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Abstract. The Asf+Sdf Meta-environment is an interactive develop-
ment environment for the automatic generation of interactive systems for
constructing language definitions and generating tools for them. Over the
years, this system has been used in a variety of academic and commer-
cial projects ranging from formal program manipulation to conversion
of COBOL systems. Since the existing implementation of the Meta-en-
vironment started exhibiting more and more characteristics of a legacy
system, we decided to build a completely new, component-based, version.
We demonstrate this new system and stress its open architecture.

1 Introduction

The Asf+Sdf Meta-environment [12] is an interactive development environ-
ment for the automatic generation of interactive systems for constructing lan-
guage definitions and generating tools for them. A language definition typically
includes such features as syntax, prettyprinting, typechecking, and execution of
programs in the target language. The Asf+Sdf Meta-environment can help in
the following cases:

– You have to write a formal specification for some problem and you need
interactive support for this.

– You are developing your own (application) language and want to create an
interactive environment for it.

– You have programs in some existing programming language and you want
to analyze or transform them.

The Asf+Sdf formalism [1] [10] allows the definition of syntactic as well
as semantic aspects. It can be used for the definition of languages (for pro-
gramming, writing specifications, querying databases, text processing, or other
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applications). In addition it can be used for the formal specification of a wide
variety of problems. Asf+Sdf provides:

– A general-purpose algebraic specification formalism based on (conditional)
term rewriting.

– Modular structuring of specifications.
– Integrated definition of lexical, context-free, and abstract syntax.
– User-defined syntax, allowing you to write specifications using your own

notation.
– Complete integration of the definition of syntax, and semantics.
– Traversal functions (for writing very concise program transformations),

memo functions (for caching repeated computations), and more.

The Asf+Sdf Meta-environment offers:

– Syntax-directed editing of Asf+Sdf specifications.
– Incremental compilation and testing of specifications.
– Compilation of Asf+Sdf specifications into dedicated interactive stand-

alone environments containing various tools such as a parser, prettyprinter,
syntax-directed editor, debugger, and interpreter or compiler.

– User-defined extensions of the default user-interface.

The design goals of the new implementation to be demonstrated include:
openness, reuse, extensibility, and in particular the possibility to generate com-
plete stand-alone environments for user-defined languages.

2 Technological Background

ToolBus. A hallmark of legacy systems in general and the old Asf+Sdf Meta-en-
vironment in particular is the entangling of control flow and actual computation.
To separate coordination from computation we use the ToolBus coordination
architecture [2], a programmable software bus based on process algebra. Coordi-
nation is expressed by a formal description of the cooperation protocol between
components while computation is expressed in components that may be written
in any language. We thus obtain interoperability of heterogeneous components
in a (possibly) distributed system.

ATerms. Coordination protocol and components have to share data. We use
ATerms [4] for this purpose. These are trees with optional annotations on each
node. The annotations are used to store tool-specific information like text co-
ordinates or color attributes. The implementation of ATerms has two essential
properties: terms are stored using maximal subterm sharing (reducing memory
requirements and making deep equality tests very efficient) and they can be ex-
changed using a very dense binary encoding that preserves sharing. As a result
very large terms (with over 1, 000, 000 nodes) can be processed.
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Fig. 1. Architecture of the Asf+Sdf Meta-environment

SGLR. In our language-centric approach the parser is an essential tool. We
use scannerless, generalized-LR parsing [13]. In this way we can parse arbitrary
context-free grammars, an essential property when combining and parsing large
grammars for (dialects of) real-world languages.

Term rewriting. Asf+Sdf specifications are executed as (conditional) rewrite
rules. Both interpretation and compilation (using the ASF2C compiler [5]) of
these rewrite rules are supported. The compiler generates very efficient C code
that implements pattern matching and term traversal. The generated code uses
ATerms as its main data representation, and ensures a minimal use of memory
during normalization of terms.

3 Architecture

The architecture of the Asf+Sdf Meta-environment is shown in Figure 1. It
consists of a ToolBus that interconnects the following components:

– User interface: the top level user-interface of the system. It consists pri-
marily of a graph browser for the import graph of the current specification.

– Text Editor: a customized version of XEmacs for text editing.
– Structure Editor: a syntax-directed editor that closely cooperates with the

Text Editor.
– Parser: scannerless, generalized-LR parser (SGLR) that is parametrized

with a parse table.
– Parsetable generator: takes an SDF syntax definition as input and gen-

erates a parse table for SGLR.
– Tree Repository: stores all terms corresponding to specification modules,

parse tables, user-defined terms, etc.
– Compiler: the ASF2C compiler.
– Interpreter: executes specifiations by direct interpretation.
– Unparser generator: generates prettyprinters.
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Fig. 2. The main user-interface of the Meta-environment is a module browser that
provides a graphical and a textual view of the modules in a specification. A number of
operations can be initiated for each module. Here it is shown with the modules from a
small specification of a typechecker for the toy language Pico.

4 Applications of Asf+Sdf and the Meta-environment

There are a number of academic and industrial projects that use either Asf+Sdf
directly or components of the Meta-environment in one way or another. c The
applications of Asf+Sdf can be split into three groups:

1. In the field of language prototyping Asf+Sdf has been used to describe
the syntax and semantics of domain specific languages, e.g., the language
Risla for describing financial products [3]. As another example, the syn-
tax of the algebraic specification language Casl has been prototyped using
Asf+Sdf [7]. Box [9] [11] is a small domain specific language developed for
prettyprinting within the Meta-environment.

2. In the field of reverse engineering and system renovation, Asf+Sdf is used
to analyze and transform COBOL legacy code [8].

3. As an algebraic specification formalism for specifying language processing
tools. In fact, a number of components of the Meta-environment itself have
been specified using Asf+Sdf:
– the ASF2C compiler,
– the unparser generator, and
– parts of the parsetable generator.

For other components, such as the ToolBus and the syntax-directed editor,
an Asf+Sdf specification was made for prototyping use only. That specifi-
cation formed the basis for an optimized, handcrafted implementation.
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Components of the Meta-environment are used as stand-alone tools in a vari-
ety of applications. Examples are the Stratego compiler [14], the Risla compiler,
the Elan environment [6], and a commercial tool for designing and implementing
information systems.

5 Demonstration

We will show a number of applications of the Meta-environment ranging from
a simple typechecking problem (Figure 2) to syntax-directed editing and trans-
formation of COBOL systems.

6 Obtaining the Asf+Sdf Meta-environment

The Asf+Sdf Meta-environment can be downloaded from:

http://www.cwi.nl/projects/MetaEnv/completa/

Individual components, such as the ATerm library, Tool-
Bus, parser generator, and parser (SGLR) can be obtained from:
http : //www.cwi.nl/projects/MetaEnv/.

All components of the Asf+Sdf Meta-environment are available as open
source software.
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