Specification and Analysis of the
AER/NCA Active Network Protocol Suite in
Real-Time Maude

Peter Csaba Olveczky“, Mark Keaton?, José Meseguer!,
Carolyn Talcott?, and Steve Zabele?

1 Computer Science Laboratory, SRI International, Menlo Park, CA 94025
2 Litton-TASC Inc., Reading, MA 01867
3 Computer Science Department, Stanford University, Stanford, CA 94305
4 Department of Informatics, University of Oslo, Norway

Abstract. This paper describes the application of the Real-Time Maude
tool and the Maude formal methodology to the specification and analy-
sis of the AER/NCA suite of active network multicast protocol compo-
nents. Because of the time-sensitive and resource-sensitive behavior and
the composability of its components, AER/NCA poses challenging new
problems for its formal specification and analysis. Real-Time Maude is a
natural extension of the Maude rewriting logic language and tool for the
specification and analysis of real-time object-based distributed systems.
It supports a wide spectrum of formal methods, including: executable
specification; symbolic simulation; and infinite-state model checking of
temporal logic formulas. These methods complement those offered by
finite-state model checkers and general-purpose theorem provers. Real-
Time Maude has proved to be well-suited to meet the AER/NCA model-
ing challenges, and its methods have been effective in uncovering subtle
and important errors in the informal use case specification.

1 Introduction

This paper describes the application of the Real-Time Maude tool [T4] and the
Maude formal methodology [4] to the specification and analysis of the AER/NCA
suite of active network communication protocol components [8[1] which collec-
tively implement a scalable and reliable multicast capability using active ele-
ments in the network. Being a very advanced and sophisticated suite of protocols
that run in a highly distributed and modular fashion, the AER/NCA suite poses
challenging new problems for formal specification and analysis including:

— Time-sensitive behavior, including delay, delay estimation, timers, ordering,
and resource contention;

— Resource-sensitive behavior, including capacity, latency, congestion/cross-
traffic, and buffering;

H. Hussmann (Ed.): FASE 2001, LNCS 2029, pp. 333-B347] 2001.
© Springer-Verlag Berlin Heidelberg 2001

334 P.C. Olveczky et al.

— Both performance and correctness are critical metrics;

— Composability issues: modeling and analyzing both individual protocol com-
ponents and their aggregate behavior; and supporting reuse for developing
alternative protocols.

Maude is a language and high-performance system based on rewriting logic [3].
As such it naturally supports specification and analysis of object-based dis-
tributed systems by supporting a wide spectrum of formal methods [4I11], in-
cluding executable specification; symbolic simulation; model checking; and for-
mal proof. Real-Time Maude naturally extends Maude to support the above
formal methodology to distributed real-time and hybrid systems [I4]12].

Real-Time Maude has proved to be well-suited to meet the above challenges.
The active network and performance aspects have been naturally addressed by
the flexibility of the Maude’s distributed object model that made it easy to
include active elements and resources as objects. The time- and resource-sensitive
behavior is expressed naturally by timed rewrite rules. The composability issues
were well addressed by Maude’s support for multiple class inheritance.

The starting point of the formal specification effort was an informal specification
consisting of a set of use cases. Although use cases are widely used as a software
design technique, the experience gained from the present work indicates that
they are not well suited for modeling complex distributed systems. To under-
stand the system behavior, state transition diagrams had to be developed by the
protocol designers. The Maude specification provided a natural formalization of
the informal state transition diagrams and followed closely the designers’ intu-
itions. In hindsight, it seems clear that, for distributed applications of this kind,
the executable state-transition style of the Maude specification is a much more
effective starting point for an implementation than use cases.

The Maude formal methodology complements other formal methods approaches
such as model checking tools [7}2]918] and general purpose theorem provers [16]
1716]. It provides a flexible middle ground extending the advantages of model
checking to a wide range of infinite state systems. Furthermore, the simple for-
mal semantics of rewriting logic and the underlying equational and rewriting
techniques provide a natural basis for a range of automated and interactive de-
duction techniques.

2 Specifying and Analyzing Real-Time Systems in
Rewriting Logic

In rewriting logic [10] distributed systems are specified by rewrite theories of the
form (¥, E, R), with (X, E) an equational theory specifying the system’s state
space as an algebraic data type, and R a collection of rewrite rules specifying
the system’s local transitions. This specification style can be specialized to dis-
tributed real-time and hybrid systems by using real-time rewrite theories [15].
The Real-Time Maude language and tool [T4/12] can then be used for specifying,
simulating, and analyzing such systems.

The AER/NCA Active Network Protocol Suite in Real-Time Maude 335

2.1 Real-Time Rewrite Theories

In [I5] we have proposed modeling real-time and hybrid systems in rewriting
logic as real-time rewrite theories. These are rewrite theories containing:

— a specification of a Time data type specifying the time domain;

— a sort System with no subsorts, and a free constructor {_} : State — System
(for State the sort of the global state) with the intended meaning that {t¢}
denotes the whole system, which is in state ¢;

— instantaneous rewrite rules that model instantaneous change and are as-
sumed to take zero time; and

— tick (rewrite) rules that model the elapse of time on a system, and have the
form

[0 Lt 20} "™ (a2 E cond,

with 77(21,...,2z,) a term of sort Time denoting the rule’s duration. The
use of the operator {_} in the tick rules ensures uniform time advance by
the global state always having the form {¢}.

In [T5] we have shown that a wide range of models of real-time and hybrid systems
can be expressed quite naturally and directly as real-time rewrite theories. We
have also shown in [15] that real-time rewrite theories can be reduced to ordinary
rewrite theories by adding an explicit clock to the global state in a way that
preserves all their expected properties. This transformation introduces a new
constructor (-,) : System Time — ClockedSystem, replaces each tick rule of the
form [1] : {t} = {t'} if cond with a rule of the form [I] : ({t},z) — ({t'}, 2+
71) if cond (for z a new variable), and leaves the rest of the theory unchanged.

2.2 Real-Time Maude

The Real-Time Maude specification language and analysis tool [12[14] is built
on top of the rewriting logic language Maude [3]. Real-Time Maude supports the
specification of real-time rewrite theories in timed modules and object-oriented
timed modules, which are transformed into equivalent Maude modules.

2.3 Specifying Concurrent Objects

Real-Time Maude extends Full Maude [B[3]. We recall how concurrent objects
are specified in object-oriented modules in Full Maude. A class declaration

class C | atty : s1, ... , att, : s, .

336 P.C. Olveczky et al.

declares a class C' with attributes att; to att, of sorts s; to s,. An object of class
C is represented as a term < O : C | atty : valy, ..., att, : val, >, where O is the
object’s name or identifier, and where val; to wval, are the current values of the
attributes att; to att,. In a concurrent object-oriented system, the state, which is
usually called a configuration, has typically the structure of a multiset made up
of objects and messages, and where multiset union is denoted by an associative
and commutative juxtaposition operator (empty syntax). The dynamic behavior
of concurrent object systems is axiomatized by specifying each of its concurrent
transition patterns by a rewrite rule. For example, the rule

rl [1] : m(O,w) <0 :C | al : x, a2 : y, a3 : z > =>
<0:Clal:x+w,a2:y, a3 : z>mn(y,x)

defines a (family of) transition(s) in which a message m having arguments 0 and w
is consumed by an object 0 of class C, with the effect of altering the attribute a1 of
the object and of generating a new message m’ (y,x). By convention, attributes,
such as a3 in our example, whose values do not change and do not affect the
next state of other attributes need not be mentioned in a rule. Attributes like
a2 whose values influence the next state of other attributes or the values in
messages, but are themselves unchanged, may be omitted from righthand sides.

2.4 Specification of Object-Oriented Real-Time Systems

In Real-Time Maude, tick rules of the form [I] : {t} —= {t'} if cond are written
with the syntax

crl [1] : {t} => {t'} in time 7; if cond .

(and with similar syntax for unconditional rules). We recall here some of the
techniques outlined in [15] for specifying object-oriented real-time systems used
in this case study. Such systems are specified as timed object-oriented modules
in Real-Time Maude. The single tick rule in the AER/NCA specification is

var 0OC : ObjConf .
crl [tick] : {0C} => {delta(0OC, mte(0C))} in time mte(OC)
if mte(0C) =/= INF and mte(0C) =/= 0 .

The use of the variable OC of sort ObjConf (denoting configurations consisting
of objects only) requires that the global state only consists of objects when the
tick rule is applied, and therefore forces messages to be treated without delay,
because the above rule will not match and therefore time will not advance when
there are messages present in the state.

The function delta models the effect of time elapse on a state, the function mte
denotes the mazimal time elapse possible before some instantaneous action must
be taken, and INF is an infinity value. The functions delta and mte distribute
over the objects in a configuration as follows:

The AER/NCA Active Network Protocol Suite in Real-Time Maude 337

op delta : Configuration Time -> Configuration .
op mte : Configuration -> TimeInf .

vars NECF NECF’ : NEConfiguration . var R : Time .

eq delta(none, R) = none .

eq delta(NECF NECF’, R) = delta(NECF, R) delta(NECF’, R) .
eq mte(none) = INF .

eq mte (NECF NECF’) = min(mte(NECF), mte(NECF’)) .

To completely specify these functions, they must then be defined for single ob-
jects as illustrated in Section [£3]

2.5 Rapid Prototyping and Formal Analysis in Real-Time Maude

The Real-Time Maude analysis tool supports a wide range of techniques for
formally analyzing timed modules which we summarize below.

Rapid Prototyping. The Real-Time Maude tool transforms timed modules
into ordinary Maude modules that can be immediately executed using Maude’s
default interpreter, which simulates one behavior—up to a given number of
rewrite steps to perform—from a given initial state. The tool also has a default
timed execution strategy which controls the execution by taking the elapsed time
in the rewrite path into account.

Model Checking. Real-Time Maude provides a variety of search and model
checking commands for further analyzing timed modules by exploring all possi-
ble behaviors—up to a given number of rewrite steps, duration, or satisfaction of
other conditions—that can be nondeterministically reached from the initial state.
In particular, the tool provides model checking facilities for model checking cer-
tain classes of real-time temporal formulas [I4]. In this paper we will model check
temporal properties of the form p UStable<, p’, where p and p’ are patterns,
and UStable<, is a temporal “until/stable” operator. A pattern is either the
constant noTerm (which is not matched by any term), the constant anyPattern
(which is matched by any term), a term (possibly) containing variables, or has
the form ¢(Z) where cond(Z). The temporal property p UStable<, p’ is satis-
fied by a real-time rewrite theory with respect to an initial term %y if and only
if for each infinite sequence and each non-extensible finite sequence

(to,0) — (t1, 1) —> (t2, 12) —> -+~

of one-step sequential ground rewrites [10] in the transformed “clocked” rewrite
theory (see Section 2.1), there is a k with r; < r such that #, matches p’, and
t; matches p for all 0 < ¢ < k, and, furthermore, if ¢; matches p’ then so does
for each [> j with r; < r. That is, each state in a computation matches p until
p’ is matched for the first time (by a state with total time elapse less than or
equal to r), and, in addition, p’ is matched by all subsequent states with total
time elapse less than or equal to r.

338 P.C. Olveczky et al.

Application-Specific Analysis Strategies. A Real-Time Maude specifica-
tion can be further analyzed by using Maude’s reflective features to define
application-specific analysis strategies. For that purpose, Real-Time Maude pro-
vides a library of strategies—including the strategies needed to execute Real-
Time Maude’s search and model checking commands—specifically designed for
analyzing real-time specifications. These strategies are available in the Real-
Time Maude module TIMED-META-LEVEL, allowing the strategy library to be
reused in modules importing TIMED-META-LEVEL. Section (.2 gives an example
of an application-specific strategy which was easily defined (in 35 lines of Maude
code) by reusing key functions from TIMED-META-LEVEL.

3 The AER/NCA Protocol Suite

The AER/NCA protocol suite [18] is a new and sophisticated protocol suite
for reliable multicast in active networks. The suite consists of a collection of
composable protocol components supporting active error recovery (AER) and
nominee-based congestion avoidance (NCA) features, and makes use of the pos-
sibility of having some processing capabilities at “active nodes” between the
sender and the receivers to achieve scalability and efficiency.

The goal of reliable multicast is to send a sequence of data packets from a sender
to a group of receivers. Packets may be lost due to congestion in the network,
and it must be ensured that each receiver eventually receives each data packet.
Existing multicast protocols are either not scalable or do not guarantee delivery.
To achieve both reliability and scalability, Kasera et al. [§] have suggested the use
of active services at strategic locations inside the network. These active services
can execute application-level programs inside routers, or on servers co-located
with routers along the physical multicast distribution tree. By caching packets,
these active services can subcast lost packets directly to “their” receivers, thereby
localizing error recovery and making error recovery more efficient. Such an active
service is called a repair server. If a repair server does not have the missing packet
in its cache, it aggregates all the negative acknowledgments (NAKs) it receives,
and sends only one request for the lost packet towards the sender, solving the
problem of feedback implosion at the sender.

3.1 Informal Description of the Protocol
The protocol suite consists of the following four composable components:

— The repair service (RS) component deals with packet losses and tries to en-
sure that each packet is eventually received by each receiver in the multicast
group.

— Rate control (RC): The loss of a substantial number of packets indicates
over-congestion due to a too high frequency in the sending of packets. The
rate control component dynamically adjusts the rate by which the sender

The AER/NCA Active Network Protocol Suite in Real-Time Maude 339

sends new packets, so that the frequency decreases when many packets are
lost, and increases when few packet losses are detected.

— Flinding the nominee receiver (NOM): The sender needs feedback about dis-
covered packet losses to adjust its sending rate. However, letting all receivers
report their loss rates would result in too many messages being sent around.
The protocol tries to find the “worst” receiver, based on the loss rates and
the distance to the sender. Then the sender takes only the losses reported
from this nominee receiver into account when determining the sending rate.

— Finding round trip time values (RTT): To determine the sending rate, the
nominee, and how frequently to check for missing packets, knowledge about
the various round trip times (the time it takes for a packet to travel from a
given node to another given node, and back) in the network is needed.

These four components are defined separately, each by a set of use cases, in the
informal specification [1[12], and are explained in [T2/8]. In our formal specifica-
tion the rewrite rules closely correspond to the use cases.

4 Formal Specification of the AER/NCA Protocol Suite
in Real-Time Maude

We summarize in this section the Real-Time Maude specification of the
AER/NCA protocol suite, which is described in its entirety in [I2JI3]. Although
the four protocol components are closely inter-related, it is nevertheless impor-
tant to analyze each component separately, as well as in combination.

4.1 Modeling Communication and the Communication Topology

We abstract away from the passive nodes in the network, and model the multicast
communication topology by the multicast distribution tree which has the sender
as its root, the receivers in the multicast group as its leaf nodes, and the repair
servers as its internal nodes. The appropriate classes for these objects are defined
as follows, where the sorts 0idSet and Def0id denote, respectively, sets of object
identifiers and the object identifiers extended with a default value noOid:

class Sendable | children : OidSet .
class Receivable | repairserver : Def0Oid .

class Sender . subclass Sender < Sendable .
class Receiver . subclass Receiver < Receivable .
class Repairserver . subclass Repairserver < Sendable Receivable .

Packets are sent through links, which model edges in a multicast distribution
tree. The time it takes for a packet to arrive at a link’s target node depends on
the size of the packet, the number of packets already in the link, and the speed
and propagation delay of the link. All these factors affect the degree of congestion
and must be modeled to faithfully analyze the AER/NCA protocol. The class

340 P.C. Olveczky et al.

LINK models all these aspects. The attempt to enter a packet p into the link
from a to b is modeled by the message send(p, a, b). This message is treated by
the link from a to b by discarding the packet if the link is full, and otherwise by
delivering it—after a delay corresponding to the transmission delay—Dby sending
the message p from a to b to the global configuration, where it should then be
treated by object b.

4.2 The Class Hierarchy

The Real-Time Maude specification is designed, using multiple class inheritance,
so that each of the four protocol components RT'T, NOM, RC, and RS can be
executed separately as well as together in combination. Figure[Il shows the class
hierarchy for sender objects, which allows for maximal reuse of transitions which
have the same behavior when a component is executed separately and when it
is executed together with the other components. The class hierarchies for repair
servers and receivers are entirely similar.

Sendable
Sender
\
RTTsender NOMsender RCsender RSsender
SenderComblned

RTTsenderAlone NOMsenderAlone RCsenderAlone RSsenderAlone

Fig. 1. The sender class hierarchy.

4.3 Specifying the Receiver in the Repair Service Protocol

To exemplify the Real-Time Maude specification style, we present some parts of
the specification of the receiver objects in the RS protocol. The receiver receives
data packets and forwards them to the receiver application in increasing order of
their sequence numbers. Received data packets that cannot be forwarded to the
application because some data packets with lower sequence numbers are missing,
are stored in the dataBuffer attribute, and the smallest sequence number among
the non-received data packets is stored in the readNextSeq attribute. When the
receiver detects the loss of a data packet, it waits a small amount of time (in

The AER/NCA Active Network Protocol Suite in Real-Time Maude 341

case some of its “siblings” or its repair server also have detected the loss) before
sending a NAK-request for the lost packet to its repair server. The repair server
then either subcasts the data packet from its cache or forwards the request
upstream. The receiver retransmits its request for the missing data packet if it
does not receive a response to the repair request within a reasonable amount of
time.

We store, for each missing data packet, the information about the recovery at-
tempts for the missing data packets in a term

info(seqNo, supprTimer, retransTimer, NAKcount),

where seqNo is the sequence number of the data packet, supprTimer is the
value of the suppression timer for the data packet (this value is either the value
noTimeValue when the timer is turned off, or the time remaining until the timer
expires), retrans Timer is the value of the retransmission timer of the data packet,
and NAKcount is the NAK count of the data packet, denoting how many times
a repair for the data packet has been attempted. Elements of a sort DataInfo
are multisets of info terms, where multiset union is denoted by an associative
and commutative juxtaposition operator.

The receiver class in the RS component is declared as follows:

class RSreceiver |
fastRepairFlag : Bool,

readNextSeq : NzNat, **x first missing data packet
retransTO : Time, *** time before resending NAK packet
dataBuffer : MsgConf, **xx buffered dataPackets

dataInfo : DataInfo . *** store info about repairs

subclass RSreceiver < Receiver .

class RSreceiverAlone . subclass RSreceiverAlone < RSreceiver .

As an example of the modeling of the use cases in the informal specification,
we show the use case and corresponding rule that describes what happens when
the suppression timer for a missing data packet expires. That is, when the sec-
ond parameter of an info-term is 0. The use case in the informal AER/NCA
specification is given as follows:

B.5 This use case begins when the NAK suppression timer for a missing
data packet expires. The following processing is performed (seq
is the sequence number of the missing data packet):

if ((data packet seq is currently buffered) OR (seq < readNextSeq))

{ End Use Case }

if (NAK count for data packet seq > 48)

{ Error, connection is broken, cannot continue }

Unicast a NAK packet for data packet seq with the receiver’s NAK
count and fastRepairFlag to repairServer

Start a NAK retransmission timer for data packet seq with a
duration of retransTO

342 P.C. Olveczky et al.

This use case is modeled in Real-Time Maude as follows:

vars Q Q’ : 0id . wvars NZN NZN’ : NzNat . var X : Bool .
var MC : MsgConf . wvars DI DI’ : Datalnfo . var N : Nat .
var DT : DefTime . var CF : Configuration . var R : Time .
op ERROR : -> Configuration .

rl [B5]
{< Q : RSreceiver | readNextSeq : NZN, fastRepairFlag : X,
dataBuffer : MC, repairserver : Q’, retransTO : R,
dataInfo : (info(NZN’, O, DT, N) DI) > CF }
=>
{if (NZN’ seqNoIn MC) or (NZN’ < NZN) then
(< Q : RSreceiver | dataInfo : (info(NZN’, noTimeValue, DT, N) DI) > CF)
else (if 48 < N then ERROR
else (< Q : RSreceiver | datalnfo :
(info(NZN’, noTimeValue, R, N) DI) >
send (NAKPacket (NZN’, N, X), Q, Q’) CF) fi) fi} .

The functions mte and delta define the “timed” behavior of receiver objects
of class RSreceiverAlone as follows. The only time-dependent values are the
two timers in the information state for each missing data packet. The function
mte ensures that the tick rule in Section 241 stops the time advance when a
timer expires, and the function delta updates the timers according to the time
elapsed:

eq mte(< Q : RSreceiverAlone | dataInfo : DI >) = mte(DI) .
op mte : DataInfo -> TimelInf .
eq mte((none) .DataInfo) = INF .
ceq mte(DI DI’) = min(mte(DI), mte(DI’)) if DI =/= none and DI’ =/= none .
eq mte(info(NZN, DT, DT’, N)) =
min(if DT =/= noTimeValue then DT else INF fi,
if DT’ =/= noTimeValue then DT’ else INF fi) .

eq delta(< Q : RSreceiverAlone | datalnfo : DI >, R) =
< Q : RSreceiverAlone | datalnfo : delta(DI, R) > .
op delta : Datalnfo Time -> Datalnfo .

5 Formal Analysis of the AER/NCA Protocol Suite in
Real-Time Maude

This section illustrates how the AER/NCA protocol has been subjected to rapid
prototyping and formal analysis. The analysis is described in full detail in [12].

5.1 Rapid Prototyping

To execute the repair service protocol we added a sender application object and
a number of receiver application objects, and defined an initial state RSstate.
The sender was supposed to use the protocol to multicast 21 data packets to
the receiver applications. Rewriting this initial state should have led to a state
where all receiver applications had received all packets. Instead, the execution
gave the following result:

Maude> (rew- [3000] RSstate .)

result ClockedSystem : {ERROR} in time 17841

The AER/NCA Active Network Protocol Suite in Real-Time Maude 343

By executing fewer rewrites we could follow the execution leading to the ERROR-
state, and could easily find the errors in the formal and informal specifications.
Executing the repair service protocol with a different initial state revealed an-
other undesirable behavior where a lost packet was never repaired, and we could
again easily trace the error.

The other protocol components, as well as the composite protocol, have been
prototyped by executing initial states, with the desired results:

— Prototyping the RT'T protocol resulted in states having the expected values
of the round trip times the protocol was supposed to find.

— The NOM protocol was prototyped by placing in the environment object
(which defines the interface to the other components when a component is
executed and analyzed separately) the set of data packets which would be
received by the receivers. That way, we knew which object should be the
nominee receiver at any time, and executing the protocol indeed produced
states having the expected nominees.

— The rate control protocol was prototyped by attempting to send a new data
packet every millisecond, and by recording in the state the time stamp of
each new data packet sent. The list of sending times could then be inspected
to get a feeling for the sending rate, which, as expected, grew (seemingly)
exponentially in the beginning.

— The composite protocol was executed with the initial state having the same
topology as the one for which execution of the stand-alone RS protocol failed.
However, the composite protocol managed to deliver all data packets to each
receiver. This was due to the presence of the rate control component, that
adjusted the sending rate to avoid the packet losses which led to the faulty
behavior in the execution of the RS protocol component.

5.2 Formal Analysis

To substantially increase our confidence in the specifications before costly at-
tempts at formal proofs of correctness, the specifications can be subjected to
further formal analysis using the search and model checking commands and the
meta-programming features of Real-Time Maude.

For example, the RTT protocol should find in the sourceRTT attribute the round
trip times from each node to the sender. Likewise, each receiver or repair server
should have a maxUpRTT value equal to the maximal round trip time from any
of its “siblings” to its immediate upstream node. As already mentioned, exe-
cuting some initial states using Real-Time Maude’s default interpreter indeed
resulted in states with the expected values of these attributes. To gain further
assurance about the correctness of the specification, we have explored not just
one behavior, arbitrarily chosen by Real-Time Maude’s default interpreter, but
all possible behaviors—relative to certain conditions—starting from the initial
state. The main property the stand-alone RTT protocol should satisfy is that,
as long as at most one packet travels in the same direction in the same link at
the same time, the following properties hold:

344 P.C. Olveczky et al.

— each rewrite path will reach a state with the desired sourceRTT and
maxUpRTT values within given time and depth limits (reachability); and

— once these desired values have been found, they will not change within the
given time limit (stability).

We defined an initial test configuration RTTstate with nodes ’a, ’b, ..., ’g,
and where, in otherwise empty links, the round trip times to the source from
the nodes ’c, ’d, and ’e are, respectively, 58, 106, and 94, and the maxUpRTT
values of these nodes are, respectively, 58, 48, and 48. In a module varRTT
which extends the specification of the RTT protocol with the declaration of the
variables ATTS1, ATTS2, and ATTS3 of the sort AttributeSet of sets of object
attributes, the following pattern is matched by all states where the nodes ’c,
’d, and ’e have the above sourceRTT and maxUpRTT values:

{< ’c : RTTrepairserverAlone | sourceRIT : 58, maxUpRTT : 58, ATTS1 >
< ’d : RTTrepairserverAlone | sourceRTT : 106, maxUpRTT : 48, ATTS2 >
< ’e : RTTreceiverAlone | sourceRTT : 94, maxUpRTT : 48, ATTS3 > CF}.

The desired property that the RTT protocol should satisfy can therefore be given
by the following temporal formula, where P abbreviates the above pattern:

anyPattern UStable< imerimit P-

Although this property can be model checked by giving a Real-Time Maude
command, the tool executes the command too slowly, because it is too general
and performs tests which are not necessary in our specification. Instead, we
can reuse Real-Time Maude’s strategy library to easily define a model checking
function ustable in a module extending the module TIMED-META-LEVEL, where

ustable(mod, to, n, timeLimit, pattern)

gives the set of terms representing rewrite paths using the module mod, starting
from the initial term ¢y, which invalidate the reachability-and-stability property
anyPattern UStable<imerimi pattern, and which have maximal bound n on
the number of rewrites in the path (with 0 meaning unbounded). To further
enhance efficiency, ustable does not return all “bad” states, but only the first
state(s) found which invalidate the property. The search returns emptyTermSet
if the property holds for all paths satisfying the given length bound.

Using Full Maude’s up function to get the meta-representation of a term, we can
check whether the above desired property holds in all rewrite paths having total
time elapse less than or equal to 400, starting from state RTTstate:

Maude> (red ustable(varRTT, up(varRTT, RTTstate), O, {’400}’Nat,
up (varRTT,
{< ’c : RTTrepairserverAlone | sourceRTT : 58, maxUpRTT : 58, ATTS1 >
< ’d : RTTrepairserverAlone | sourceRTT : 106, maxUpRTT : 48, ATTS2 >
< ’e : RTTreceiverAlone | sourceRTT : 94, maxUpRTT : 48, ATTS3 > CF})) .)

result TermSet : emptyTermSet

The AER/NCA Active Network Protocol Suite in Real-Time Maude 345

No path not satisfying the desired property was found, increasing our confidence
in the correctness of the protocol. To gain further assurance, we could analyze
executions starting with other states.

The search function ustable has also been used to show the undesired prop-
erty that there is a behavior—after some receiver has been nominated and is
aware of it—in which no receiver has its isNominee flag set to true. This prop-
erty can be shown by finding a counterexample to the opposite claim, namely
anyPattern UStable<,, P’, where P’ is a pattern stating that some receiver
has its isNominee flag set to true. In the module varNOM, which extends the
NOM protocol with a declaration of a variable ATTS1 of sort AttributeSet, the
pattern {< Q : NOMreceiverAlone | isNominee : true, ATTS1 > CF}isthe
desired pattern P’, which is matched by receivers whose nominee flag is set to
true. The property anyPattern UStable<., P’ does not hold, and is refuted by
providing a counterexample:

Maude> (down varNOM : red ustable(varNOM, up(varNOM, NOMstate), O, noTerm,
up(varNOM, {< Q : NOMreceiverAlone | isNominee : true, ATTS1 > CF})) .)

result ClockedSystem :

{< ’e : NOMreceiverAlone | isNominee : false, ... >

< ’a : NOMsenderAlone | csmNominee : ’e, ... >

< ’b : NOMreceiverAlone | isNominee : false, ... >

< ’f : NOMreceiverAlone | isNominee : false, ... >

< ’g : NOMreceiverAlone | isNominee : false, ... >
(NAMPacket (true) from ’a to ’e) ... } in time 19504

The NOM protocol has been subjected to further analysis where we have model
checked the liveness property that a nominee receiver is always found within a
certain amount of time.

6 Conclusions

The work presented in this paper has tested the Real-Time Maude tool and
Maude formal methodology with a challenging distributed real-time application,
uncovering subtle and important errors in the informal specification. Two key
issues for adequate formalization and analysis are the appropriateness and use-
fulness of the resulting specification, and the adequacy of the tool support. In
particular, the formalization needs to be at the right level of abstraction to
represent the essential features—including in this case resource contention and
real-time behavior—without being overwhelmed by the complex nature of the
system being modeled. In this regard, the modularity and composability of the
specifications for each component made it easy to understand and analyze indi-
vidual component and aggregate system behaviors. Furthermore, the flexibility
and extensibility of the Real-Time Maude strategy library made it easy to carry
out complex analyses tailored to the specific application that would have been
infeasible using general purpose algorithms.

There are a number of interesting directions for future work. One is further exten-
sions and optimizations of the Real-Time Maude tool. Another direction involves

346 P.C. Olveczky et al.

developing module calculi suitable for composition of protocol components, pro-
viding additional composition mechanisms beyond multiple inheritance. A third
research direction is providing additional analytical capabilities, including ab-
straction transformations that can map some problems into decidable problems,
and proof techniques for reasoning about an even richer class of properties.

Acknowledgments. The authors would like to thank S. Bhattacharyya for
his help in the initial stages of designing the Maude specification, and Narciso
Marti-Oliet for his comments on earlier versions of this paper. This work has
been supported by DARPA through Rome Labs. Contract F30602-97-C-0312,
by ONR Contract N00014-99-C-0198, and by NSF grants CCR-9900334 and
CCR-9900326.

References

1. Active error recovery (AER): AER/NCA software release version 1.1.
http://www.tascnets.com/panama/AER/|, May 2000.

2. E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In A Decade of Concurrency - Reflections and Perspectives, volume 803
of Lecture Notes in Computer Science. Springer, 1994.

3. M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and Programming in Rewriting Logic. Computer Science
Laboratory, SRI International, Menlo Park, 1999. http://maude.csl.sri.com.

4. G. Denker, J. Meseguer, and C. L. Talcott. Formal specification and analysis of
active networks and communication protocols: The Maude experience. In DARPA
Information Survivability Conference and Ezposition (DISCEX 2000). IEEE, 2000.

5. F. Durdn. A Reflective Module Algebra with Applications to the Maude Language.
PhD thesis, University of Malaga, 1999.

6. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

7. G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279-295, 1997.

8. S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J. Kurose, D. Towsley, and
S. Zabele. Scalable fair reliable multicast using active services. Technical Report
TR 99-44, University of Massachusetts, Amherst, CMPSCI, 1999.

9. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Software Tools for
Technology Transfer, 1(1-2):134-152, October 1997. See also UPPAAL home-page
at http://www.uppaal.com/.

10. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73—-155, 1992.

11. J. Meseguer. Rewriting logic and Maude: a wide-spectrum semantic framework for
object-based distributed systems. In S. Smith and C.L. Talcott, editors, Formal
Methods for Open Object-based Distributed Systems, FMOODS 2000, pages 89-117.
Kluwer, 2000.

12. P. C. Olveczky. Specification and Analysis of Real-Time and Hybrid Systems in
Rewriting Logic. PhD thesis, University of Bergen, 2000. Available at
http://maude.csl.sri.com/papers.

http://www.tascnets.com/panama/AER/
http://maude.csl.sri.com
http://www.uppaal.com/
http://maude.csl.sri.com/papers

13.

14.

15.

16.

17.

18.

The AER/NCA Active Network Protocol Suite in Real-Time Maude 347

P. C. Olveczky. Specifying and analyzing the AER/NCA active network protocols
in Real-Time Maude. http://www.csl.sri.com/ peter/AER/AER.html, 2000.

P. C. Olveczky and J. Meseguer. Real-Time Maude: A tool for simulating and an-
alyzing real-time and hybrid systems. In Third International Workshop on Rewrit-
ing Logic and its Applications, 2000. To appear in Electronic Notes in Theoretical
Computer Science.

P. C. Olveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. To appear in Theoretical Computer Science. Available at
http://maude.csl.sri.com/papers|, September 2000.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
Automated Deduction-CADE-11, volume 607 of Lecture Notes in Artificial Intelli-
gence, pages 748-752, 1992.

L. C. Paulson. Isabelle, volume 828 of Lecture Notes in Computer Science. Springer
Verlag, 1994.

S. Yovine. Kronos: A verification tool for real-time systems. Software Tools for
Technology Transfer, 1(1/2), 1997. See also Kronos home-page at
http://www-verimag.imag.fr/TEMPORISE/kronos/.

http://www.csl.sri.com/~peter/AER/AER.html
http://maude.csl.sri.com/papers
http://www-verimag.imag.fr/TEMPORISE/kronos/

	Introduction
	Specifying and Analyzing Real-Time Systems in Rewriting Logic
	Real-Time Rewrite Theories
	Real-Time Maude
	Specifying Concurrent Objects
	Specification of Object-Oriented Real-Time Systems
	Rapid Prototyping and Formal Analysis in Real-Time Maude

	The AER/NCA Protocol Suite
	Informal Description of the Protocol

	Formal Specification of the AER/NCA Protocol Suite in Real-Time Maude
	Modeling Communication and the Communication Topology
	The Class Hierarchy
	Specifying the Receiver in the Repair Service Protocol

	Formal Analysis of the AER/NCA Protocol Suite in Real-Time Maude
	Rapid Prototyping
	Formal Analysis

	Conclusions

