
Enforcing Safety Properties Using Type
Specialization

Peter Thiemann

Universität Freiburg
thiemann@informatik.uni-freiburg.de

Abstract. Type specialization can serve as a powerful tool in enforcing
safety properties on foreign code. Using the specification of a monitoring
interpreter, polyvariant type specialization can produce compiled code
that is guaranteed to obey a specified safety policy. It propagates a secu-
rity state at compile-time and generates code for each different security
state. The resulting code contains virtually no run-time operations on
the security state, at the price of some code duplication. A novel ex-
tension of type specialization by intersection types limits the amount of
code duplication considerably, thus making the approach practical.

A few years back, mobile code was merely an exciting research subject. Mean-
while, the situation has changed dramatically and mobile code is about to invade
our everyday lives. Many applications load parts of their code —or even third-
party extension modules— from the network and run it on the local computer.
Web browsers are the most prominent of these applications, but many others
(e.g., mobile agents) are gaining importance quickly.

The advent of these applications and related incidents has brought an in-
creasing awareness of the problems involved in executing foreign and potentially
hostile programs. Clearly, it should be guaranteed that foreign code does not
compromise the hosting computer, by crashing the computer (data integrity),
by accessing/modifying data that it is not supposed to access (memory integrity)
or —more generally— by using resources that it is not supposed to use. A gen-
erally accepted way of giving this guarantee is to execute the code in a sand
box. Conceptually, a sand box performs monitored execution. It tracks the exe-
cution of foreign code and stops it if it attempts an illegal sequence of actions.
A property that can be enforced in this way is called a safety property.

Such sand box environments have been conceived and implemented with
widely different degrees of sophistication. The obvious approach to such a sand
box is to perform monitoring by interpreting the code. However, while the ap-
proach is highly flexible it involves a large interpretation overhead. Another
approach, taken by the JDK [14], is to equip strategic functions in a library with
calls to a security manager. A user-provided instantiation of the security man-
ager is then responsible to keep track of the actions and to prevent unwanted
actions. The latter approach is less flexible, but more efficient. Java solves the
problem of data and memory integrity statically by subjecting all programs to
a bytecode verification process [18].

D. Sands (Ed.): ESOP 2001, LNCS 2028, pp. 62–76, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Enforcing Safety Properties Using Type Specialization 63

Related Work

The Omniware approach [35, 1, 19] guarantees memory integrity by imposing a
simple program transformation on programs in assembly language. The trans-
formation confines a foreign module to its own private data and code segment.
The approach is very efficient, but of limited expressiveness.

Schneider [31] shows that all and only safety properties can be decided by
keeping track of the execution history. The history is abstracted into a (not
necessarily finite) state automaton. The SASI project implemented this idea [17]
for x86-assembly language and for JVM bytecode. Both allow for a separate
specification of a state automaton and rely on an ad-hoc code transformation to
integrate the propagation of the state with the execution of the program.

Evans and Twyman [8] have constructed an impressive system that takes a
specification of a safety policy and generates a transformed version of the Java
run-time classes. Any program that uses the transformed classes is guaranteed
to obey the specified safety policy.

Necula and Lee [23, 25, 22, 24] have developed a framework in which com-
piled machine programs can be combined with an encoding of a proof that the
program obeys certain properties (for example, a safety policy). The resulting
proof-carrying code is sent to a remote machine, which can check the proof lo-
cally against the code, to make sure that it obeys the safety policy. This has
been pursued further by Appel and others [20,2].

Kozen [16] has developed a very light-weight version of proof-carrying code.
He has built a compiler that includes hints to the structure of the compiled pro-
gram in the code. A receiver of such instrumented code can verify the structural
hints and thus obtain confidence that the program preserves memory integrity.

Typed assembly language (TAL) [21] provides another avenue to generating
high-level invariants for low-level code. Using TAL can guarantee type safety
and memory integrity. TAL programs include extensive type annotations that
enable the receiver to perform type checking effectively.

Wallach and Felten [37] coined the term security-passing style for a trans-
formation that makes explicit the systematic extension of functions by an extra
parameter encoding a security property. This idea has been pursued by a number
of works, including the present one.

Colcombet and Fradet [4] propose to transform code received from a foreign
principal, guided by a safety policy. The transformed code propagates a run-time
encoding of a security state which is checked at run-time to avoid illegal actions.

Walker [36] presents a sophisticated type system that can encode the pass-
ing of the security state on the type-level. The type system enables powerful
optimizations. However, a separate transformation system must be implemented
and lemmas about the security policy must be proven separately and fed into
the system to enable optimizing transformations.

Pottier and others [28] use a transformation to security-passing style as a
starting point to generate a security-aware type system from a standard type
system. They do not consider the implementation of the transformation.

Implementing program transformations by program specialization has been
proposed by Turchin and Glück [34,9] and put into practice by Glück, Jørgensen,
and others [11,10,32].

64 P. Thiemann

Syntax

Exp 3 e ::= v | (if e e e) | O(e . . . e) | e@(e . . . e)
Value 3 v ::= x | a | fix x(x . . . x)e
evaluation contexts C ::= (if [] e e) | O(v. . .[] e. . .) | []@(e. . .e) | v@(v. . .[] e. . .)
security states σ ∈ Σ
base-type constants a ∈ Base
primitive operators O ∈ Op
types τ ::= BaseType | (τ, . . . , τ) → τ

Operational semantics

σ, (if true e1 e2) → σ, e1

σ, (if false e1 e2) → σ, e2

σ, O(a1 . . . an) → δ(O)(σ, a1 . . . an), v if v = JOK(a1, . . . , an) is defined
σ, (fix x0(x1 . . . xn)e)@(v1 . . . vn) → σ, e[x0 7→ fix x0(x1 . . . xn)e, xi 7→ vi]

If σ, e → σ′, e′ then σ, C[e] → σ′, C[e′].

Fig. 1. The source language

Contributions. The present work demonstrates that previous ad-hoc ap-
proaches to enforcing safety properties by program transformation can be ex-
pressed uniformly using partial evaluation. This simplifies their theoretical de-
velopment and their implementation considerably since partial evaluation tech-
nology is reused.

After introducing the source language, security automata, and type special-
ization, Section 2 gives a naive implementation of monitored execution using an
instrumented interpreter for a simply-typed call-by-value lambda calculus.

In Section 3, we define a translation into a two-level lambda calculus. Type
specialization [12] of the resulting two-level terms can remove (in certain cases)
all run-time operations on the security state. Specialization creates variants of
user code tailored to particular security states. They must be drawn from a finite
set for our approach to work.

In Section 4, we introduce a novel extension of type specialization by intersec-
tion types and subtyping. It avoids unnecessary code duplication, thus making
our approach practical. Our prototype implementation automatically performs
all example optimizations from Walker’s paper [36].

Technical results are the correctness proofs of the translation and the non-
standard compilation performed by type specialization. They guarantee the
safety of the translated and the compiled code. We have proved correct our ex-
tension of type specialization, which amounts to proving subject reduction [13].

1 Prerequisites

The source language. is a simply-typed call-by-value lambda calculus with
constants, conditionals, and primitive operations on base types (see Fig. 1).

Enforcing Safety Properties Using Type Specialization 65

Each primitive operation, O, can change the current security state. The value
of fix x0(x1 . . . xn)e is a recursively defined function. Write λ(x1 . . . xn)e if x0
does not appear in e, and let x = e1 in e2 for (λ(x)e2)@(e1). The typing rules
defining the judgement Γ ` e : τ are standard.

Each primitive operation, O : BaseTypen → BaseType, comes with a partial
semantic function JOK ∈ BaseTypen ↪→ BaseType and a total state transition
function, δ : Op → Σ × BaseTypen → Σ, which models the change of the
(security-) state on application of the operation. The semantics of the language
is given in structural operational style. It maps a pair of a (security-) state, σ,
and a closed term to a new state and closed term.

Each reduction sequence σ0, e0 → σ1, e1,→ . . . gives rise to a potentially
infinite sequence σ = (σ0, σ1, . . .) of states (a trace). Write σ0, e0 ↓ σ′, v if there
is a finite sequence of reductions, σ0, e0 → σ1, e1 → . . . → σ′, v.

Eta-value conversion is the reflexive, transitive, symmetric, and compatible
closure of eta-value reduction: fix x0(x1, . . . , xn)v@(x1, . . . , xn) →ηv v where
x0, x1, . . . , xn are distinct variables not occurring free in v.

A security automaton. is a tuple S = (Σ,Op,Value, δ, σ0, bad) [36] where

– Σ is a countable set of states;
– Op is a finite set of operation symbols;
– Value is a countable set of values;
– δ : Op → Σ × Value∗ → Σ is a total function with δ(O)(bad, x1 . . . xn) = bad

(state transition function);
– σ0 ∈ Σ is the initial state; and
– bad ∈ Σ is the sink state with σ0 6= bad.

A safety policy is a set of finite and infinite traces that obeys certain restric-
tions [31]. A reduction sequence is acceptable if its associated trace is contained
in the policy. Schneider [31] has shown that all safety policies can be modeled
by a security automaton.

A closed term e0 is safe with respect to S and some σ0 ∈ Σ \ {bad} if either
there exist σ′ ∈ Σ and v ∈ Value such that σ0, e0 ↓ σ′, v and σ′ 6= bad or the
trace of σ0, e0 is infinite. It is safe with respect to S if it is safe with respect to
the initial state σ0.

A typical example is the policy that no network send operation happens
after a read operation from a local file. The transition functions are the identity
functions for all primitive operations except send and read.

Σ = {before-read, after-read, bad} σ0 = before-read
σ δ(read)(σ,file) δ(send)(σ, data) δ(O)(σ, y1 . . . yn)
before-read after-read before-read before-read
after-read after-read bad after-read
bad bad bad bad

The program (λ(x)read(file))@(send(data)) is safe (with respect to σ0) due
to the trace (before-read, before-read, after-read). It is not safe with respect to
after-read : the corresponding trace is (after-read, bad, bad).

The program (λ(x)send(data))@(read(file)) is not safe with respect to any
state: it generates the unacceptable traces (before-read, after-read, bad) and
(after-read, after-read, bad).

66 P. Thiemann

Type specialization. [12] transforms a source expression into a specialized
expression and its specialized type. The type contains all the compile-time in-
formation. If there is no run-time information left then the specialized expression
becomes trivial, indicated by •, and can be discarded.

In contrast, traditional partial evaluation techniques [15] rely on non-
standard interpretation or evaluation of a source program to perform as many
operations on compile-time data as possible. They propagate compile-time data
using compile-time values. Once a traditional specializer generates a special-
ized expression, it loses all further information about it. This leads to the well-
formedness restriction in binding-time analysis: if a function is classified as a
run-time value, then so are its arguments and results.

Since type specialization relies on type inference, there is no well-formedness
restriction: compile-time and run-time data may be arbitrarily mixed.

Figure 2 defines type specialization as a judgement Γ ` e ; e′ : τ ′, that is,
in typing context Γ the two-level term e specializes to specialized term e′ with
specialized type τ ′. In a two-level term, constants are always compile-time values,
variables may be bound to compile-time or run-time values, lift converts a
compile-time constant into a run-time constant, and poly and spec control
polyvariance (see below). The operation e1+e2 is an example primitive operation.
For simplicity, we formalize only single-argument functions.

Here is an example specialization of the term (λx.lift x)@4:

x ; x′ : S{4} ` x ; x′ : S{4}
x ; x′ : S{4} ` lift x ; 4 : Int

∅ ` λx.lift x ; λx′.4 : S{4} → Int ∅ ` 4 ; • : S{4}
∅ ` (λx.lift x)@4 ; (λx′.4)@• : Int

The typing expresses the compile-time value 4 as a singleton type, S{4}.
There are two significant changes with respect to Hughes’s presentation [12].

First, Hughes’s two-level terms obey a simple type discipline. It ensures that
the specializer never confuses compile-time and run-time values. However, it
does not guarantee that the two-level term specializes successfully. Moreover,
the specializer discovers errors of this kind anyway while inferring specialized
types. Therefore, we have dropped this set of typing rules.

Second, Hughes’s presentation hardwires the processing of singleton types
into the rule for compile-time addition. Instead, we have formalized compile-
time addition through conversion rules for singleton types. This choice simplifies
the specification of extensions considerably, as demonstrated in Sec. 4.

For brevity, our formalization does not include compile-time functions, which
are expanded at compile-time before their specialized type is inferred. Their
addition is exactly as in Hughes’s work [12,13] and is orthogonal to the problems
discussed in the present paper.

The poly and spec constructs [12] introduce and eliminate polyvariant val-
ues. A polyvariant value is a set of specialized terms indexed by their specialized
types. The type specializer employs a numeric encoding of the index in its out-
put. It implements the rules using backtracking.

Enforcing Safety Properties Using Type Specialization 67

Syntax of two-level language

Terms e ::= x | n | e+e | if e then e else e | fix x(x)e | e@e | poly e |
lift e | e+e | if e then e else e | fix x(x)e | e@e | spec e

Specialized terms e′ ::= • | x | n | e′+e′ | if e′ then e′ else e′ |
e′@e′ | fix x(x)e′ | (e′, . . . , e′) | πi(e′)

Specialized types τ ′ ::= S{n} | Int | τ ′ → τ ′ | τ ′+τ ′ | τ ′ × . . . × τ ′

Typing contexts Γ ::= ∅ | Γ, x ; e′ : τ ′

Equality on specialized types

τ ′ = τ ′ τ ′
1 = τ ′

2 τ ′
2 = τ ′

3

τ ′
1 = τ ′

3

τ ′
1 = τ ′

2

τ ′
2 = τ ′

1

τ ′
1 = τ ′

2 τ ′
3 = τ ′

4

τ ′
1 → τ ′

3 = τ ′
2 → τ ′

4

τ ′
1 = τ ′

2 τ ′
3 = τ ′

4

τ ′
1+τ

′
3 = τ ′

2+τ
′
4

S{n1}+S{n2} = S{n1 + n2}

Inference rules of type specialization

Γ, x ; e′ : τ ′, Γ ′ ` x ; e′ : τ ′ Γ ` n ; • : S{n} Γ ` e ; e′ : S{n}
Γ ` lift e ; n : Int

Γ ` e1 ; e′
1 : τ ′

1

Γ ` e2 ; e′
2 : τ ′

2

Γ ` e1+e2 ; • : τ ′
1+τ

′
2

Γ ` e1 ; e′
1 : Int

Γ ` e2 ; e′
2 : Int

Γ ` e1+e2 ; e′
1+e

′
2 : Int

Γ ` e0 ; e′
0 : S{0} Γ ` e1 ; e′

1 : τ ′

Γ ` if e0 then e1 else e2 ; e′
1 : τ ′

Γ ` e0 ; e′
0 : S{1} Γ ` e2 ; e′

2 : τ ′

Γ ` if e0 then e1 else e2 ; e′
2 : τ ′

Γ ` e0 ; e′
0 : Int Γ ` e1 ; e′

1 : τ ′ Γ ` e2 ; e′
2 : τ ′

Γ ` if e0 then e1 else e2 ; if e′
0 then e′

1 else e′
2 : τ ′

Γ, x0 ; x′
0 : τ ′

2 → τ ′
1, x1 ; x′

1 : τ ′
2 ` e ; e′ : τ ′

1

Γ ` fix x0(x1)e ; fix x′
0(x′

1)e′ : τ ′
2 → τ ′

1

Γ ` e1 ; e′
1 : τ ′

2 → τ ′
1 Γ ` e2 ; e′

2 : τ ′
2

Γ ` e1@e2 ; e′
1@e′

2 : τ ′
1

Γ ` e ; e′ : τ ′
1 τ ′

1 = τ ′
2

Γ ` e ; e′ : τ ′
2

(∀1 ≤ i ≤ n)Γ ` e ; e′
i : τ ′

i

Γ ` poly e ; (e′
1, . . . , e

′
n) : τ ′

1 × . . . × τ ′
n

Γ ` e ; e′ : τ ′
1 × . . . × τ ′

n

Γ ` spec e ; πi(e′) : τ ′
i

Fig. 2. Standard type specialization

Hughes [13] has proved the correctness of type specialization by specifying
two reduction relations, one for two-level terms, →tt, and one for specialized
terms, →sp, (see Fig. 3) and then proving a result like this:

Proposition 1 (Simulation). If Γ ` e1 ; e′
1 : τ ′ and e1 →tt e2 then there

exists e′
2 such that Γ ` e2 ; e′

2 : τ ′ and e′
1

∗→sp e′
2.

As in Hughes’s paper [13], the proof relies on a number of substitution lemmas
(see Section 4), which are all easy to prove.

68 P. Thiemann

Reduction for two-level terms Reduction for specialized terms
n1+n2 →tt (n1 + n2)
if 0 then e1 else e2 →tt e1

if 1 then e1 else e2 →tt e2

(fix f(x)e1)@e2 →tt

e1[f 7→ fix f(x)e1, x 7→ e2]
spec (poly e) →tt e
lift n1+lift n2 →tt lift (n1 + n2)
if 0 then e1 else e2 →tt e1

if 1 then e1 else e2 →tt e2

(fix x0(x1)e1)@e2 →tt

e1[x0 7→ fix x0(x1)e1, x1 7→ e2]

n1+n2 →sp (n1 + n2)
if 0 then e′

1 else e′
2 →sp e′

1

if 1 then e′
1 else e′

2 →sp e′
2

(fix x0(x1)e′
1)@e′

2 →sp

e′
1[x0 7→ fix x0(x1)e′

1, x1 7→ e′
2]

πi(e′
1, . . . , e

′
n) →sp e′

i

Fig. 3. Notions of reduction

||BaseType|| = BaseType
||(τ1, . . . , τn) → τ || = (Σ, ||τ1||, . . . , ||τn||, (Σ, ||τ ||) → Ans) → Ans
|τ | = (Σ, (Σ, ||τ ||) → Ans) → Ans

||∅|| = ∅
||Γ, x : τ || = ||Γ ||, x : ||τ ||

||x|| = x
||a|| = a
||fix x0(x1 . . . xn)e|| = fix x0(σ, x1, . . . , xn, xn+1)|e|(σ, xn+1)

|v|(σ, c) = c(σ, ||v||)
|(if e1 e2 e3)|(σ, c) = |e1|(σ, λ(σ1, y1).if y1 then |e2|(σ1, c) else |e3|(σ1, c))
|O(e1 . . . en)|(σ, c) = |e1|(σ, λ(σ1, y1). . . . |en|(σn−1, λ(σn, yn).

let σ′ = δ(O)(σn, y1 . . . yn) in
if σ′ = bad then halt() else c(σ′, O(y1, . . . , yn))) . . .)

|e0@(e1 . . . en)|(σ, c) = |e0|(σ, λ(σ0, y0).|e1|(σ0, λ(σ1, y1). . . . |en|(σn−1, λ(σn, yn).
y0@(σn, y1, . . . , yn, c)) . . .))

Fig. 4. Translation that enforces a security policy

2 Enforcing a Policy by Interpretation

A simple way to enforce safe execution is to incorporate a security automaton
into an interpreter or a translation. Before attempting a primitive operation, a
translated program steps the security state and checks whether the result is bad.

Figure 4 shows a translation to continuation-passing and state-passing style
[30], augmented by stepping and testing of the security state. The translation
makes explicit the flow of control and of the current security state. Using Ans as
the type of answers, the translation acts on types as follows.

Proposition 2. If Γ ` e : τ then ||Γ || ` |e| : |τ |.

Enforcing Safety Properties Using Type Specialization 69

The translated program never violates the security policy if the operations
δ(O) on the explicit state do not affect the state component in the operational
semantics. Formally, let S ′ = (Σ,Op′,Value, δ′, σ0, bad) with Op′ = Op ∪ {δ(O) |
O ∈ Op} ∪ {halt} (regarding δ(O) as the name of a new primitive) and, for all
O ∈ Op, δ′(O) = δ(O) and δ′(δ(O))(vσ, v1 . . . vn) = vσ. Let JhaltK() = a, a fixed
constant signaling an error.

A translated expression is safe with respect to S ′ and arbitrary σ.

Proposition 3. If σ, |e|(σ, λ(σ, y)y) ↓ σ′, v′ then σ′ 6= bad.

If the original term delivers a result without entering a bad state then so
does the translated term.

Proposition 4. Suppose σ, e ↓ σ′, v. If σ′ 6= bad then σ, |e|(σ, λ(σ, y)y) ↓
σ′, ||v||.

If evaluation of the translated term leads to non-termination or to an unde-
fined primitive operation then so does evaluation of the source term.

Proposition 5. If there exist no σ′ and v′ such that σ, |e|(σ, λ(σ, y)y) ↓ σ′, v′

then there exist no σ′ and v′ such that σ, e ↓ σ′, v′.

Using this naive translation yields inefficient programs because every use of
a primitive operation is preceded by a run-time check of the security state.

3 Compiling Policies by Type Specialization

To submit the translation to a specializer, we retarget it to a two-level language,
indicating compile-time by overlining and run-time by underlining. Type spe-
cialization [12] of the translated terms can remove the state component, σ, and
the corresponding run-time checks completely, in certain cases.

We consider the two-level translation as an interpreter and specialize it with
respect to a source program. The specialized program can be shown to be safe in
two steps: Prove that translated programs are safe, and appeal to the correctness
of the specializer (Prop. 1) to see that the specialized programs are safe.

3.1 First Steps

Specialization potentially generates code variants for each different security
state. Hence, it is only applicable if the set of states is finite. For further sim-
plification, we initially assume that the transition function does not depend on
the arguments but only on the name of the primitives. Hence, the compile-time
transition function, δ, is well-defined and gives the full information:

– δ(O)(σ) := σ′ if ∀y1 . . . yn.δ(O)(σ, y1, . . . , yn) = σ′,
– δ(O)(σ) := bad if ∀σ′.∃y1 . . . yn.δ(O)(σ, y1, . . . , yn) 6= σ′.

Hence, the state becomes a compile-time value and all operations thereon
can be computed at compile-time. Figure 5 defines the translation. It follows
the basic strategy of Danvy and Filinski’s one-pass translation to continuation-
passing style [7, 6]. It avoids introducing administrative redexes by converting

70 P. Thiemann

||BaseType||e = BaseType
||(τ1, . . . , τn) → τ ||e = poly (Σ, ||τ1||e, . . . , ||τn||e, poly (Σ, ||τ ||e)→Ans)→Ans
|τ |e = (Σ, (Σ, ||τ ||e)→Ans)→Ans

||∅||e = ∅
||Γ, x : τ ||e = ||Γ ||e, x : ||τ ||e
||x||e = x
||a||e = a
||fix x0(x1 . . . xn)e||e = poly fix x0(σ, x1, . . . , xn, xn+1)

|e|e@(σ, λ(σ, y).spec xn+1@(σ, y))

|v|e(σ, c) = c@(σ, ||v||e)
|(if e1 e2 e3)|e(σ, c) = |e1|e@(σ, λ(σ1, y1).

if y1 then |e2|e@(σ1, c) else |e3|e@(σ1, c))
|O(e1 . . . en)|e(σ0, c) = |e1|e(σ0, λ(σ1, y1). . . . |en|e(σn−1, λ(σn, yn).

let σ′ = δ(O)(σn) in
if σ′ = bad then halt() else

let y = O(y1, . . . , yn) in c@(σ′, y)) . . .)
|e0@(e1 . . . en)|e(σ, c) = |e0|e@(σ, λ(σ0, y0).

|e1|e@(σ0, λ(σ1, y1). . . . |en|e@(σn−1, λ(σn, yn).
spec y0@(σn, y1, . . . , yn, poly λ(σ, y).c@(σ, y))) . . .))

Fig. 5. Two-level translation

λ(σ,file, c).
let σ′ = δ(read)(σ) in
if =(σ′, bad) then HALT() else
let y1 = read(file) in
c@(σ′, y1)

(1)

poly λ(σ,file, c).
let σ′ = δ(read)(σ) in
if =(σ′, bad) then HALT() else
let y1 = read(file) in
spec (c)@(σ′, y1)

(2)

Fig. 6. Translated example

compile-time continuations to run-time ones, and vice versa, using eta-value
expansion. The relevant terms are in the translation of fix and application:
λ(σ, y).c@(σ, y) converts the compile-time continuation c to a run-time value
and λ(σ, y).spec xn+1@(σ, y) converts the run-time continuation xn+1 into a
compile-time one.

Both the terms for fix and for application contain subterms of the form
λ(σ, x, . . .). . . . where a run-time function has a compile-time parameter, σ. This
violates the well-formedness restriction of traditional partial evaluation [15] and
is the motivation for using type specialization altogether.

Enforcing Safety Properties Using Type Specialization 71

3.2 Polyvariance Matters

To see, why the poly and spec annotations in the translation are required,
consider a simple example term

λ(file)read(file) (3)

and its translation (1) in Fig. 6. It has specialized type

(S{before-read},BaseType, (S{after-read},BaseType)→Ans)→Ans

when called in state before-read and type

(S{after-read},BaseType, (S{after-read},BaseType)→Ans)→Ans

when called in state after-read. Since the types are different, the function cannot
be used at both types at once.

To overcome this restriction, Hughes introduced polyvariance. A polyvariant
expression gives rise to a tuple of specializations, one for every different type of
use. Hence the translation uses poly λ(σ, x, . . .). . . . which has specialized type
((S{σ1},BaseType, . . .) → τ ′

1)× . . .×((S{σn},BaseType, . . .) → τ ′
n), for distinct

σ1, . . . , σn. The set {σ1, . . . , σn} contains only those states that actually reach
a use of the polyvariant type. The specializer determines this set dynamically
during specialization. A term spec . . . indicates an elimination point for a tuple
introduced by poly . It selects a component of the tuple, based on the required
type (i.e., the state at the elimination point).
Using poly in the translation of (3) yields (2) in Fig. 6 with specialized type

((S{before-read},BaseType, (S{after-read},BaseType)→Ans)→Ans)
× ((S{after-read},BaseType, (S{after-read},BaseType)→Ans)→Ans) (4)

and specialized code

(λ(file, c)let y1 = read(file) in c@(y1)
, λ(file, c)let y1 = read(file) in c@(y1)).

(5)

3.3 Properties of the Translation

The translation preserves typing.

Proposition 6. If Γ ` e : τ then ||Γ ||e ` |e|e : |τ |e.
We state the relation to the naive translation (Fig. 4) using the function

erase(). It maps a two-level term to a standard term by erasing all overlining
and underlining annotations as well as erase(lift e) = erase(e), erase(poly e) =
erase(e), and erase(spec e) = erase(e).

Proposition 7. σ, |e|(σ, λ(σ, y)y) ↓ σ′, ||v|| if and only if
σ, erase(|e|e)(σ, λ(σ, y)y) ↓ σ′, erase(||v||e).

72 P. Thiemann

|O(e1 . . . en)|′1(σ0, c)
= |e1|′1(σ0, λ(σ1, y1). . . . |en|′1(σn−1, λ(σn, yn).

let σ′ = δ(O)(σn) in
if σ′ 6= bad then c@(σ′, O(y1, . . . , yn)) else
let σ = δ(O)(lift σn, y1, . . . , yn) in
if σ=lift bad then halt() else

let {σ′
1, . . . , σ

′
r} = ∆(O)(σ′) in

let y = O(y1, . . . , yn) in
if σ=lift σ′

1 then c@(σ′
1, y) else

if σ=lift σ′
2 then c@(σ′

2, y) else
. . . c@(σ′

r, y)) . . .)

Fig. 7. Revised heterogeneous treatment of primitive operators

To relate to the compiled/specialized program, we invoke the correctness of
the underlying specializer and conclude the safety of the compiled program.

Proposition 8. Suppose ∅ ` trans e (σ0, λ(σ, y).y) ; e′ : τ ′ where trans is
the program text defining | |e. The compiled program e′ is safe wrt. σ0 ∈ Σ.

Technically, Hughes’s correctness proof applies to type specialization for a call-
by-name lambda calculus. This does not pose problems in our case, because we
are only specializing programs in continuation-passing style.

3.4 Achieving Generality

Up to now, the state transition function did not depend on the arguments to
the primitives. This restriction can be removed using the revised treatment of
primitive operators in Fig. 7.

The code first evaluates and checks the arguments of the operation. If it
can predict a potential security violation from the pre-computed security state,
σ′, then it generates a run-time test using an implementation, δ, of the state
transition function applied to the run-time constant, lift σn, and the actual
arguments. The resulting run-time security state, σ, is tested against bad at
run-time. Finally, it extracts a compile-time state from σ using

∆(O)(σ) = {δ(O)(σ, y1, . . . , yn) | y1, . . . , yn ∈ Base} \ {bad}

to estimate the set of possible non-bad outcomes of the run-time state transition
δ(O) on the compile-time state σ. Using this set, the code recovers the compile-
time value from the run-time outcome of the state transition by testing the latter
against all possible values and using the compile-time value in the continuation.
This is essentially “The Trick” [15], a standard binding-time improving trans-
formation. It is a further source of code duplication because the continuation c
is processed for each possible outcome.

Enforcing Safety Properties Using Type Specialization 73

Specialized types (revised)
τ ′ ::= . . . |

∧ [
τ ′ . . . τ ′]

Kinding

S{n} : INT
τ ′
1 : INT τ ′

2 : INT
τ ′
1+τ

′
2 : INT

τ ′ : INT τ ′′ : INT
τ ′ ∼ τ ′′ : ∗ Int ∼ Int : ∗ τ ′

1 ∼ τ ′′
1 : ∗ τ ′

2 ∼ τ ′′
2 : ∗

τ ′
1 → τ ′

2 ∼ τ ′′
1 → τ ′′

2 : ∗
(∀1 ≤ i, j ≤ n)τ ′

i ∼ τ ′
j : ∗∧

[τ ′
1 . . . τ ′

n] : ∗
τ ′ ∼ τ ′′ : ∗

τ ′ : ∗
Equality relation (additional rules)

τ ′
1 = τ ′′

1 . . . τ ′
n = τ ′′

n∧
[τ ′

1, . . . , τ
′
n] =

∧
[τ ′′

1 , . . . , τ ′′
n]

Subtyping relation (extending equality)
i ∈ {1, . . . , n}∧
[τ ′

1, . . . , τ
′
n] ≤ τ ′

i

(∀1 ≤ i ≤ n)τ ′ ≤ τ ′
i

τ ′ ≤ ∧
[τ ′

1, . . . , τ
′
n]

τ ′′
2 ≤ τ ′

2 τ ′
1 ≤ τ ′′

1

τ ′
2 → τ ′

1 ≤ τ ′′
2 → τ ′′

1

Additional specialization rules

Γ ` e ; e′ : τ ′ τ ′ ≤ τ ′′

Γ ` e ; e′ : τ ′′

(∀1 ≤ i ≤ n)Γ ` e1 ; e′
1 : τ ′

i

Γ, x ; x′ :
∧

[τ ′
i | 1 ≤ i ≤ n] ` e2 ; e′

2 : τ ′

Γ ` let x = e1 in e2 ; let x′ = e′
1 in e′

2 : τ ′

Fig. 8. Type specialization with intersections and subtyping

4 Compiling Policies Using Intersection Types

The code generated from the translation (Fig. 5) can contain many identically
specialized versions of a single function. This section proposes a remedy against
this useless code growth.

For a concrete example, let’s look again at the translation of λ(file)read(file)
in Fig. 6, (1), its specialized types in (4) and terms in (5). Despite the difference
in the specialization types, the code is identical. It turns out that the function
has an intersection type [5, 3, 26,27]:

∧ [
(S{before-read},BaseType, (S{after-read},BaseType) → Ans) → Ans,
(S{after-read},BaseType, (S{after-read},BaseType) → Ans) → Ans

]

(6)
This observation suggests an extension of type specialization with a restricted
notion of intersection types and subtyping. The restriction is that intersection
types can only be formed from structurally isomorphic types that differ in sin-
gleton types, as formalized in Fig. 8 with the judgement τ ′ ∼ τ ′′ : ∗.

In the running example, specialization with intersection types generates the
same term λ(file, c)let y1 = read(file) in c@(y1) with type (6).

The extended syntax of specialized types contains finite intersections of types.
The rules defining τ ′ = τ ′′ make equality compatible with intersection. Subtyping
extends equality with the usual rules for intersection and function subtyping [26].

74 P. Thiemann

The additional specialization rules include the standard subsumption rule,
which eliminates intersection types where required. The introduction rule for
intersection types requires a special let x = e1 in e2 construct because its
implementation incurs considerable expense. The type specializer processes the
term e1 for each demanded type τ ′

i and checks that the resulting specialized term
e′
1 is identical for each τ ′

i . If that is not possible, we must revert to polyvariance
and generate a new variant. Many functions are polymorphic with respect to the
security state. In this case, the intersection typing generates exactly one variant.

Finally, we have to extend the simulation result (Prop. 1) to the enriched
language. Since there are no new reductions, it is sufficient to extend the proofs
of the substitution lemmas [13]:

Lemma 1 (Source substitution). If Γ ` e1 ; e′
1 : τ ′

1 and Γ, x1 ; e′
1 : τ ′

1 `
e2 ; e′

2 : τ ′
2 then Γ ` e2[x1 7→ e1] ; e′

2 : τ ′
2.

Lemma 2 (Specialized substitution). Let θ be a substitution that maps
variables in specialized terms to specialized terms. If Γ ` e ; e′ : τ ′ then
θ(Γ) ` e ; θ(e′) : τ ′.

5 Conclusions

We have shown that partial evaluation techniques are well-suited to translate
programs into safe programs that observe security policies specified by security
automata. We have exhibited a heterogeneous approach that eliminates most
run-time security checks, but can result in code duplication.

We have extended the type specializer by intersection types to avoid excessive
code duplication in this approach. This refined approach automatically achieves
all optimizations mentioned in Walker’s work [36]. A prototype implementation,
which has been used to validate the examples in this paper, can be obtained
from the author.

In future work we plan to address the restriction to finite sets of security
states by splitting them into compile-time and run-time components and to
integrate the translation with our earlier work on run-time code generation [33].
The resulting framework will provide just-in-time enforcing compilation and it
will serve for experiments with mobile code.

References

1. A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient and
language-independent mobile programs. In Proceedings of the ACM SIGPLAN
’96 Conference on Programming Language Design and Implementation (PLDI),
pages 127–136, Philadelphia, Pa., May 1996.

2. A. W. Appel and A. P. Felty. A semantics model of types and machine instructions
for proof-carrying code. In Reps [29], pages 243–253.

3. F. Barbanera and M. Dezani-Ciancaglini. Intersection and union types. In T. Ito
and A. Meyer, editors, Proc. Theoretical Aspects of Computer Software, volume
526 of Lecture Notes in Computer Science, Sendai, Japan, 1991. Springer-Verlag.

Enforcing Safety Properties Using Type Specialization 75

4. T. Colcombet and P. Fradet. Enforcing trace properties by program transforma-
tion. In Reps [29], pages 54–66.

5. M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for λ-terms. Archiv.
Math. Logik, 19(139-156), 1978.

6. O. Danvy and A. Filinski. Abstracting control. In Proc. 1990 ACM Conference on
Lisp and Functional Programming, pages 151–160, Nice, France, 1990. ACM Press.

7. O. Danvy and A. Filinski. Representing control: A study of the CPS transforma-
tion. Mathematical Structures in Computer Science, 2:361–391, 1992.

8. D. Evans and A. Twyman. Flexible policy-directed code safety. In IEEE Sympo-
sium on Security and Privacy, Oakland, CA, May 1999.

9. R. Glück. On the generation of specializers. Journal of Functional Programming,
4(4):499–514, Oct. 1994.

10. R. Glück and J. Jørgensen. Generating optimizing specializers. In IEEE Interna-
tional Conference on Computer Languages, pages 183–194. IEEE Computer Society
Press, 1994.

11. R. Glück and J. Jørgensen. Generating transformers for deforestation and super-
compilation. In B. Le Charlier, editor, Static Analysis, volume 864 of Lecture Notes
in Computer Science, pages 432–448. Springer-Verlag, 1994.

12. J. Hughes. Type specialisation for the λ-calculus; or, a new paradigm for partial
evaluation based on type inference. In O. Danvy, R. Glück, and P. Thiemann,
editors, Partial Evaluation, volume 1110 of Lecture Notes in Computer Science,
pages 183–215, Schloß Dagstuhl, Germany, Feb. 1996. Springer-Verlag.

13. J. Hughes. The correctness of type specialisation. In G. Smolka, editor, Proc. 9th
European Symposium on Programming, volume 1782 of Lecture Notes in Computer
Science, pages 215–229, Berlin, Germany, Mar. 2000. Springer-Verlag.

14. Java2 platform. http://www.javasoft.com/products/, 2000.
15. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice-Hall, 1993.
16. D. Kozen. Language-based security. Technical Report TR99-1751, Cornell Univer-

sity, Computer Science, June 15, 1999.
17. Úlfar Erlingsson and F. B. Schneider. SASI enforcement of security policies: A ret-

rospective. In Proceedings of the 1999 New Security Paradigms Workshop, Caledon
Hills, Ontario, Canada, Sept. 1999.

18. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

19. S. Lucco, O. Sharp, and R. Wahbe. Omniware: A universal substrate for web
programming. WorldWideWeb Journal, 1(1), Dec. 1995.

20. N. G. Michael and A. W. Appel. Machine instruction syntax and semantics in
higher order logic. In 17th International Conference on Automated Deduction
(CADE-17), June 2000.

21. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly
language. In L. Cardelli, editor, Proc. 25th Annual ACM Symposium on Principles
of Programming Languages, San Diego, CA, USA, Jan. 1998. ACM Press.

22. G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, Paris, France, Jan. 1997.

23. G. C. Necula and P. Lee. Safe kernel extensions without run-time checking. In
Proceedings of the Second Symposium on Operating System Design and Implemen-
tation, Seattle, Wa., Oct. 1996.

76 P. Thiemann

24. G. C. Necula and P. Lee. The design and implementation of a certifying compiler.
In K. D. Cooper, editor, Proceedings of the 1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 333–344, Mon-
treal, Canada, June 1998. ACM. Volume 33(5) of SIGPLAN Notices.

25. G. C. Necula and P. Lee. Safe, Untrusted Agents Using Proof-Carrying Code. In
G. Vigna, editor, Mobile Agent Security, Lecture Notes in Computer Science No.
1419, pages 61–91. Springer-Verlag: Heidelberg, Germany, 1998.

26. B. Pierce. Programming with intersection types, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, Feb. 1991.

27. B. C. Pierce. Intersection types and bounded polymorphism. Mathematical Struc-
tures in Computer Science, 11, 1996.

28. F. Pottier, C. Skalka, and S. Smith. A systematic approach to static access control.
In D. Sands, editor, Proc. 10th European Symposium on Programming, Lecture
Notes in Computer Science, Genova, Italy, Apr. 2001. Springer-Verlag.

29. T. Reps, editor. Proc. 27th Annual ACM Symposium on Principles of Programming
Languages, Boston, MA, USA, Jan. 2000. ACM Press.

30. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
In ACM Annual Conference, pages 717–740, July 1972.

31. F. B. Schneider. Enforceable security policies. Technical Report TR99-1759, Cor-
nell University, Ithaca, NY, USA, July 1999.

32. M. Sperber, R. Glück, and P. Thiemann. Bootstrapping higher-order program
transformers from interpreters. In Proc. 11th Annual Symposium on Applied Com-
puting, SAC (SAC ’96), pages 408–413, Philadelphia, PA, Feb. 1996. ACM.

33. M. Sperber and P. Thiemann. Two for the price of one: Composing partial eval-
uation and compilation. In Proc. of the ACM SIGPLAN ’97 Conference on Pro-
gramming Language Design and Implementation, pages 215–225, Las Vegas, NV,
USA, June 1997. ACM Press.

34. V. F. Turchin. Program tranformation with metasystem transitions. Journal of
Functional Programming, 3(3):283–313, July 1993.

35. R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based
fault isolation. In Proceedings of the 14th ACM Symposium on Operating Systems
Principles, pages 203–216, 1993.

36. D. Walker. A type system for expressive security policies. In Reps [29], pages
254–267.

37. D. S. Wallach and E. W. Felten. Understanding java stack inspection. In Pro-
ceedings of 1998 IEEE Symposium on Security and Privacy, Oakland, CA, May
1998.

	Prerequisites
	Enforcing a Policy by Interpretation
	Compiling Policies by Type Specialization
	First Steps
	Polyvariance Matters
	Properties of the Translation
	Achieving Generality

	Compiling Policies Using Intersection Types
	Conclusions

