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Abstract. Emerging technologies such as commercial off-the-shelf prod-
ucts (COTS) and component integration frameworks such as CORBA
and COM are changing the way software is produced. Distributed appli-
cations are being designed as sets of autonomous, decoupled components,
allowing rapid development based on integration of COTS and simpli-
fying architectural changes required to cope with the dynamics of the
underlying environment. Although integration technologies and develop-
ment techniques assume rather simple architectural contexts, they face
a critical problem: Component integration.
So far existing techniques for detecting dynamic integration errors are
based on behavioural analysis of the composed system and have serious
space complexity problems. In this work we propose a broader notion of
component semantics based on assumptions and a method for proving
deadlock freedom in a component-based setting. Our goal is to prevent
and detect these errors in component based programming settings in a
component-wise fashion. We aim for effective methods that can scale to
real size applications even at the price of incompleteness as opposed to
many existing methods that although theoretically complete might fail
in practice.

1 Introduction

In recent years important changes have taken place in the way we produce soft-
ware artefacts. On one side, software production is becoming more involved
with distributed applications running on heterogeneous networks. On the other,
emerging technologies such as commercial off-the-shelf (COTS) products are be-
coming a market reality for rapid and cheap system development [14]. Although
these trends may seem independent, they actually have been bound together
with the wide spreading of component integration technologies such as CORBA
and COM. Distributed applications are being designed as sets of autonomous, de-
coupled components, allowing rapid development based on integration of COTS
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and simplifying architectural changes required to cope with the dynamics of the
underlying environment. Integration technologies and development techniques
assume rather simple architectural contexts, usually distributed, with simple
interaction capabilities. Nevertheless they face critical problems that pose a
challenging research issues. For example, consider this quote from a recent US
Defence Department briefing:

“A major theme of this year’s demonstrations is the ability to build
software systems by composing components, and do it reliably and pre-
dictably. We want to use the right components to do the job. We want
to put them together so the system doesn’t deadlock.”1

While for type integration and interface checking, type and sub-typing theo-
ries play an important role in preventing and detecting some integration errors,
interaction properties remain problematic. Component assembling can result in
architectural mismatches when trying to integrate components with incompat-
ible interaction behaviour (e.g. [5]), resulting in system deadlocks, livelocks or
failing to satisfy desired general functional and non-functional system properties.
So far existing techniques for detecting dynamic integration errors are based on
behavioural analysis (e.g. [6,4]) of the composed system model. The analysis is
carried on at system level, possibly in a compositional fashion [6] and has serious
problems with state explosion. Our goal is to prevent and detect these errors in
component based programming settings in a component-wise fashion. We aim
for effective methods that can scale to real size applications even at the price of
incompleteness as opposed to many existing methods that although theoretically
complete might fail in practice.

Our approach exploits the standardization and simplicity of the interaction
mechanisms present in the component-based frameworks. We overcome the state
explosion problem in deadlock verification for a significant number of cases. Our
approach is based on enriching component semantics with additional information
and performing analysis at a component level without building the system model.
We start off with a set of components to be integrated, a composition mechanism,
in this case full synchronization, and a property to be verified, namely deadlock
freedom. We represent each component with an ACtual behaviour (AC) graph.
An ASsumption (AS) graph for proving deadlock freedom is derived from each
AC graph. Our checking algorithm processes all AC and AS graphs trying to
verify if the AC graphs provide the requirements modelled by all the AS graphs.
The algorithm works by finding pairs of AC and AS graphs that match through
a suitable partial equivalence relation. According to the match found, arcs of the
AS graph that have been provided for (covered arcs) are marked, and root nodes
of both AC and AS graphs are updated. The algorithm repeats this process until
all arcs of all AS graphs have been covered or no matching pair of graphs can
be found. The former implies deadlock freedom of the system while the latter
means that the algorithm cannot prove system deadlock freedom. Consequently,

1 http://www.dyncorp-is.com/darpa/meetings/edcs99jun/
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our algorithm is not complete (there are deadlock free systems that the algorithm
fails to recognize), which is the price we must pay for tractability.

Summarizing, the contributions of this work are a broader notion of compo-
nent semantics based on assumptions and a method for proving deadlock freedom
in a component-based setting that is very efficient in terms of space-complexity.
While the space complexity of our approach is polynomial, existing approaches
have exponential orders of magnitude.

In the next section we discuss related work. In Section 3 we informally intro-
duce the characteristics of a simple component/configuration language based on
CCS and recall the definition of Labelled Transition Systems which are our basic
model. In Section 4 we illustrate a simple case study that is used in Section 5
to present our approach. We discuss the methods completeness and complexity
and conclude with final comments and future work.

2 Related Work

In order to obtain efficient verification mechanisms in terms of space complexity,
there has been much effort to avoid the state explosion problem. There are two
approaches: compositional verification and minimization. The first class verifies
properties of individual components and properties of the global system are de-
duced from these (e.g. [12]). However as stated in [12] when verifying properties
of components it may also be necessary to make assumptions about the environ-
ment, and the size of these assumptions is not fixed. Our approach shares the
same motivation but it verifies properties of the component context using fixed
size AS graphs. The compositional minimization approach is based on construct-
ing a minimal semantically equivalent representation of the global system. This
is managed by successive refinements and use of constraints and interface spec-
ifications [6,7]. However, these approaches still construct some kind of global
system representation, therefore are subject to state explosion in worst cases.
Neither efficient data representations such as Binary Decision Diagrams [3] nor
most recent results like [1] have solved the space complexity problem.

From the perspective of property checking in large software systems, work in
the area of module interconnection and software architecture languages can be
mentioned, however the focus is not on efficient property verification of dynamic
properties nor is the specific setting of component-based programming taken
into account. For an extensive treatment of this aspect refer to [9].

There have been other attempts at proving deadlock freedom statically. In-
teresting results in this direction can be found in [10] where a type system is
proposed that ensures (certain kinds of) deadlock freedom through static check-
ing. The approach is based on including the order of channel use in the type
information and requiring the designer to annotate communication channels as
reliable or unreliable. As in our work, they use behavioural information to en-
hance the type system, however part of the additional information must be
provided by users and is related to channels rather than components. In our
approach, additional information is derived from the property to be proved and



Proving Deadlock Freedom in Component-Based Programming 63

the communication context. Besides, the derived information extends compo-
nent semantics, thus integrating well with the current direction that software
development has taken, based on component integration technologies and com-
mercial off-the-shelf products. In [2] component behaviour is decomposed into
interface descriptions, which then can be used to prove deadlock freedom. The
method is more incomplete than ours as it requires components not to exhibit
non-deterministic behaviour that can be resolved by the influence of their envi-
ronment. In other words, a non-deterministic choice involving a component input
is not allowed. Our approach allows this kind of non-determinism, furthermore,
the example used in this paper exhibits many of these non-determinisms.

The method presented in this paper originates from the work in [9]. However
it differs in a number of ways:

– The present method is more complete. This is mainly because of the partial
equivalence relation used in this approach: We do not require the whole
behaviour of a component to be used when providing a portion of another
component’s assumption. Relaxing this requirement allows more systems to
be checked. Detailed examples can be found in [8].

– The component/configuration language is well founded and simpler.
– There is a clear distinction between assumption generation and assumption

checking.
– There is a clear distinction between notions of equivalence and partial match-

ing, therefore it is possible to adapt the definitions for other notions of equiv-
alence, allowing for example to switch from synchronous to asynchronous
communication.

3 A Basic Component-Configuration Language

Our model for component-based systems describes components in terms of their
input and output actions using labelled transition systems (LTS) (Definition 1).
Input and outputs are considered to be blocking actions, thus we shall work
with the (synchronous) parallel composition of LTS. System description using
LTS and parallel composition is widely used in research (e.g. [6,4]) and we have
chosen CCS [11] as our specification language mainly for its simplicity and firm
foundations. Thus, in this work component behaviour shall be described as CCS
processes and system configuration shall be specified using the parallel compo-
sition and restriction operators. As LTSs of all examples used in this paper are
shown, knowledge of CCS is not critical to follow the main ideas of this paper.

Definition 1 (Labelled Transition Systems). A component C is modelled
by a labelled transition system < S ,L,→, s >, where S is a set of states; s is
the initial component state; L is a set of labels representing the channels through
which the component can communicate; →⊆ (S ×Act×S ) is a transition relation
that describes the behaviour of the component.
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4 The Compressing Proxy Problem

In this section we briefly present the Compressing Proxy example. For a more de-
tailed explanation refer to [9]. To improve the performance of UNIX-based World
Wide Web browsers over slow networks, one could create an HTTP (Hyper Text
Transfer Protocol) server that compresses and uncompresses data that it sends
across the network. This is the purpose of the Compressing Proxy, which weds
the gzip compression/decompression program to the standard HTTP server
available from CERN.

The main difficulty that arises in the Compressing Proxy system is the correct
integration of existing components. The CERN HTTP server consists of filters
strung together in series executing in one single process, while the gzip program
runs in a separate UNIX process. Therefore an adaptor must be created to
coordinate these components correctly (see Figure 1).

FilterFilter
Pseudo Filter

(Adaptor)

gzipCompressing Proxy

process

component

channel

function−call interface

UNIX pipe interface

2 3

1 4

Fig. 1. The Compressing Proxy

However the correct construction of the adaptor requires a deep understand-
ing of the other components. Suppose the adaptor simply passes data on to gzip
whenever it receives data from the upstream filter. Once the stream is closed by
the upstream filter (i.e., there are no more data to be compressed), the adaptor
reads the compressed data from gzip and pushes the data toward the down-
stream filter. At a component level, this behaviour makes sense. But at a global
system level we can experience deadlock.

In particular, gzip uses a one-pass compression algorithm and may attempt
to write a portion of the compressed data (perhaps because an internal buffer is
full) before the adaptor is ready, thus blocking. With gzip blocked, the adaptor
also becomes blocked when it attempts to pass on more of the data to gzip,
leaving the system in deadlock.

A way to avoid deadlock in this situation is to have the adaptor handle the
data incrementally and use non-blocking reads and writes. This would allow the
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adaptor to read some data from gzip when its attempt to write data to gzip is
blocked.

We model all four system component behaviours, gzip, Adaptor, Upstream
and Downstream CERN filters as the CCS processes in Table 4. The Upstream
CERN filter is very simple, it can continuously perform output actions through
its upstream interface point (u). Similarly, the Downstream Filter can perform
input actions through its downstream port (d). The gzip interface consists of a
port for inputting the source file (s), one for outputting the compressed file (z ),
and two other ports to model end of source file (es) and end of compressed file
(ez ). Finally the adaptor interacts with all the other components, and therefore
its interface is the union of all the other component interfaces. The complete
system configuration is given by (UF | GZ | AD | DN) \{u, s, es, z , ez , d} and
the following CCS processes:

Upstream Filter (UF)

UF
def
= u.UF

Downstream Filter (DF)

DF
def
= d .DF

GZip (GZ)

GZ
def
= s.In

In
def
= s.In + es.z .Out + τ .z .Out

Out
def
= z .Out + ez .GZ + τ .GZ

Adaptor (AD)

AD
def
= u.s.ToGZ

ToGZ
def
= s.ToGZ + es.z .FromGZ

FromGZ
def
= z .FromGZ + ez .d .AD

5 Property Checking Using Assumptions

We represent component behaviour (and component assumptions later on) with
directed, rooted graphs that simply extend labelled transition systems to allow
multiple root nodes:

Definition 2 (Graphs). A (directed rooted) graph G is a tuple of the form
(NG ,LG ,AG ,RG) where NG is a set of nodes, LG is a set of labels with τ ∈ LG ,
AG ⊆ NG × LG × NG is a set of arcs and RG ⊆ NG is a nonempty set of root
nodes.

– We shall write g l→ h, if there is an arc (g , l , h) ∈ AG . We shall also write
g → h, meaning that g l→ h for some l ∈ LG .

– If t = l1 · · · ln ∈ LG
∗, then we write g

t
−→∗ h, if g l1→ · · · ln→ h. We shall also

write g −→∗ h, meaning that g
t

−→∗ h for some t ∈ LG
∗.

– We shall write g l⇒ h, if g
t

−→∗ h for some t ∈ τ∗.l .τ∗.

We define the notion of Actual Behaviour (AC) Graph for modelling compo-
nent behaviour. The term actual emphasizes the difference between component
behaviour and the intended, or assumed, behaviour of the environment. AC
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graphs model components in an intuitive way. Each node represents a state of
the component and the root node represents its initial state. Each arc represents
the possible transition into a new state where the transition label is the action
performed by the component.

Definition 3 (AC Graphs). Let < S ,L,→, s > be a labelled transition sys-
tem for component C . We call a graph of the form (S ,L,→, {s}) the ACtual
behaviour graph (AC graph) of a component C . We shall usually denote nodes
in AC with ν.

In the rest of the section we will show how component assumptions can be
derived and used for proving deadlock freedom in a system composed of a finite
number of components that communicate synchronously. Following a common
hypothesis in automated checking of properties of complex systems [6], behaviour
of all components can be finitely represented. In addition, in order to simplify
presentation, we add two constraints:

– Components can perform each computation infinitely often. In other words,
all nodes of a components AC graph are reachable from any other node.
This condition simplifies the presentation of the partial equivalence relation.
It can easily be dropped by introducing a proper treatment of ending nodes
in the definitions below.

– There are no “shared” actions. This means that every communication is only
used by two components. Again, this condition simplifies the presentation
of the checking algorithm and can be easily dropped at the expense of more
checks.

It is worth noticing that dropping the first condition has no implication
on the complexity results of this presentation, while for the second only time
complexity changes. In Section 6 we discuss more deeply the implications of
both constraints.

5.1 Deriving Assumptions for Deadlock Freedom

We wish to derive from the behaviour of a component the requirements on its
environment that guarantee deadlock freedom. A system is in deadlock when it
cannot perform any computation, thus in our setting, deadlock means that all
components are blocked waiting for an action from the environment that is not
possible. Our approach is to verify that no components under any circumstance
will block. This conservative approach suffices to prove deadlock freedom exclu-
sively from component assumptions. The payback, as we shall show, is efficiency,
while the drawback is incompleteness.

As components are combined together composing them in parallel and re-
stricting all actions, a component will not block if its environment can always
provide the actions it requires for changing state. Thus we can define the notion
of component assumption in the context of parallel composition and deadlock
freedom in the following way:
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Definition 4 (AS Graphs). Let (N ,L,A,R) be an AC graph of a component
C , then the corresponding ASsumption (AS) graph is (N ,L,A′,R) where A′ =
{(ν, a, ν′) | (ν, a, ν′) ∈ A}. We shall usually denote nodes in AS graphs with µ.

The AC and AS graphs for the components of the Compressing Proxy appear
in Figure 2.
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Fig. 2. Graphs for components GZ, AD, UF, SF (starting top-left)

5.2 Checking Assumptions

Once component assumptions have been derived, we wish to verify if the envi-
ronment satisfies these assumptions. The environment corresponds to the rest of
the components in the given context. This satisfaction relation reduces to prov-
ing if the component environment is equivalent to the component assumption
with the following notion of equivalence:

Definition 5 (Equivalence). Let G and H be graphs with the same alphabet,
i.e. LG = LH . We define ≈ to be the union of all relations ρ where RG ×RH ⊆ ρ
and if (g , h) ∈ ρ the following two conditions hold:

– g l→G g ′ ⇒ (∃ h ′ : h l⇒H h ′ ∧ (g ′, h ′) ∈ ρ) ∧ (∀ h ′ : h l⇒H h ′ ⇒ (g ′, h ′) ∈ ρ),
and

– h l→H h ′ ⇒ (∃ g ′ : g l⇒G g ′ ∧ (g ′, h ′) ∈ ρ) ∧ (∀ g ′ : g l⇒G g ′ ⇒ (g ′, h ′) ∈ ρ).

The idea behind the definition of equivalence is that the graphs can always
imitate each other. If a graph performs an action l , the other graph can also
perform l and, no matter what internal choices it may make, it will be able to
continue imitating the other graph. Note that our notion of equivalence is more
restrictive than the notion of weak bisimilarity [11] since we need to assure that a
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given behaviour must be provided by all the branches that provide the matched
portion. This is what, in the above clauses, the for-all conditions express.

We verify the equivalences between AS graphs and environments without con-
structing the whole environment behaviour. The main idea is to allow a portion
of component behaviour to provide a portion of another component assump-
tion. For this we need to provide a notion of partial equivalence that preserves
equivalence in a conservative way (Section 5.2). Once a partial equivalence has
been established, the assumption graph has been satisfied to some extent and
therefore some marking mechanism is necessary in order to record it. The check-
ing algorithm of Section 5.2 iteratively finds partial equivalences and marks the
assumptions accordingly until all assumptions have been satisfied.

Partial Equivalence. A partial equivalence between an AC and AS graph al-
lows the equivalence relation to be defined up to a certain point in the graphs.
The AC and AS graphs are not required to be completely equivalent, their root
nodes must be equivalent, the nodes reachable from root nodes too, and so on
until set of nodes called stopping nodes is reached. Stopping nodes represent the
points where the actual behaviour will stop providing the assumption’s require-
ments, hence there should be another AC graph capable of doing so from then
on. We now formally introduce these notions. The notion of stopping nodes is
needed to guarantee that the graph portions included in the partial equivalence
correspond to behaviours starting from root nodes onwards. Throughout the fol-
lowing definitions, given a relation ρ and an element a, we shall write a ∈ ρ if
there is an element b such that (a, b) ∈ ρ or (b, a) ∈ ρ.

Definition 6 (Stopping Nodes). Let G and H be graphs and ρ a relation in
NG × NH . We say that the set SG,ρ = {g | g ∈ NG ∧ g ∈ ρ ∧ g 6∈ RG ∧ (g l→
g ′ ⇒ (g ′ 6∈ ρ ∨ g ′ ∈ RG))} is the set of stopping nodes of ρ in G . We omit the
symmetric definition for SH ,ρ.

Informally a stopping node is a node in the relation ρ that is not a root node
and for which no other nodes in ρ are reachable.

Definition 7 (Partial Equivalence). Let Gac be an actual behaviour graph
with nodes νi , Gas be an assumption graph with nodes µj . We define ' to be the
union of all relations ρ such that RGac × RGas ⊆ ρ and all the following hold:

1. if ν ∈ ρ then ν ∈ RGac or there is a node ν′ ∈ ρ such that ν′ → ν.
2. if (ν, µ) ∈ ρ, ν 6∈ SGac ,ρ and µ 6∈ SGas ,ρ then

a) ν
l→ ν′ ⇒ (∃µ

′ : µ
l⇒ µ

′ ∧ (ν′, µ′) ∈ ρ) ∧ (∀µ
′ : µ

′ l⇒ µ ⇒ (ν′, µ′) ∈ ρ),
and

b) µ
l→ µ

′ ⇒ (∃ ν′ : ν
l⇒ ν′ ∧ (ν′, µ′) ∈ ρ) ∧ (∀ ν′ : ν′ l⇒ ν ⇒ (ν′, µ′) ∈ ρ).

3. if (ν, µ) ∈ ρ, ν ∈ SGac ,ρ or µ ∈ SGas ,ρ then
a) if ν ∈ RGac then (ν′ l→ ν ⇒ ∃µ

′ : µ
′ l⇒ µ), and

b) if µ ∈ RGas then (µ′ l→ µ ⇒ ∃ ν′ : ν′ l⇒ ν).
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4. if (ν, µ) ∈ ρ and ν ∈ SGac ,ρ then µ ∈ SGas ,ρ or µ ∈ RGas .
5. if (ν, µ) ∈ ρ and µ ∈ SGas ,ρ then ν ∈ SGac ,ρ or ν ∈ RGac .

We say that Gac and Gas are partially equivalent if Gac ' Gas .

The definition obviously resembles the definition of equivalence of Def. 5.
We succinctly explain the additions: A partial equivalence relation does not
necessarily cover all nodes of each graph, thus Rule 1 is needed to enforce that
the nodes that are included in the relation are connected. By Rule 2, all nodes
that are related and do not belong to the boundary where the actual behaviour
stops providing the assumption requirement, are required to be equivalent (in
the same sense as in Definition 5). Rules 3, 4 and 5 involve stopping nodes, the
main idea is that equivalence is not required from these nodes onwards. However,
stopping nodes must be related to stopping nodes, or if there is a loop (i.e. a
path that returns to a root node) in one graph, a stopping node might be related
to a root node (Rules 4 and 5). Rule 3 deals with spurious pairs of stopping and
root nodes, by requiring the stopping node to represent the end of looping paths
in the other graph. In short, all rules but 3 are intended for the partial part of
the definition while Rule 3 is intended for the equivalence part.

Checking Algorithm. The checking algorithm is very simple, it iteratively
finds partial equivalences between AC and AS graphs, marks all the fulfilled
assumptions and changes the roots of both graphs. Iteration stops when all
assumptions are completely marked. An important point is that partial equiva-
lences guarantee that the matched portions of assumptions cannot be matched
in any other way, therefore the order in which partial matches are applied does
not affect the correctness of the algorithm.

The checking algorithm that is presented below intends to clarify how the
checking of component assumptions is done and to provide a basis for correctness,
completeness and complexity. By no means is the algorithm, optimum. Many
heuristics could be built into it in order to increase time and space efficiency,
however, at this stage of our research we are interested in orders of complexity.

Definition 8 (Covered Arcs). Let Gac be an actual behaviour graph, Gas be
an assumption graph and ' a partial equivalence relation such that Gac ' Gas ,
then we say that an arc (µ, l , µ′) ∈ AGas is covered if µ, µ

′ ∈ ' and µ 6∈ SGas ,'.

Definition 9 (Checking Algorithm). Let Γac = {Gac1 ,Gac2 , . . . ,Gacn } be a
set of AC graphs and Γas = {Gas1 ,Gas2 , . . . ,Gasn } the set of corresponding AS
graphs.

1. Let G ′
aci

= Gaci for every Gaci ∈ Γac.
2. If Γas is empty then

– If G ′
aci

≈ Gaci for every Gaci ∈ Γac, return true.
– Otherwise return false.
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3. Try to find an AC graph Gaci in Γac, an AS graph Gasj in Γas , and a partial
equivalence between them (Gaci ' Gasj ). If it is not found, return false.

4. Relabel with τ every arc in Gasj that is covered by '. If all arcs in Gasj are
labeled τ remove it from Γas .

5. If Sas ∪ Sac 6= ∅ then let RGasi
= {µ | µ ∈ Sas ∨ ∃ ν ∈ Sac : ν ' µ} and let

RGaci
= {ν | ν ∈ Sac ∨ ∃µ ∈ Sas : ν ' µ}.

6. Go to step 2.

Note that the algorithm returns true only if all assumptions have been sat-
isfied and the system configuration is in a setting equivalent to its initial state
(Step 4).

We now apply the algorithm to the Compressing Proxy example. We rep-
resent partial equivalences with dotted lines for related nodes and crosses for
stopping nodes. In figure 3, the Upstream Filter matches successfully with the
Adaptor. Once the successful match has been made, both graphs are modified.
The new state of the Adaptor can be seen in figure 4.
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Fig. 3. Successful match of Upstream Filter AC and Adaptor AS graphs

Figure 4 shows how a partial match can be established between the gzip AC
graph and the Adaptor AS graph. However it is possible to see that there is
no way of extending the relation in order to cover the edge labelled es. Hence
the algorithm, after all possible attempts, terminates at Step 2 returning false;
meaning that the proposed configuration is presumably not deadlock free.
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Fig. 4. Unsuccessful match of gzip AC and Adaptor AS graphs
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Notice that the mismatch occurs precisely where the deadlock in the system
appears: The gzip may attempt to start outputting the gzipped file (z ) while the
adaptor is expecting to be synchronizing with a component inputting an end of
source (es) before the gzipped file is outputted.

As mentioned in Section 4, the adaptor must be modified to prevent system
deadlock. We propose a new Adaptor component and show that the algorithm
proves the new system is deadlock free.

New Adaptor (NAD)

NAD
def
= u.s.ToGZ

ToGZ
def
= s.ToGZ + es.z .FromGZ + τ .z .FromGZ

FromGZ
def
= z .FromGZ + ez .d .NAD + τ .s.ToGZ

In figure 5, the partial equivalence that covers the es edge allows the New
Adaptor AS graph to be updated, and Figure 6 finishes covering the AS graph
completely. The algorithm goes on matching AC and AS graphs until all arcs
of all AS graphs are covered. Thus the checking algorithm finally returns true,
meaning that the proposed system is deadlock free.
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6 Method Assessment

Up to now, we have presented a method for checking deadlock freedom that
trades off completeness for efficiency. We now show some evidence to substantiate
the positive characteristics of our approach compared to existing ones. Because
our work is in an initial stage, we cannot give, yet, empirical evidence, however
a theoretical assessment on the completeness and complexity of our approach
reveals that an implementation will yield good results.

Complexity. The algorithm presented above offers a partial solution to the
state explosion problem. In our approach, deadlock freedom is proven without
building the entire finite-state model of the system. We only construct finite
representations of each component individually: an actual behaviour graph and
an assumed behaviour graph of its context.

In standard approaches, using reachability analysis, the complete state space
of the system is built. If we consider a concurrent system composed of N compo-
nents of comparable size, whose finite state representation is of size O(K ), then
the composed system state space is O(KN ). Although there are many techniques
for reducing the state space, such as automata minimization and “on the fly”
algorithms, worst case still requires the whole state space to be analysed, leading
to a time complexity of O(KN ).

In our approach only two copies of each component are built, AC and AS
graphs, thus following the same considerations as before, the state space com-
plexity is radically improved to O(KN ). On the other hand, in terms of time
complexity, the worst case of our algorithm is O(N 3K 4log(K )), which is compa-
rable to the worst case of standard reachability. The time complexity results from
the following: Establishing a partial equivalence relation between two graphs can
be considered a variation of the standard bisimulation checking, thus its com-
plexity would be upper bounded by O(K 2log(K )) [13]. However, the partial
equivalence must be established for a pair of graphs, thus all possible pairs must
be checked (Comb(N , 2)), leading us to O(N 2(K 2log(K ))). Finally, considering
the worst case in which each partial match only covers a single arc of the NK 2

possibilities, we get O(K 2N 3(K 2log(K ))) which reduces to O(N 3K 4log(K )).

Completeness. Completeness is an important issue in our approach. We have
mentioned that our method is not complete and in this section we discuss how
incomplete it is and possible improvements. With respect to correctness, the
proof is sketched in [8].

There are two different sources of incompleteness in our approach. Firstly,
because at the beginning of Section 5 we constrained the systems for which the
method can be used. Secondly, because our checking algorithm may not be able
to conclude deadlock freedom for some deadlock free systems.

The first restriction of Section 5 that requires components to be able to per-
form each computation an infinite number of times does not affect the complete-
ness of our approach. The goal of this restriction is to simplify the presentation
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of definitions. Dropping the constraint requires defining the concept of recursive
arcs as arcs that can be taken infinite times and modifying the matching scheme:
recursive arcs of AS graphs can only be matched with recursive AC graphs while
non-recursive arcs must match with non-recursive arcs. Definitions of this kind
can be found in [9].

The restriction on shared channels is more serious. If a channel can be used
by more than two components, there is potential global non-determinism in the
overall system behaviour. A component may have the possibility of synchronizing
with one of several components leading to a non-deterministic choice on the
partner to which synchronize with. In terms of our approach, this means that
one cannot commit to which AC graph will provide the AS graph requirements.
Because the matching process guarantees that the matched arcs of the AS graph
will always be provided by the AC graph, no matching can be done. This non-
determinism introduced by shared channels is similar to the non-determinism
that makes our algorithm incomplete; therefore we will discuss a solution to
both problems farther on in the section.

Having discussed the restriction imposed on components, the incompleteness
of the checking algorithm remains. Our approach is intrinsically incomplete. We
attempt to prove a global property such as deadlock freedom in terms of local
properties of each component. That is we say that the system is deadlock free
if no system component can ever block. Obviously this is a strong sufficient
condition but by no mean a necessary one.

As a consequence, the characteristics of our setting lead to the following situ-
ation: Given a deadlock free system, the algorithm may not be able to conclude
that it is deadlock free. The algorithm reaches a state in which it cannot do
further matches between AC and AS graphs. One reason for this is that the
definition of partial match may be just too restrictive, leaving out some matches
that might be correct. Compared to the previous version of this approach [9]
the notion of partial match represents an improvement since it does not require
matching between AC and AS graphs to use the entire AC graph to prove dead-
lock freedom. Examples that can be verified with the partial matching introduced
in this paper and not with the previous versions of the approach can be found
in [8].

However, the main reason for the incompleteness of our approach is connected
to non-determinism. When there is a non-deterministic choice in component be-
haviour, when a component can interact with one of two different components,
there can be not a unique matching that guarantees how the system will evolve.
In these situations the algorithm stops without obtaining AS graphs completely
matched, and therefore not giving a conclusive answer (Note that this is still
less restrictive than the approach in [2]). In order to solve this problem we are
working in the direction of changing the main algorithm in the following way:
When there is a choice in the AS graph and it is not possible to match all
choices simultaneously, the choices must be selected in turns. For each selection,
the algorithm proceeds matching. If the checking algorithm succeeds matching
all AS graphs, it tries the rest of the choices. If checking succeeds for all choices,
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then it succeeds for the complete AS graph. This improvement on complete-
ness does not have a drastic impact on complexity. In terms of time complexity,
there is an important increase; however, in terms of space complexity, the mod-
ification presents no significant changes. No new graphs must be represented,
the algorithm has to register the non-deterministic points and go back to them.
Thus, space complexity will not jump to an exponential order, maintaining the
advantages the approach has with respect to other methods.

Summarizing, the approach we present is incomplete but we think there is
room for significant improvements. On the other hand, incompleteness is the
price that must be paid to make analysis tractable. Our method may apply only
to a subset of problems but it lowers complexity of the solution from exponential
order to a polynomial one.

7 Conclusions and Future Work

In this work we have presented a broader notion of component semantics based on
assumptions and a derived space-efficient method for proving deadlock freedom
in a component based setting. This method is based on deriving assumptions
(component requirements on its environment in order to guarantee a certain
property in a specific composition context) and checking that all assumptions
are guaranteed through a partial matching mechanism. The method is consid-
erably more efficient than methods based on system model behaviour analysis,
its space complexity is polynomial while existing approaches have exponential
orders of magnitude. It is not complete but it allows the treatment of systems
whose synchronization patterns are not trivial. We think it can be a useful tool to
be included in a verification tool-set together with complete but not always ap-
plicable ones. Our approach heavily relies on the component-based setting. This
is a very interesting context in which experimenting new verification techniques.
In fact, on one side components by definition force standardization and therefore
simplifications of the integration frameworks. On the other side there is room
for suggestions on the kind of information that a component should explicitly
carry on with it in order to be integrated in all suitable contexts. That is the
notion of component semantics is conceived in broader terms than in traditional
programming.

Dynamic properties are difficult to be proven and, as we discussed in Section
2, most of the proposed approaches to overcome state explosion are based on
characterizing local properties and then try to ensure that these properties can be
lifted up to the global system level. Our contribution is actually in this line, but
with the aim of fixing once and for all the kind of information that a component
has to carry with it independently of the contexts it will eventually be used. To
this respect, we believe that assumptions are a good way to extend component
semantics in order to verify properties more efficiently.

Ongoing and future work goes in several directions. Firstly, we are working on
the validation of the framework through experimental results. We are currently
working on an implementation of the algorithm, and considering other coordi-
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nation contexts like non-fully synchronized or asynchronous ones. In particular
we are trying to cast our approach in given architectural styles and experiment
with commercial component base frameworks as COM. Second, we wish to ex-
tend the approach to deal with other properties such as general liveness and
safety properties. To this respect we are thinking of general safety properties
expressed with property automata that may be decomposed into component as-
sumptions or specific component assumptions such as particular access protocols
for shared resources. Lastly, we are working on an extension of the algorithm in
order to improve completeness of our approach.

Acknowledgements. We would like to thank Alexander Wolf and Daniel
Yankelevich for discussions and previous work on the subject of the paper.

References

1. R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Automatic modular
verification. In Proceedings of CONCUR ’99: Concurrency Theory, 1999.

2. F. Arbab, F.S. de Boer, and M. M. Bonsangue. A logical interface description
language for components. In COORDINATION’00, vol. 1906 of LNCS. Springer,
2000.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.J. Hwang. Symbolic
model checking : 1020 and beyond. Information and Computation, 98:142–170,
June 1992.

4. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: a seman-
tics based tool for the verification of concurrent systems. ACM Transactions on
Programming Languages and Systems, 15(1):36–72, January 1993.

5. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6), November 1995.

6. D. Giannakopoulou, J. Kramer, and S.C. Cheung. Analysing the behaviour of
distributed systems using tracta. Automated Software Engineering, 6(1):7–35, 1999.
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