) the notion of partial observational equivalence considered
e.g. in [4] and [10].
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