
The Asf+Sdf Meta-environment: A
Component-Based Language Development

Environment

M.G.J. van den Brand1, A. van Deursen1, J. Heering1, H.A. de Jong1, M. de
Jonge1, T. Kuipers1, P. Klint1, L. Moonen1, P.A. Olivier1, J. Scheerder2, J.J.

Vinju1, E. Visser3, and J. Visser1

1 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ
Amsterdam, The Netherlands

2 Faculty of Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The
Netherlands

3 Faculty of Mathematics and Computer Science, Utrecht University, Padualaan 14,
2584 CH Utrecht, The Netherlands

Abstract. The Asf+Sdf Meta-environment is an interactive develop-
ment environment for the automatic generation of interactive systems for
constructing language definitions and generating tools for them. Over the
years, this system has been used in a variety of academic and commer-
cial projects ranging from formal program manipulation to conversion
of COBOL systems. Since the existing implementation of the Meta-en-
vironment started exhibiting more and more characteristics of a legacy
system, we decided to build a completely new, component-based, version.
We demonstrate this new system and stress its open architecture.

1 Introduction

The Asf+Sdf Meta-environment [12] is an interactive development environ-
ment for the automatic generation of interactive systems for constructing lan-
guage definitions and generating tools for them. A language definition typically
includes such features as syntax, prettyprinting, typechecking, and execution of
programs in the target language. The Asf+Sdf Meta-environment can help in
the following cases:

– You have to write a formal specification for some problem and you need
interactive support for this.

– You are developing your own (application) language and want to create an
interactive environment for it.

– You have programs in some existing programming language and you want
to analyze or transform them.

The Asf+Sdf formalism [1] [10] allows the definition of syntactic as well
as semantic aspects. It can be used for the definition of languages (for pro-
gramming, writing specifications, querying databases, text processing, or other

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 365–370, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



366 M.G.J. van den Brand et al.

applications). In addition it can be used for the formal specification of a wide
variety of problems. Asf+Sdf provides:

– A general-purpose algebraic specification formalism based on (conditional)
term rewriting.

– Modular structuring of specifications.
– Integrated definition of lexical, context-free, and abstract syntax.
– User-defined syntax, allowing you to write specifications using your own

notation.
– Complete integration of the definition of syntax, and semantics.
– Traversal functions (for writing very concise program transformations),

memo functions (for caching repeated computations), and more.

The Asf+Sdf Meta-environment offers:

– Syntax-directed editing of Asf+Sdf specifications.
– Incremental compilation and testing of specifications.
– Compilation of Asf+Sdf specifications into dedicated interactive stand-

alone environments containing various tools such as a parser, prettyprinter,
syntax-directed editor, debugger, and interpreter or compiler.

– User-defined extensions of the default user-interface.

The design goals of the new implementation to be demonstrated include:
openness, reuse, extensibility, and in particular the possibility to generate com-
plete stand-alone environments for user-defined languages.

2 Technological Background

ToolBus. A hallmark of legacy systems in general and the old Asf+Sdf Meta-en-
vironment in particular is the entangling of control flow and actual computation.
To separate coordination from computation we use the ToolBus coordination
architecture [2], a programmable software bus based on process algebra. Coordi-
nation is expressed by a formal description of the cooperation protocol between
components while computation is expressed in components that may be written
in any language. We thus obtain interoperability of heterogeneous components
in a (possibly) distributed system.

ATerms. Coordination protocol and components have to share data. We use
ATerms [4] for this purpose. These are trees with optional annotations on each
node. The annotations are used to store tool-specific information like text co-
ordinates or color attributes. The implementation of ATerms has two essential
properties: terms are stored using maximal subterm sharing (reducing memory
requirements and making deep equality tests very efficient) and they can be ex-
changed using a very dense binary encoding that preserves sharing. As a result
very large terms (with over 1, 000, 000 nodes) can be processed.



The Asf+Sdf Meta-environment 367

Browser

Graph

Interpreter

TOOLBUS

Editor

Text

Editor

Structure

Repository

Tree

Generator

Parsetable
Parser

Compiler
ASF+SDF Unparser

Generator

Fig. 1. Architecture of the Asf+Sdf Meta-environment

SGLR. In our language-centric approach the parser is an essential tool. We
use scannerless, generalized-LR parsing [13]. In this way we can parse arbitrary
context-free grammars, an essential property when combining and parsing large
grammars for (dialects of) real-world languages.

Term rewriting. Asf+Sdf specifications are executed as (conditional) rewrite
rules. Both interpretation and compilation (using the ASF2C compiler [5]) of
these rewrite rules are supported. The compiler generates very efficient C code
that implements pattern matching and term traversal. The generated code uses
ATerms as its main data representation, and ensures a minimal use of memory
during normalization of terms.

3 Architecture

The architecture of the Asf+Sdf Meta-environment is shown in Figure 1. It
consists of a ToolBus that interconnects the following components:

– User interface: the top level user-interface of the system. It consists pri-
marily of a graph browser for the import graph of the current specification.

– Text Editor: a customized version of XEmacs for text editing.
– Structure Editor: a syntax-directed editor that closely cooperates with the

Text Editor.
– Parser: scannerless, generalized-LR parser (SGLR) that is parametrized

with a parse table.
– Parsetable generator: takes an SDF syntax definition as input and gen-

erates a parse table for SGLR.
– Tree Repository: stores all terms corresponding to specification modules,

parse tables, user-defined terms, etc.
– Compiler: the ASF2C compiler.
– Interpreter: executes specifiations by direct interpretation.
– Unparser generator: generates prettyprinters.



368 M.G.J. van den Brand et al.

Fig. 2. The main user-interface of the Meta-environment is a module browser that
provides a graphical and a textual view of the modules in a specification. A number of
operations can be initiated for each module. Here it is shown with the modules from a
small specification of a typechecker for the toy language Pico.

4 Applications of Asf+Sdf and the Meta-environment

There are a number of academic and industrial projects that use either Asf+Sdf
directly or components of the Meta-environment in one way or another. c The
applications of Asf+Sdf can be split into three groups:

1. In the field of language prototyping Asf+Sdf has been used to describe
the syntax and semantics of domain specific languages, e.g., the language
Risla for describing financial products [3]. As another example, the syn-
tax of the algebraic specification language Casl has been prototyped using
Asf+Sdf [7]. Box [9] [11] is a small domain specific language developed for
prettyprinting within the Meta-environment.

2. In the field of reverse engineering and system renovation, Asf+Sdf is used
to analyze and transform COBOL legacy code [8].

3. As an algebraic specification formalism for specifying language processing
tools. In fact, a number of components of the Meta-environment itself have
been specified using Asf+Sdf:
– the ASF2C compiler,
– the unparser generator, and
– parts of the parsetable generator.

For other components, such as the ToolBus and the syntax-directed editor,
an Asf+Sdf specification was made for prototyping use only. That specifi-
cation formed the basis for an optimized, handcrafted implementation.



The Asf+Sdf Meta-environment 369

Components of the Meta-environment are used as stand-alone tools in a vari-
ety of applications. Examples are the Stratego compiler [14], the Risla compiler,
the Elan environment [6], and a commercial tool for designing and implementing
information systems.

5 Demonstration

We will show a number of applications of the Meta-environment ranging from
a simple typechecking problem (Figure 2) to syntax-directed editing and trans-
formation of COBOL systems.

6 Obtaining the Asf+Sdf Meta-environment

The Asf+Sdf Meta-environment can be downloaded from:

http://www.cwi.nl/projects/MetaEnv/completa/

Individual components, such as the ATerm library, Tool-
Bus, parser generator, and parser (SGLR) can be obtained from:
http : //www.cwi.nl/projects/MetaEnv/.

All components of the Asf+Sdf Meta-environment are available as open
source software.

References

1. J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM
Press/Addison-Wesley, 1989.

2. J.A. Bergstra and P. Klint. The discrete time ToolBus – a software coordination
architecture. Science of Computer Programming, 31(2-3):205–229, July 1998.

3. M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E.A, van den
Meulen. Industrial applications of ASF+SDF. In M. Wirsing and M. Nivat, editors,
Algebraic Methodology and Software Technology (AMAST ’96), volume 1101 of
LNCS. Springer-Verlag, 1996.

4. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. Olivier. Efficient Annotated
Terms. Software, Practice & Experience, 30:259–291, 2000.

5. M.G.J. van den Brand, P. Klint, and P. A. Olivier. Compilation and memory
management for ASF+SDF. In S. Jähnichen, editor, Compiler Construction (CC
’99), volume 1575 of Lecture Notes in Computer Science, pages 198–213. Springer-
Verlag, 1999.

6. M.G.J. van den Brand and C. Ringeissen. ASF+SDF parsing tools applied to
ELAN. In Third International Workshop on Rewriting Logic and Applications,
ENTCS, 2000.

7. M.G.J. van den Brand and J. Scheerder. Development of Parsing Tools for CASL
using Generic Language Technology. In D. Bert, C. Choppy, and P. Mosses, ed-
itors, Workshop on Algebraic Development Techniques (WADT’99), volume 1827
of LNCS. Springer-Verlag, 2000.



370 M.G.J. van den Brand et al.

8. M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation of components
for software renovation factories from context-free grammars. Science of Computer
Programming, 36:209–266, 2000.

9. M.G.J. van den Brand and E. Visser. Generation of formatters for context-free
languages. ACM Transactions on Software Engineering and Methodology, 5:1–41,
1996.

10. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing. World
Scientific, 1996.

11. M. de Jonge. A pretty-printer for every occasion. In I. Ferguson, J. Gray, and
L. Scott, editors, Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools (CoSET2000). University of Wollongong, Australia,
2000.

12. P. Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2:176–201, 1993.

13. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

14. E. Visser, Z. Benaissa, and A. Tolmach. Building Program Optimizers with Rewrit-
ing Strategies. In International Conference on Functional Programming (ICFP’98),
pages 13–26, 1998.


	Introduction
	Technological Background
	Architecture
	Applications of {sc Asf}+{sc Sdf} and the Meta-endiscretionary {-}{}{}virdiscretionary {-}{}{}ondiscretionary {-}{}{}ment
	Demonstration
	Obtaining the {sc Asf}+{sc Sdf} Meta-endiscretionary {-}{}{}virdiscretionary {-}{}{}ondiscretionary {-}{}{}ment

