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Abstract. Large Bayes (LB) is a recently introduced classifier built from
frequent and interesting itemsets. LB uses itemsets to create context-specific
probabilistic models of the data and estimate the conditional probability P(ci|A)
of each class ci given a case A. In this paper we use chi-square tests to address
several drawbacks of the originally proposed interestingness metric, namely: (i)
the inability to capture certain really interesting patterns, (ii) the need for a user-
defined and data dependent interestingness threshold, and (iii) the need to set a
minimum support threshold. We also introduce some pruning criteria which
allow for a trade-off between complexity and speed on one side and
classification accuracy on the other. Our experimental results show that the
modified LB outperforms the original LB, Naïve Bayes, C4.5 and TAN.

1 Introduction

Until recently association (descriptive) and classification (predictive) mining have
been considered as disjoint research and application areas. Descriptive mining aims at
the discovery of strong local patterns, so-called itemsets [1] that hopefully provide
insights on the relationships among some of the attributes of the database. Predictive
mining deals with databases that consist of labeled tuples. Each label represents a
class and the aim is to discover a model of the data that can be used to determine the
labels (classes) of previously unseen cases.

The use of association mining techniques for classification purposes has only
recently been explored. Following this route we recently proposed Large Bayes (LB)
classifier [5]. LB considers each attribute-value pair as a distinct item and assumes
that the training set is a set of transactions. During the learning phase LB employs an
Apriori-like [1] association mining algorithm to discover interesting and frequent
labeled itemsets. In the context of classification, we define a labeled itemset l as a set
of items together with the supports l.supi for each possible class ci. In other words a
labeled itemset provides the observed probability distribution of the class variable
given an assignment of values for the corresponding attributes: l.supi = P(l,ci).

A new case A={a1a2…an}, is assigned to the class ci with the highest conditional
probability P(ci|A)=P(A,ci)/P(A). Since the denominator is constant with respect to ci it
can be ignored and the object is said to be in class ci with the highest value P(A,ci). LB
selects the longest subsets of A that are present in the set of discovered itemsets and
uses them to incrementally build a product approximation of P(A,ci). For example, if
A={a1a2a3a4a5}, a valid product approximation would be:

P(A,ci)=P(a2a5ci)P(a3|a5ci)P(a1|a2a3ci)P(a4|a1a5ci).
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Fig. 1 illustrates how this product approximation is incrementally generated from
the set of longest itemsets by adding one itemset at each step. The formula is
subsequently evaluated using the class supports of the selected itemsets and finally
the class ci with the highest probability P(l,ci) is assigned to A. Note that this process
builds on the fly a local probabilistic model for the approximation of P(A,ci) that only
holds for the particular classification query.

stepcovered items iset selected product approximation available itemsets
0 ∅ ∅ N/A {a1a2a3},{a1a4a5},{a2a5},{a3a4},{a3a5}
1 {a2a5} {a2a5} P(a2a5cI) {a1a2a3},{a1a4a5},{a3a4},{a3a5}
2 { a2a3a5} {a3a5} P(a2a5ci)P(a3|a5cI) {a1a2a3},{a1a4a5},{a3a4}
3 {a1a2a3a5} {a1a2a3} P(a2a5ci)P(a3|a5cI)P(a1|a2a3cI) {a1a4a5},{a3a4}
4 {a1a2a3a4a5} {a1a4a5} P(a2a5ci)P(a3|a5cI)P(a1|a2a3cI)P(a4|a1a5ci){a3a4}

Fig. 1. Incremental construction of a product approximation for P(a1 a2 a3 a4 a5 ci)

The key factor in this process is the selection of interesting itemsets. In [5] we used
an interestingness metric that was an adaptation of the well known cross-entropy
between two probability distributions. To overcome the drawbacks of this approach
we use chi-square (χ2) tests to identify interesting itemsets. In section 4 we show
experimentally that this approach leads to significant performance improvements.
Moreover, we deal with the problem of setting the correct minimum support and
interestingness thresholds for each data set. Although the settings we suggested in [5]
work relatively well in practice, they are empirically determined and lack intuitive
justification. The χ2 test besides stemming directly from statistical theory also
provides intuitive interpretation to the thresholds.

We also discuss the effect of two other pruning criteria on the performance of the
classifier, namely pruning based on (a) the support and (b) the conditional entropy of
the class given an itemset. Use of these criteria often leads to the generation of
smaller classifiers often without significant sacrifice in the classification accuracy.

2 An Overview of Large Bayes Classifier

We will briefly outline the original LB algorithm, which is described in more details
in [5]. Large Bayes is a classifier build from labeled itemsets, denoted as itemsets in
the sequel. Consider a domain where instances are represented as instantiations of a
vector A={A1,A2,…,An} of n discrete variables, where each variable Ai takes values
from val(Ai) and each instance is labeled with one of the |val(C)| possible class labels,
where C is the class-variable. A labeled itemset l with its class supports l.supi

provides the probabilities of joint occurrence P(l,ci) for l and each class ci. The
learning phase of Large Bayes aims to discover such itemsets that are frequent and
interesting. As usual, an itemset is frequent, if its support is above the user defined

minimum support threshold minsup: minsupl.count
D cvali
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We can derive an estimation of the class-supports of an itemset l using two subsets
of l where one item is missing. Consider for example the itemset l={a1,a2,a3). Its
class-supports l.supi = P(l,ci) = P(a1,a2,a3,ci) can be estimated using l1 = {a1,a2} and l2
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= {a1,a3} by implicitly making certain independence assumptions: P(a1,a2,a3,ci) =
P(a1,a2,ci)P(a3|a1,ci) = P(l1,ci)P(l2,ci)/P(l1∩l2,ci). Roughly speaking, if this estimation
is accurate then l itself is not interesting, since it does not provide any more
information than its subsets l1 and l2. The quality of the approximation is quantified
with an interestingness measure I(l) that returns zero if P(l,ci) is actually equal to
P(l1,ci)P(l2,ci)/P(l1∩l2,ci) and increases with their difference. An itemset is interesting
if I(l) > τ, where τ is a user-defined threshold. Fig. 2 presents the learning phase,
which performs an Apriori-like bottom-up search and discovers the set F of itemsets
that will be used to classify new cases.
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Fig. 2. Algorithm genItemsets Fig. 3. Algorithm classify

Given a particular instance A to be classified, the set F´ of the longest and most
interesting itemsets in F which are subsets of A are selected. The itemsets of F´ are
then used to incrementally construct a product approximation for P(A,ci). The
procedure classify() that performs this task is presented in Fig. 3 while Fig. 4 presents
the selection criteria for the next itemset to be inserted in the product approximation.

The resulting formula is the local model build on the fly by LB to classify A. This
model implies some conditional independence assumptions among the variables but
they are context-specific in the sense that different classification queries (i.e. different
values of A) will produce different models making different independence
assumptions. [5,6] discuss this in more detail. Finally, the formula P(A,ci) is evaluated
for each ci and A is labeled with the class ci that maximizes P(A,ci).

3 Improving Large Bayes

A key factor affecting the performance of Large Bayes is the accurate identification of
interesting itemsets. The interestingness of an itemset l is defined in terms of the error

pickNext( cov, B )
T = { l∈B: |l- covered | ≥1};
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Fig. 4. Procedure pickNext
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when estimating P(l,ci) using subsets of l. Let l be an itemset of size |l| and lj , lk be
two (|l|-1)-itemsets obtained from l by omitting the jth and kth item respectively. We
can use lj, lk to produce an estimate ),(, ikj clP of ),( iclP :
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Our goal is to keep those itemsets only, for which the corresponding observed
probabilities differ much from the estimated ones. Information-theoretic metrics such
as the cross-entropy (or Kullback-Leibler distance) are widely used [4] as a measure
of the distance between the observed and the estimated probability distributions:
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In our case, however, the goal is to measure the distance between specific
elements of the probability distribution. Consider for example a case with two
variables A1 and A2 and |val(A1)| = |val(A2)|= 4. The corresponding sixteen 2-itemsets
define the complete observed joint probability distribution P(A1,A2,C). A high value
of such metrics suggests that the class-supports of the corresponding itemsets cannot
be accurately approximated on average by the class-supports of their subsets. To
measure the accuracy of the approximation for individual itemsets in [5] we defined
the interestingness I(l|lj,lk) of l with respect to its subsets lj and lk as:
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This ad-hoc measure presents certain drawbacks with respect to its ability to
identify interesting local patterns. Consider for example a domain with two classes
and an itemset l for which P(l,c1) = 0, P(l,c2)=0.15 and Pest(l,c1) = 0.1, Pest(l,c2)=0.15.
Although this is indeed a very interesting itemset since the estimated probability for c1

greatly differs from observed one, I(l|lj,lk) = 0 and l is discarded as non-interesting. In
addition, our interestingness measure (but also every information-theoretic measure)
suffers from the fact that it ignores the sample size and assumes that the sample
probability distribution is equal to the population probability distribution thus
ignoring the possibility that the differences occurred purely because of chance.

In the sequel we describe the application of chi-square (χ2) tests to overcome these
problems. We reduce the problem of deciding whether an itemset is interesting to
applying a hypothesis-testing procedure on the following hypotheses:

H0: P(l,ci) = Pest(l,ci) , i.e. l is not-interesting
H1: P(l,ci) ≠ Pest(l,ci) , i.e. l is interesting

To test the hypotheses we calculate the χ2 test statistic with |C| degrees of freedom.
(|D| is the database size, |C| the number of classes):
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If 2
||,

2
cpl χχ > the null hypothesis H0 is rejected and l is considered interesting. The

statistical-significance threshold p is user-defined but should in general be high i.e.
p<0.05 since discovering non-interesting itemsets does not improve the accuracy and
unnecessarilly increases the complexity of the resulting classifier. The degrees of
freedom for the test are |C| since the sums of the expected and the observed
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frequencies of an itemset are generally different [8]. If the degrees of freedom are two
or less, Yates correction is applied (subtracting 0.5 from the absolute difference in
Eq. (4) before squaring, when this difference exceeds 0.5).

A problem associated with χ2 tests is that the estimated frequencies ||),( DclP iest ⋅
in each term of in Eq. (4) should be not too small otherwise the test is sensitive to
errors. To overcome this problem we apply a merging step before calculating the χ2-
statistic. During this step the class with the smallest frequency is merged with the
immediate larger class to form a composite class containing the sum of the
frequencies. The corresponding observed frequencies are merged also and the degrees
of freedom (df) are reduced by one. The merging phase stops when all expected
frequencies are large enough or when all class-frequencies are merged. Following
standard statistical practice we set the minimum value of an expected frequency to 5
if df = 2 and 3 if df>2, otherwise it is merged.
As a result of the merging step, each itemset l has a value 2

lχ that refers to different
degrees of freedom dfl. To compare these values with the minimum required threshold

2
||,cpχ we need a degrees-of-freedom-independent test. For that reason we take

advantage of the fact that the value 122 2 −⋅−⋅= dft χ approximately follows the

normal distribution and therefore the modified requirement for an itemset to be
interesting becomes:

1||22122 2
||,

2 −⋅−⋅>−⋅−⋅= Cdft Cpll χχ (5)

Note that although t can now take negative values as well, the requirement for an
itemset to be interesting remains that its t value is bigger than the threshold of
equation (5) which is determined by the required statistical significance level p and
the number of classes |C|.

3.1 Pruning Criteria: Trading off Accuracy for Simplicity and Speed

A difficult challenge in the design of classifiers is preventing overfitting and
generating simple models. Simple models are not only easily interpretable but also
generalize better in unseen data and are faster to build and evaluate. In LB overfitting
translates to the discovery of “too many itemsets” and this is particularly true in
domains with many multi-valued attributes, where the search space is huge. χ2 tests
significantly reduce the number of discovered itemsets to a tractable amount.
However, there are some other prunning criteria that can potentially reduce the
number of itemsets and accelerate both the learning and classification phase.

Support-based pruning is used by many classification methods including decision
trees, where a leaf is not expanded if it contains less than a minimum number of
cases. In section 4 we evaluate the effect of support pruning on the accuracy of LB.

A somehow more effective pruning criterion is the conditional entropy of the class
C given an itemset l:

Conditional entropy takes values ranging from
zero (if l only appears with a single class) to log(|C|), if l’s appearances are uniformly
distributed among the classes. If H(C|l) is very small l bears almost certainty about a
class and therefore needs not be expanded. In the next section we show that the
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introduction of a relatively low conditional entropy threshold often reduces the size of
the classifier without significantly affecting its accuracy.

4 Experimental Results

To evaluate the performance of LB with the χ2 tests (LB-chi2), we use 23 data sets
from the UCI ML Repository [7] with a special preference on the largest and more
challenging ones in terms of achievable classification accuracy. We compared LB-
chi2 with the originally proposed version of LB, the Naïve Bayes classifier [2] (since
in the extreme case if only 1-itemsets are used LB reduces to NB), Quinlan’s Decision
Tree classifier C4.5 [9], and TAN [4]; a Bayesian Network classifier that relaxes the
independence assumptions of NB by using some pairs of attributes.

Accuracy was measured either using 10-fold cross validation (CV-10) for small
data sets or the holdout method (training and testing set split) for the larger ones. The
train and test set splits and the cv-folds were the same for all results reported. Since
all methods except of C4.5 only deal with discrete attributes, we used entropy-based
[3] discretization for all continuous attributes. No discretization was applied for C4.5.

The factor most affecting the results is the p-value of the χ2 tests. We experimented
with 0.01, 0.025, 0.005, 0.001 and 0.0005, and selected 0.005 as the most effective
one. Higher p-values slowly deteriorated the accuracy and tended to produce more
complex, larger and slower classifiers. This is natural since high p-values cause more
itemsets to be characterized as interesting. On the other hand, values below p=0.005
caused most of the itemsets to be rejected as non-interesting and generated simplistic
classifiers with poor accuracy. The effects of the varying p-values on the average
accuracy and classifier size can be seen on figure 5.

Table 1 provides a comparison of the algorithms in the 23 data sets according to
five criteria. LB-chi2 outperforms all others according to all criteria indicating that it
is indeed a very accurate classifier. The criteria used are: (1) Average Accuracy of the
classifiers, (2) Average Rank (Smallest values indicate better performance on
average), (3) The number of wins–losses of LB-chi2 against other algorithms, and the
statistical significance of the improvement of LB-chi2 against each algorithm using
(4) a one-sided paired t-test and (5) a Wilcoxon paired, signed, one-sided, rank test.

Table 1. Comparison of the classifiers according to various criteria

NB C4.5 TAN LB LB-chi2
1 Average Accuracy 0.8187 0.8147 0.8376 0.8332 0.8434
2 Average Rank 3.695652 3.73913 2.73913 2.652174 1.913043
3 No wins vs.: 19 – 4 19 - 4 16 - 6 15-7 --
4 1-side Paired t-test 0.9995 0.9991 0.9940 0.9828 --
5 Wilcoxon paired signed rank test >0.995 >0.995 >0.99 >0.975 --
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Table 2. Summary Table of datasets and results. |A| = number of attributes, |I|=number of
distinct items (attribute-value pairs) after discretization, |C| = number of classes, Miss =
presence of missing values. Last two colums indicate the training/testing time of LB-chi2 in sec

Data set Properties Accuracy Time (s) LB-chi2

Data Set |A| |I| |C| Mis # Train # Test NB C4.5 TAN LB LB-chi2 Train Test

1 Adult 14 147 2 Yes 32561 16281 0.8412 0.854 0.8571 0.8511 0.8668 48.81 37.04

2 Australian 14 48 2 No 690 CV-10 0.8565 0.8428 0.8522 0.8565 0.8609 0.18 0.03

3 Breast 10 28 2 Yes 699 CV-10 0.97 0.9542 0.9671 0.9686 0.9714 0.11 0.02

4 Chess 36 73 2 No 2130 1066 0.8715 0.995 0.9212 0.9024 0.9418 1.99 2.20

5 Cleve 13 27 2 Yes 303 CV-10 0.8278 0.7229 0.8122 0.8219 0.8255 0.07 0.01

6 Flare 10 27 2 No 1066 CV-10 0.7946 0.8116 0.8264 0.8152 0.818 0.18 0.03

7 German 20 60 2 No 999 CV-10 0.741 0.717 0.727 0.748 0.75 0.42 0.07

8 Heart 13 17 2 No 270 CV-10 0.8222 0.7669 0.8333 0.8222 0.8185 0.05 0.01

9 Hepatitis 19 32 2 Yes 155 CV-10 0.8392 0.8 0.8188 0.845 0.8446 0.05 0.01

10 Letter 16 146 26 No 15000 5000 0.7494 0.777 0.8572 0.764 0.8594 109.29 56.90

11 Lymph 18 49 4 No 148 CV-10 0.8186 0.7839 0.8376 0.8457 0.8524 0.07 0.02

12 Pendigits 16 151 10 No 7494 3499 0.8350 0.923 0.9360 0.9182 0.9403 44.23 22.58

13 Pima 8 15 2 No 768 CV-10 0.759 0.711 0.7577 0.7577 0.7564 0.06 0.02

14 Pima
Diabetes

8 14 2 No 768 CV-10 0.7513 0.7173 0.7656 0.7669 0.763 0.07 0.02

15 Satimage 36 384 6 No 4435 2000 0.818 0.852 0.872 0.839 0.8785 392.60 83.75

16 Segment 19 147 7 No 1540 770 0.9182 0.958 0.9351 0.9416 0.9429 2.28 1.16

17 Shuttle-
small

9 50 7 No 3866 1934 0.987 0.995 0.9964 0.9938 0.9948 1.40 0.78

18 Sleep 13 113 6 No 70606 35305 0.6781 0.7310 0.7306 0.7195 0.7353 476.71 621.97

19 Splice 59 287 3 No 2126 1064 0.9464 0.933 0.9463 0.9464 0.9408 3.24 3.07

20 Vehicle 18 69 4 No 846 CV-10 0.6112 0.6982 0.7092 0.688 0.7187 1.24 0.23

21 Vote
Records

16 48 2 No 435 CV-10 0.9034 0.9566 0.9332 0.9472 0.9334 0.13 0.04

22Waveform-
21

21 44 3 No 300 4700 0.7851 0.704 0.7913 0.7943 0.7913 0.1 2.724

23 Yeast 8 18 10 No 1484 CV-10 0.5805 0.5573 0.5721 0.5816 0.5816 0.15 0.04

Table 2 provides information about the data sets, lists the accuracies of the classifiers
and shows the training and testing time of LB-chi2 on all data sets
(Measured on a 400MHz Pentium WinNT PC). Noticeably, the biggest improvements
in accuracy against the original LB came mostly from the largest data sets; this
indicates the inability of the originally used interestingness metric in such cases.

The p-value for chi2-LB was set to 0.005 and to facilitate more accurate χ2 tests
the minimum support was set to max{10, 2*|c|}. Although this is a minimum
requirement in order for the test statistic to be accurate this can be further increased in
order to reduce both the training time and the size of the classifier as discussed below.
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Fig. 5. Effect of conditional entropy pruning on (a) accuracy and (b) size of classifier
for four different p-value thresholds. x-axis contains the threshold as a percentage of
the maximum conditional entropy log|C|

Figure 5 illustrates the effect of conditional entropy pruning on the average
accuracy (5a) and size (5b) of LB. Since the number of classes is diferent among the
datasets the minimum threshold minH is expressed as a percentage of the maximum
conditional entropy ||log C . In a 4-class domain, for example, a value of 0.2 implies
that 4.04log2.0 =⋅=minH . Values for minH of up to ||log3.0 C⋅ have little impact on
the accuracy while at the same time reducing the size of the classifier. The rightmost
values of the graph correspond to maximum pruning where only 1-itemsets are used
and therefore represent the accuracy and size of Naïve Bayes classifier.

Support pruning has a more drastic effect on the size of the classifier as can be seen
in Figure 6. This is particularly true on large data sets like “sleep” where 10
occurrences for an itemset l represent a probability P(l)=0.0001. Increasing the
minsup threshold to 0.005 in this data set reduced the number of itemsets discovered
from 31000 to 7500 while the accuracy fell only slightly, from 0.7336 to 0.727.
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