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Abstract. We present a formal executable specification of two crucial
JavaCard platform components, namely the Java Card Virtual Machine
(JCVM) and the ByteCode Verifier (BCV). Moreover, we relate both
components by giving a proof of correctness of the ByteCode Verifier.
Both formalisations and proofs have been machined-checked using the
proof assistant Coq.

1 Introduction

1.1 Background

JavaCard [17] is a popular programming language for multiple application smart
cards. According to the JavaCard Forum [16], which involves key players in
the field of smart cards, including smart card manufacturers and banks, the
JavaCard language has two important features that make it the ideal choice for
smart cards:

– JavaCard programs are written in a subset of Java, using the JavaCard APIs
(Application Programming Interfaces). JavaCard developers can therefore
benefit from the well-established Java technology;

– the JavaCard security model enables multiple applications to coexist on the
same card and communicate securely, and in principle, enables new applica-
tions to be loaded on the card after its issuance.

Yet recent research has unveiled several problems in the JavaCard security
model, most notably with object sharing. This has emphasised the necessity
to develop environments for verifying the security of the JavaCard platform and
of JavaCard programs. Thus far JavaCard security (and also Java security) has
been studied mainly at two levels:

– platform level: here the goal is to prove safety properties of the language, in
particular type safety and properties related to memory management;

– application level: here the goal is to prove that a specific program obeys
a given property, and in particular that it satisfies a security policy, for
example based on information flow.
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Over the last few years, both fields have been the subject of intensive inves-
tigations, see Subsection 6.1. Despite impressive progress, much work remains
to be done. In particular, there is no complete formalisation of the JavaCard
platform as yet nor widely used tools to verify applets’ properties. Besides, we
do not know of any environment that supports verification both at platform and
application levels.

1.2 Our Work

The main contributions reported here are (1) a formal executable specification of
two crucial JavaCard 2.1. platform components, namely the Java Card Virtual
Machine JCVM and the ByteCode Verifier BCV; (2) a machine-checked proof of
correctness of the ByteCode Verifier. Both formalisations and proofs have been
carried out in the proof assistant Coq [4]. The salient features of our formal
specification are:

– executability. Our formal semantics (both of the virtual machine and of the
verifier) may be executed on any JavaCard program (given a Coq implemen-
tation of the native methods used by the program) and its behaviour can
be checked against reference implementations, in this case Sun’s implemen-
tation of the JavaCard Virtual Machine. We view executability as a crucial
asset for reliability and, in our opinion, a formal operational semantics for a
(realistic) programming language must be executable;

– completeness. Our virtual machine is complete in the sense that it treats the
whole set of JavaCard instructions and it considers all the important aspects
of the platform, including the firewall mechanism around which JavaCard
security is organised. Our ByteCode Verifier handles the whole set of in-
structions but (1) it does not treat object initialisation; (2) subroutines are
treated in a somewhat restrictive way.

– suitability for reasoning. Our formalisation may be used to reason about
the JavaCard platform itself, as shown here, but also to prove properties
of JavaCard programs. In particular, our formalisation is well-suited to rea-
son about security properties formulated as temporal-logic properties over
execution traces [28].

Thus our development offers the most comprehensive to-date machine-checked
account of the JavaCard platform and compares well to similar efforts carried
out in the context of Java, see 6.1.

1.3 JavaCard vs. Java

JavaCard is an ideal language for formal verification, since it is a reasonably-
sized language with industrial applications. As compared to Java, the JavaCard
Virtual Machine (in its current version) lacks garbage collection, dynamic class
loading and multi-threading. In contrast, the firewall mechanism is a complex
feature that is proper to JavaCard.
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1.4 Organisation of the Paper

The remaining of this paper is organised as follows: in Section 2, we describe our
formalisation of JavaCard programs (after linking). In Section 3, we describe a
small-step operational semantics of the JavaCard Virtual Machine, where each
instruction is modelled as a state transformer. In Section 4, we derive from the
virtual machine an abstract virtual machine that operates on types (instead
of values) and prove its correctness. In Section 5, we use the abstract virtual
machine to build a ByteCode Verifier and prove it correct. In Section 6, we
conclude with related and future work.

1.5 A Primer on Coq

Coq [4] is a proof assistant based on the Calculus of Inductive Constructions. It
combines a specification language (featuring inductive and record types) and a
higher-order predicate logic (via the Curry-Howard isomorphism). All functions
in Coq are required to be terminating. In order to enforce termination, recur-
sive functions must be defined by structural recursion. Besides, all functions are
required to be total. To handle partial functions, we use the lift monad which is
introduced through the inductive type:

Inductive Exc[A:Set]:Set := value: A->(Exc A) | error: (Exc A)

Our specifications only make a limited use of dependent types—a salient
feature of Coq. This design choice was motivated by portability; by not using
dependent types in an essential way, our formalisations can be transposed easily
to other proof assistants, including PVS and Isabelle.

We close this primer with some notation. We use * to denote cartesian prod-
uct of two types, (a,b) to denote pairs, [x:A] b to denote a λ-abstraction,
(x:A) B to denote a dependent function space. Finally, a record type R is rep-
resented as an inductive type with a single constructor Build R. Selectors are
functions (defined by case-analysis) so we write l a instead of the more standard
a.l.

2 Representation of JavaCard Programs

JavaCard programs are nothing but Java programs satisfying additional con-
straints. They can be compiled on a class by class basis by a standard compiler,
yielding a class file for each class being compiled. For the purpose of JavaC-
ard, compilation is followed by a further transformation phase where a converter
transforms the set of class files corresponding to a package into a single CAP file,
provided the former are JavaCard compliant. Finally, CAP files are linked before
execution (recall JavaCard does not support dynamic class loading); during this
last phase, constant pools are resolved and eliminated. Our representation of
programs is based on this last format.
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2.1 Representation of Data Structures

The JavaCard Virtual Machine distinguishes between primitive types and ref-
erence types (for instances of arrays, classes and interfaces). We use a mutual
inductive type to enforce the distinction. Formally, the type of primitive types
is defined (in Coq) by:

Inductive type_prim : Set :=
Byte : type_prim |
Short : type_prim |
Int : type_prim |
Boolean : type_prim |
Void : type_prim |
ReturnAddress : type_prim.

while the type of (JavaCard) types is defined by:

Mutual Inductive type : Set :=
Prim : type_prim -> type |
Ref : type_ref -> type

with type_ref : Set :=
Ref_array : type -> type_ref |
Ref_instance : nat -> type_ref |
Ref_interface : nat -> type_ref.

In principle our representation of types allows to form arrays of arrays, which is
not permitted in JavaCard. However our formalisation, in particular the imple-
mentation of anewarray, does not allow to form such a type. (It is also straight-
forward to modify our formalisation not to allow such types to be formed.)

2.2 Representation of Programs

A JavaCard program is simply represented by its interfaces, classes and methods:

Record jcprogram : Set := {
interfaces : (list Interface);
classes : (list Class);
methods : (list Method)

}.

Note that, by default, interfaces and classes of the java.lang package and in-
stances of these classes are an integral part of our program. This includes in
particular the class Object, the interface Shareable, and Exception classes.

The types Interface, Class and Method are themselves defined as record
types. We briefly describe the structure of classes and methods below. Interfaces
are described in the full version of this paper.
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Classes. A class is described by its superclasses1 (if any), its methods (including
constructors and distinguishing between public methods and package methods),
the interfaces it implements, its class variables and, in the case of Java Card, its
owning package. For execution purposes, we also need to keep track of the index
of the class. Formally, we use the following structure to represent classes:

Record Class : Set := {
(* List of all super classes of this class *)

super : (list class_idx);
(* List of public methods *)

public_methods : (list Method);
(* List of package methods *)

package_methods : (list Method);
(* List of implemented interfaces *)
(* For each interface we provide the list of methods *)
(* implementing the interface’s methods. Methods *)
(* are tagged with their visibility. *)

int_methods : (list interf_idx*(list vis_method_idx)));
(* List of types of class variables *)

class_var : (list type);
(* Identification of the owner package*)

package : Package;
(* Index of class *)

class_id : class_idx
}.

where class_idx and interf_idx are the types of indexes for classes and in-
terfaces respectively and vis_method_idx is the inductive (sum) type:

Inductive vis_method_idx : Set :=
pub_method_idx: method_idx -> vis_method_idx

| pac_method_idx: method_idx -> vis_method_idx.

where method_idx is the type of method indexes (the constructors are used to
flag methods’ visibility).

Our representation does not take into account the maximum depth of the
operand stack during execution of the method. It is a simple matter to include
this information but, during execution, we would need to perform many checks.

Methods. A method is characterised by its status (whether it is static or not),
its signature (against which one can type-check its arguments upon invocation),
1 Our description of a class c refers to all the classes from which c inherits, i.e. to

which c is related by the transitive closure of the superclass relation. For execution
purposes, these classes are gathered into a list. Our convention is that the immediate
superclass of c appears first in the list. This encoding is chosen to avoid defining
functions by well-founded recursion over the subclass relation.
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its number of local variables (for initialising its execution context), its exception
handlers, its list of instructions to be executed and finally the indexes of the
method and of its owning class. Formally, we use the following structure to
represent methods:

Record Method : Set := {
(* Indicates whether a method is static or not *)
is_static : bool;
(* Signature of the method, pair of domain / codomain *)
signature : ((list type)*type);
(* Number of local variables. *)
local : nat;
(* List of exception handlers *)
handler_list : (list handler_type);
(* List of all instructions to be executed. *)
bytecode : (list Instruction);
(* Index of the method in program*)
method_id : method_idx;
(* Index of the owning class *)
owner : class_idx

}.

where the type handler_type collects the information required to define the
best handler for a given program counter and exception. Formally, we use the
following structure to represent handler types:

Definition handler_type :=
(bytecode_idx*bytecode_idx*class_idx*bytecode_idx).

The first two elements define the range at which the exception handler is active.
The third element defines the class of exceptions that the handler is meant to
catch, whereas the last element points to the first bytecode to execute if this
handler is chosen.

A remark on correctness. The above representation makes some implicit assump-
tions about the program. For example, the index of a method should be less or
equal to the number of methods contained in the program. These assumptions
are formalised as predicates on jcprogram. This is the (mild) price to pay for
not using dependent types to represent programs.

2.3 The JCVM Tools

The transformation of JavaCard programs into cap files may be performed by
standard tools, namely any Java compiler and JavaCard converter. In order to
translate JavaCard programs into our format, we have developed a toolset, called
the JCVM Tools (over 4,000 lines of Java code). The JCVM Tools transform a
set of CAP files into a Coq expression of type jcprogram. In addition, the JCVM
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Tools provide a graphical user interface to browse through programs and allow to
modify compiled JavaCard programs (so as to check the behaviour of our formal
semantics on incorrect programs). We have used the JCVM Tools to debug our
formalisation.

3 The Virtual Machine

The Virtual Machine is described by a small-step semantics; more precisely, each
instruction is formalised as a state transformer, i.e. a function that takes as input
a state (before the instruction is executed) and returns a new state (after the
instruction has been executed).

3.1 Values

In order to formalise the virtual machine, we first need to represent, for each
JavaCard type, its possible values. These can either be arithmetic values or
non-computational values such as memory addresses. Both can be represented
as integers; for the latter, we use an implicit coercion from non-computational
values to integers. As in [27], we tag values with their types. Formally, we set:2

Definition valu := type*Z.

Here Z is the (inductive) type of binary integers provided by the Coq library.
While the inductive representation is suitable for reasoning (each integer has a
unique representation in Z), it is less suited for computing and functions such
as division are not part of the standard library. Besides, existing operations are
not suitable to model overflows. In order to provide an accurate treatment of
arithmetic, we therefore proceed as follows:

1. we introduce an alternative representation Z_bits of integers as lists of bits;
2. we define all arithmetic operations as functions over Z_bits. These functions

abide to Sun’s specifications for overflows;
3. we define bi-directional coercions between Z and Z_bits to switch between

the two representations.

3.2 The Memory Model

States are formalised as triples consisting of the heap (containing the objects
created during execution), the static heap (containing static fields of classes)
and a stack of frames (environments for executing methods). Formally, states
are defined by:

Definition jcvm_state := static_heap*heap*stack.

2 The expression value is already used for the lift monad so we use valu instead.
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The static heap is defined as a list of values, whereas the heap is defined as a
list of objects. These can either be class instances or arrays, as formalized by
the inductive (sum) type:

Inductive obj : Set :=
Instance : type_instance -> obj |
Array : type_array -> obj.

Both type_instance and type_array are record types that contain all the rel-
evant information for describing instances and arrays respectively. For example,
a class instance is described by the index of the class from which the object
is an instance, the instance variables (as a list of valu), the reference to the
owning package and a flag to indicate whether the object is an entry point and
whether it is a permanent or temporary entry point (entry points are used in
the JavaCard security model for access control). Formally, we set:

Record type_instance : Set := {
reference : class_idx;
contents_i : (list valu);
owner_i : Package;
is_entry_point : bool;
is_permanent_entry_point : bool;

}.

Arrays are formalised in a similar fashion.
As to the stack, it is a list of frames that are created upon execution of a

method and destroyed upon completion of the method’s execution. Formally, we
set:

Definition stack := (list frame).

Each frame has its own array of local variables and its own operand stack
which is used to store a method’s parameters and results. A frame also has
a counter pointing to the next instruction to be executed, a reference to the
current method, and a reference to the context of the current method (this con-
text plays a fundamental role in the firewall mechanism). Formally, a frame is
described by:

Record frame : Set := {
locvars : (list valu); (* Local Variables *)
opstack : (list valu); (* Operand stack *)
p_count : bytecode_idx (* Program counter *)
method_loc : method_idx; (* Location of the method *)
context_ref : Package; (* Context Information *)
analyzed_method : bool

}.

The analyzed_method is only used in Section 5 to define the abstraction function
that maps each state to an abstract state; the abstraction function is itself used
to express the correctness of the ByteCode Verifier.
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3.3 Instructions

The semantics of each instruction is formalised using a function of type:

jcvm_state * operands → returned_state

The type operands is not a Coq expression but a type determined by the in-
struction to be executed. In order to handle abrupt termination (that may arise
because of uncaught exceptions), the codomain of the function is an inductive
(sum) type:

Inductive returned_state: Set :=
Normal : jcvm_state->returned_state |
Abnormal : xcpt->jcvm_state->returned_state.

In case of normal execution, the returned state is the one obtained after exe-
cution of the instruction (tagged with Normal), whereas in the case of abrupt
termination, the returned state is that of the virtual machine when the uncaught
exception was raised (tagged with Abnormal and the nature of the uncaught ex-
ception). In order to execute the virtual machine, we collect the semantics of
each instruction in a one-step execution function exec_instr of type:

instruction*state*program → returned_state

where instruction is the sum type of instructions. The function takes as inputs
an instruction i, a state s and a program p and returns sem_i s o where sem_i
is the semantics of i (of type state*operands → returned_state) and o is the
list of operands required to execute the instruction (extracted from state).

Note that one cannot use exec_instr to build a function that takes as input a
program and returns as output its result because Coq only supports terminating
functions. However, we have used Coq’s extraction mechanism successfully to
derive a one-step execution function in CAML and wrapped it up with a while-
loop to produce a certified JavaCard Virtual Machine.

3.4 Exception Management

JavaCard exceptions can either be raised by the program, via the instruction
athrow, or by the virtual machine. In addition, execution may simply fail in
case of an incoherence due to a memory problem, e.g. if a reference is not found
in heap, or an execution problem, e.g. an empty stack for a pop. Our formalisa-
tion collects these three kinds of exceptions in an inductive (sum) type. Beware
that exceptions in the virtual machine are represented as instances of exception
classes, and not as inhabitants of the type xpct. In fact, we use the latter to
give the semantics of exception handling.

We now turn to exception handling. Two situations may occur:
– the machine aborts. In the case of a JCVMError, the virtual machine is unable

to continue the execution and, by calling an abort function, an abnormal
state labelled by the error is returned;

– the exception handling mechanism is launched. In order to catch an excep-
tion, one searches for an adequate handler through the stack. This procedure
is recursive (it is one of the few places where our formalisation uses recur-
sion), see the full version of this paper.



A Formal Executable Semantics of the JavaCard Platform 311

3.5 Semantics of Invokevirtual

Most instructions have a similar execution pattern: (1) the initial state is decom-
posed; (2) fragments F of the state are retrieved; (3) observations O are made to
determine the new state; (4) the final state is built on the basis of O and F. In
this subsection we describe the semantics of invokevirtual. Because of space re-
strictions, we only consider the main function new_frame_invokevirtual. The
function decomposes a state and creates a new frame for the method being in-
voked.

Definition new_frame_invokevirtual :=
[nargs:nat][m:Method][nhp:obj][state:jcvm_state][cap:jcprogram]
Cases state of
(sh, (hp, nil)) => (AbortCode state_error state) |
(sh, (hp, ((cons h lf) as s))) =>

(* extraction of the list of arguments *)
Cases (l_take nargs (opstack h)) (l_drop nargs (opstack h)) of
(value l) (value l’) =>

(* security checking *)
(if (violation_security_invokevirtual h nhp)
then (ThrowException Security state cap)
else

(* then a signature check is performed *)
(if (sig_ok l (signature m) cap)

(* in case of success, the stack of frames is updated *)
then (Normal (sh, (hp, (cons (Build_frame (nil valu)

(make_locvars l (local m))
(method_id m)
(get_owner_context nhp)
false
(0))

(cons (Build_frame l’
(locvars h)
(method_loc h)
(context_ref h)
(analyzed h)
(p_count h))

(tail s))))))
else (AbortCode signature_error state)
)

) |
_ _ => (AbortCode opstack_error state)

end
end.

The function performs various security checks, including those imposed by
JavaCard firewalls. E.g. the function violation_security_invokevirtual will
verify, in case the object nhp is an instance, whether (1) the active context is
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the JavaCard Runtime Environment context3 or; (2) the active context is also
the context of the instance’s owner or; (3) the instance is an entry point. If not,
the function returns true to flag a security violation.

4 Abstract Virtual Machine

When reasoning about the virtual machine and/or applications, it is convenient
to omit some of its intricacies and consider simplified virtual machines instead.
In this section, we develop such an abstract virtual machine that manipulates
types instead of values. This abstract virtual machine represents, in some sense,
a type-checking algorithm for the concrete virtual machine and indeed, in the
next section, we show how to derive a ByteCode Verifier from this abstraction.

4.1 Abstract Memory Model

As a first approximation, we would like our abstract values to be the set of
(JavaCard) types. However, return addresses needs a special treatment. In the
semantics of the instruction ret, it is required that the first operand is a value
val of type Return_Address and the integer part of val is used to indicate the
next value of the program counter. If we simply forget about the integer part of
val, we are simply unable to indicate the program point where execution is to
be continued. We therefore adapt the definition of (abstract, JavaCard) types
to store the value to which the program counter needs to be updated. Formally,
abstract values (identified with) abstract types are defined as a mutual inductive
type, together with abstract primitive types:

Inductive abs_type_prim : Set :=
abs_ReturnAddress : nat -> abs_type_prim | ...

The memory model is simplified likewise:

– the heap disappears. Indeed, the type of objects created during execution is
always stored in the stack so the heap is not needed any longer.

– the stack disappears and is replaced by a frame. Indeed, execution may
be performed on a method by method basis so that only the return type
is required for executing a method’s invocation (we return to the abstract
semantics of invokevirtual in the next subsection). Hence we only need to
consider one abstract frame instead of the stack.

We still need to maintain the static heap, abstracted as a list of types. The static
heap is used for example in the semantics of get_static. Formally, we set:

Definition abs_jcvm_state := abs_static_heap*abs_frame.

We now turn to the execution model. Execution becomes non-deterministic be-
cause some branching instructions may return to different program points de-
pending upon the value on top of the operand stack (and we do not have access to
3 The JavaCard Runtime Environment is privileged and may access all objects.
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the value). In order to handle this non-determinism, the corresponding abstract
instructions are required to return a list of possible returned states. Formally,
instructions are formalised as functions of type:

abs_jcvm_state * operands → (list abs_returned_state)

As for the concrete virtual machine, one defines a one-step abstract execution
function abs_exec_instruction of type:

instruction*abs_state*program → abs_returned_state

4.2 Exception Management

The abstract virtual machine cannot handle standard JavaCard exceptions such
as NullPointer or Arithmetic exceptions because they depend on values forgot-
ten during the abstraction. In fact, the only exceptions handled by the abstract
virtual machine are those caused by an incorrect program.

4.3 Semantics of the Abstract Invokevirtual

The abstract semantics for new_frame_invokevirtual does not create a new
frame nor perform a check for security exceptions. Moreover the resulting state
becomes:

(abs_Normal (sh, (Build_abs_frame
(app_return_type l’ (Snd (signature m)))
(abs_locvars h)
(abs_method_loc h)
(abs_context_ref h)
(S (abs_p_count h)))))

The return type of the method called (if different from Void) is added to the
operand stack of the current frame by calling the function app_return_type
and the program counter is incremented.

4.4 Correctness

In order to state the correctness of the abstraction, we want to define a func-
tion that maps states to abstract states. As a first step, we define a function
alpha_val mapping values to abstract values. Formally, we set:

Definition alpha_val [v:valu] : abs_valu :=
Cases (Fst v) of
(Prim ReturnAddress) =>

(abs_Prim (abs_ReturnAddress (absolu (Snd v))))
| _ => (type_to_abs_type (Fst v))
end.
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where absolu coerces an integer to its absolute value and type_to_abs_type
coerces a type to its corresponding abstract type.

Now we need to extend the function alpha_val to a function alpha that
maps every state to an abstract state. It is a simple matter to extract an abstract
static heap from a state, but some care is needed to extract an abstract frame
from a stack. Indeed, we cannot map a stack to the abstraction of its top frame,
because of the invokevirtual function (concrete execution creates a new frame
whereas abstract execution does not). In order to cope with this situation, we
use the flag of the current analysed frame m. If m is on the top of the stack then
it is abstracted. If there are other frames above, the return type of the frame
just above the analysed frame is added to the operand stack of m and m is then
abstracted.

Finally, we extend the function alpha to a function alpha_ret that maps
every returned state to an abstract returned state. The correctness of the ab-
straction is then stated as a “commuting diagram” relating concrete and ab-
stract execution (up to subtyping), see Figure 1. The hooked vertical arrow on
the right-hand side of the diagram and the ≤ sign at the bottom-right corner
mean that the abstraction of the concrete returned state is, up to subtyping, a
member of the list of abstract returned states.

jcvm state

alpha
��

exec instruction i // returned state� _

alpha ret
��

abs jcvm state
abs exec instruction i // ≤ (list abs returned state)

Fig. 1. Commutative diagram of concrete and abstract execution

We have shown4 in Coq that the diagram commutes (up to subtyping),
provided concrete execution does not raise any exception except by calling
AbortCode (as discussed above, other exceptions cannot be handled by the ab-
stract virtual machine). It follows that every call to AbortCode at the concrete
level is matched at the abstract level. This is the key to proving the correctness
of the ByteCode Verifier.

5 Application: A Certified ByteCode Verifier

The ByteCode Verifier is a key component of JavaCard’s security. Below we
present a certified ByteCode Verifier derived from the abstract virtual machine
described in the previous section. Our ByteCode Verifier ensures that, at every
4 Our proof assumes that the virtual machine verifies some basic properties w.r.t.

memory management.
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program point, the local variables and the operand stack are appropriately typed
for the instruction to be executed. It also ensures that, if a program point is
reached several times, the size and type of the operand stack must remain equal.
Our ByteCode Verifier treats the whole set of instructions but is not complete:
it does not treat subroutines in their full generality nor object initialisation.

5.1 The Verification Algorithm

All the properties suggested above, except the last one, can be verified by execut-
ing the abstract Virtual Machine. For the last property, we also have to record
the (abstract) state of the (abstract) virtual machine after each step of execution.
More precisely, we store an uninitialised returned state for each program point
of the analysed method. After each step of execution, we check if the instruction
has been performed before and if so, unify in a suitable way the returned state
with the state that was stored for this instruction. In case of success, the re-
sulting state after unification state is saved again. If, after unification, the saved
state has not changed, the execution can stop for this particular execution path.

Some instructions require some extra care, e.g. (1) for instructions that can
lead to two different program points, the execution must continue from both
branching points; (2) for exception handlers, the catch block must be executed
from the beginning with the appropriate arguments, and at the return point of
the exception handler, an unification must occur.

5.2 Correctness of the ByteCode Verifier

The correctness of the ByteCode Verifier comprises two parts:

– a proof of termination. It requires to define a well-founded relation on types
and to prove that each unification step produces a state that is strictly
smaller than the state that was previously stored. The proof is highly non
trivial and is used to define by well-founded recursion the ByteCode Verifier
as a function bcv:jcprogram → bool;

– a proof of correctness. One needs to prove that, if bytecode verification is
successful, then the function AbortCode will not be called. The proof, which
uses the correctness of the abstraction, ensures that the ByteCode Verifier
enforces the expected properties.

6 Conclusion

We have presented an executable formal semantics of the JavaCard Virtual Ma-
chine and ByteCode Verifier. With 15,000 lines of Coq scripts, our formalisation
constitutes the most in-depth machine-checked account of the JavaCard platform
to date.
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6.1 Related Work

Applications of formal methods and programming language theory to Java and
JavaCard are flourishing. Due to space constraints, we only comment on works
that emphasise machine-checked verification of the Java or JavaCard platforms,
either at platform or application level. Other works that do not emphasise
machine-checked verification are discussed in the full version of this paper.

Platform-oriented projects. One of the most impressive achievements to date
is that of the Bali project [2], which has formalised in Isabelle/HOL a large body
of the Java platform, including (1) the type system and the operational seman-
tics of both the source language and the bytecode, with a proof of type-safety
at both levels; (2) the compiler, an abstract ByteCode Verifier and an abstract
lightweight ByteCode Verifier, with a proof of their correctness; (3) a sound and
complete axiomatic semantics to reason about Java programs. This work is com-
prehensive in that it treats all components of the Java platform, both at source
and bytecode level, but does not take all aspects of Java (let alone JavaCard)
into account. For example, Pusch’s account [27] of the Java Virtual Machine does
not handle arithmetic, exceptions, interfaces and initialisation and Nipkow’s [24]
and Klein and Nipkow’s [19] accounts of the ByteCode Verifier focus on an even
smaller fragment of the JVM. Thus, we see our work as complementary to theirs
and as further evidence that, as suggested in [25], “machine-checking the design
of a non-trivial programming language has become a reality”.

Other partial formalisations of the Java and JavaCard platforms are reported
by Y. Bertot [5] (object initialisation in Coq after [13]), by R. Cohen [10] (de-
fensive JVM in ACL2), by T. Jensen and co-authors [29] (converter in Coq),
by J.-L. Lanet and A. Requet [20] (JCVM in B), by Z. Qian and co-workers [9]
(JVM and BCV in Specware) and by D. Syme [31] (operational semantics, type
system and type soundness of source Java in DECLARE).

Application-oriented projects. Application-oriented projects may be further
classified on the basis of the verification techniques used. These can either be
mostly logical or mostly algorithmic.

Logical approaches. The LOOP tool [22], which allows to reason about (source)
Java programs via a front-end to PVS and Isabelle, has been applied successfully
to the verification of some standard Java class libraries and more recently to the
JavaCard APIs. The key ingredients underlying the LOOP’s approach are (1) a
type-theoretical semantics of Java programs and of the Java memory model; (2)
an axiomatic logic to reason about Java programs and Java features, including
exceptions, abrupt termination and inheritance; (3) a tool to compile Java classes
into PVS or Isabelle theories that form the basis for actual verifications. The
main differences with our work are that their semantics works at source level
and that it is not directly executable.

Rather similar techniques have been developed independently by A. Poetsch-
Heffter and co-workers [23,26], while in [7], P. Brisset combines logical and algo-
rithmic techniques to verify the correctness of Java’s security manager. Further
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uses of logical techniques for the verification of Java programs are reported in
[1,11,14].

Algorithmic approaches. The Bandera project [3] has developed a toolset to ver-
ify automatically properties of (source) Java programs via a back-end to model-
checkers such as SMV and Spin. The toolset has been successfully applied to
verify properties of multi-threaded Java programs. The key ingredients underly-
ing the Bandera’s approach are (1) a (temporal logic like) specification language
to describe program properties; (2) a toolset5 that extracts from Java source
code compact finite-state models; (3) an abstraction specification language and
an abstraction engine that derives the abstract program for a given program and
abstraction.

Further uses of algorithmic techniques to verify Java programs have been
reported e.g. by P. Bieber and co-authors [6] (abstraction and model-checking
to detect transitive flows in JavaCard), T. Jensen and co-workers [18] (abstrac-
tion and finite-state verification to verify control-flow security properties of Java
programs), K. Havelund [15] (Java Path Finder, model-checking of concurrent
Java programs), K. R. M. Leino and co-authors [21] (Extended Static Checking,
with a back-end to the theorem-prover Simplify). In addition, numerous pro-
gram analyses and type systems have been designed to verify properties of Java
programs.

6.2 Future Work

Our primary objective is to complete our work into a full formalisation of the
JavaCard platform (at the bytecode level) that may be used as a basis for rea-
soning about JavaCard programs. Clearly, much work remains to be done. Below
we only outline the most immediate problems we intend to tackle.

Platform level. First and foremost, one needs to complete the formalisation of
the ByteCode Verifier. The key challenge is of course to handle subroutines. We
see two complementary options here: the first one is to provide a full account of
subroutines along the lines of [13,30]. An alternative, first suggested by S. Freund
in [12] and recently implemented in the KVM [8], would be to consider a pro-
gram transformation that translates away subroutines and prove its correctness.
Second, it would be interesting to extend our semantics with some features of
Java, such as garbage collection, multi-threading and remote method invocation
(RMI).

Application level. Many security properties can be expressed as temporal
logic formulae over a program’s execution trace and can in principle be verified
by suitable algorithmic techniques. For these algorithmic verifications to be ef-
fective, they should be preceded by abstraction techniques that help reduce the
state space. In this paper, we focused on the type abstraction which, in many
5 The toolset combines several program analyses/program transformation techniques,

including slicing and partial evaluation.
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respects, underlies the ByteCode Verifier. We are currently trying to develop a
method to generate automatically an abstract virtual machine and a proof of
its correctness for any abstraction function mapping states to a suitably chosen
notion of abstract states.
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