
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 94-109, 2000
© Springer-Verlag Berlin Heidelberg 2000

Efficient Distributed Workflow Management
Based on Variable Server Assignments

Thomas Bauer and Peter Dadam

University of Ulm, Dept. of Databases and Information Systems
{bauer,dadam}@informatik.uni-ulm.de
http://www.informatik.uni-ulm.de/dbis

Abstract. For enterprise-wide and cross-enterprise workflow (WF)
applications, the load of the WF servers and the amount of communication in
the subnets may become a bottleneck. This paper shows how a distributed WF
control can be realized in a way that the load of the components at run time is
minimized. For that purpose, the control of a WF instance may migrate from
one WF server to another. The WF servers are assigned to the WF activities in a
way that minimizes the communication load. The server assignments are
determined at build time by analyzing the WF model with respect to the actor
assignments. As these actor assignments may depend on preceding activities,
static server assignments are not always reasonable. Hence, so-called variable
server assignment expressions are introduced, which allow dynamic server
assignment without expensive run time analyses.

1 Introduction

Workflow Management Systems (WfMSs) offer a promising technology for the
implementation of process-oriented information and application systems. A signifi-
cant limitation of current WfMSs, however, is their insufficient scalability, which is
caused by the use of one central WF server. Already the processing of a single WF
activity may require the transfer of multiple messages between the WF server and its
clients; e.g., to transmit input and output data of the activity, to update worklists, or to
invoke activity programs. As soon as the number of users increases, e.g., when the
WF-based application may be accessed via the Internet, such a central WF server may
become overloaded. For this reason, several multi-server approaches have been
proposed in WF literature [1, 9, 16, 21].

1.1 Motivation

Having a closer look at enterprise-wide and cross-enterprise WF applications, it
becomes obvious that not only a central WF server, but also the corresponding subnet
may become a bottleneck. As an example consider a (simplified) loan request WF as
shown in Fig. 1. Let us assume that the input and output data of the activities 1, 3, 4,

 Efficient Distributed Workflow Management Based on Variable Server Assignments 95

and 5 contain scanned documents with a total average size of 2 MB1. Let us further
assume that a bank has 30 branch offices, which are connected with the central office
by a wide area network (WAN). Each branch office shall have 10 clerks; i.e., there are
300 clerks in the branch offices altogether. If we assume that a clerk requires 5 min =
300 sec for the execution of one activity instance, then one activity per second is
executed on the average, each of them requiring 2 MB of parameter data. Hence, a
central WF server has to transmit 2 MB/sec = 16 Mbit/sec of parameter data.
Obviously, this would overload an Ethernet-based local area network (LAN). In order
to get further insights, a simulation (c.f. section 5) of the scenario described was
performed. It leads to the following results: The load2 of the subnet of the central WF
server is 15.7 Mbit/sec. In this context, it is very attractive to control each WF by the
WF server of the corresponding branch office. In this case, no subnet has a load
higher than 0.5 Mbit/sec. Another very important aspect in distributed systems
(especially in widely distributed systems) is the data volume transferred by the
gateways. If a central WF server is used in the sketched scenario, the gateways have
to transmit 15.6 Mbit/sec. This corresponds to 243.8 permanently used ISDN
channels (each with a capacity of 64 kbit/sec). If distributed WF control is used,
instead, the gateways have only to transmit 80.6 kbit/sec; i.e., only 1.3 ISDN channels
are required! This example shows, in a very impressive way, that an appropriate
distributed WF control is not only important to avoid an overloading of the WF
servers, but it is also essential to avoid bottlenecks in the communication network.

1.2 Distributed WF Execution in the ADEPT-WfMS

Before we explain the basic ideas of this paper, we shortly summarize our previous
work on distributed WfMSs. Performance and scalability, especially in the context of
enterprise-wide and cross-enterprise WF applications, belong to the central research
issues of the ADEPT research project3 [19]. An important goal of the ADEPT ap-
proach is the reduction of the total communication load caused by the WfMS. In order
to achieve this, a WF instance may be controlled “piecewise” by different WF servers
(see Fig. 2). Consequently, the control of a particular WF instance migrates from one
WF server to another, if this helps to avoid communication across subnet boundaries

1 Even much larger data volumes are possible in such enterprise-wide application scenarios;
e.g., if multimedia data have to be transferred between different activities.

2 This load is lower than 16 Mbit/sec because it is not possible to use the whole capacity of the
clerks since this would cause their worklists to overflow. Therefore, a clerk of a branch office
performs less than 1 activity/sec.

3 ADEPT stands for Application Development Based on Encapsulated Pre-Modeled Process
Templates.

scan
documents

branch office
1 store

loan request

central office
2 verify

documents

branch office
3 estimate

loan risk

branch office
4 accept

or reject

branch office
5 store

decision

central office
6

0 kB 2 MB 19 kB 1 kB 10 kB 2 MB 10 kB 2 MB 10 kB 19 kB 1 kB2 MB

Fig. 1. Loan request WF (↑ /↓ : average size of the input / output parameter data of the activity)

96 T. Bauer and P. Dadam

when executing WF activities [3]. The concrete server assignments of the activities
are completely computed at build time. They are based on probability distributions
(PD) of activity executions within the individual subnets (which, in turn, are derived
from the distribution of users and their roles; see [3] for details). That is, before creat-
ing a WF instance, the WF servers of the partitions are completely predetermined.
Such static server assignments for activities show good results, if actor assignments
(ActorAss) are of the kind "role = physician" or "role = nurse ∧ department = sur-
gery". In these cases, the set of possible actors performing an activity (as pre-
condition for the calculation of the PDs) can be determined already at build time.4

1.3 Problem Statement and Contribution of the Paper

Unfortunately, in practice, there are many cases in which concrete actor assignments
depend on preceding activities (called “dependent actor assignments” for short). For
example, it may be required that the same physician who examines a patient (activity
x) must also write the corresponding medical report (subsequent activity k' in Fig. 3).
As another example take a patient who must be cared by a nurse from the same
department (activity k) in which he or she was previously examined. In the context of
such dependent actor assignments, the following important problem occurs: The
organizational unit (in the following called unit for short) to which the actors
performing the activities k and k' belong, is not fixed until activity x is executed. What
does this mean for the assignment of appropriate WF servers to the activities? If
dependent actor assignments occur, it would be possible to calculate the best static
server assignments by using conditional probabilities. Since static server assignments
can not respect the dependencies, in too many cases the dependent activities would be
controlled by the “wrong” WF server.

The main contribution of this paper is to develop a multi-server WfMS, which is
based on the concept of variable server assignments. Instead of using only static
server assignments, like "activity x is controlled by server S5", in this approach logical
server assignment expressions can be used as well. Such an expression may
determine, for example, that "activity k is controlled by the server, which is located in
the subnet of the actor performing the preceding activity x". These expressions allow
to take run time data of the WF instance into account, when determining the concrete
WF server controlling the activity instance. And, best of all, they create almost no
additional overhead at run time when compared with the static case. In this paper, we

4 The calculation relies on the assumption that no massive changes take place between build
time and the execution of instances of this WF type.

WF
partition 1

WF partition 2

WF partition 3 domain 3

clients

WF server 3

subnet 3a

b c

d e

f

WF server 2

WF server 1

normal control
flow

control flow
and migration

Fig. 2. Partitioning of a WF graph and distributed WF execution

 Efficient Distributed Workflow Management Based on Variable Server Assignments 97

present the cost model and the distribution algorithm used to calculate appropriate
variable server assignment expressions at build time. In addition, we present some
simulation results which show that the communication load can be reduced
significantly by using variable server assignments. Despite it is commonly accepted
that distributed WF execution is essential – to our knowledge – ADEPTdistribution is the
only approach that treats the problem of dependent actor assignments in a distributed
WfMS.

In the next section the conditions for the applicability of our approach are
summarized. Section 3 describes possible solutions of the problem. The nucleus of
this paper is presented in Section 4. It describes the algorithms for determining the
server assignment expressions at build time. The efficiency of our approach is shown
in Section 5 by means of simulations. In Section 6 related approaches are discussed.
The paper concludes with a summary and an outlook in Section 7.

2 Assumptions and Preconditions

The approach introduced in this paper describes how load distribution is realized by
the use of variable server assignments in ADEPTdistribution, the distributed variant of the
ADEPT-WfMS. It is only based on the following realistic assumptions:

1. The WfMS uses an organizational model in which actors can be associated with
organizational units as well as with roles.

2. The actors are assigned to an activity at run time by means of a selection predicate
like "role = physician ∧ unit = radiology". This predicate may also reference pre-
ceding activities (dependent actor assignments, cf. Fig. 3). Otherwise, it is assumed
that the actor of an activity is determined independently from other activities.

3. The WfMS uses several subnets as well as several WF servers. To simplify the
following discussion, it is assumed that each subnet is equipped with one (and only
one) WF server. Each of these WF servers may control each WF type and its parti-
tions, respectively. A user may be permanently assigned to one or several subnets.

4. Each WF server can serve all WF clients registered in the WfMS, not only those of
its domain (a subnet together with the corresponding WF server and clients is
called domain).

5. The actors who may potentially execute a certain activity are not necessarily
located in the same subnet.

6. The number of persons within a subnet who qualify to perform a certain activity
does not change significantly between build time and run time.

7. The topology of the communication network does also not change significantly.

actor = Actor(xx) role = physician

role = nurse ∧
unit = Unit(Actor(x))

) k k' x write

medical report

care

for patient
examine

patient

Fig. 3. Examples for dependent actor assignments

98 T. Bauer and P. Dadam

3 Possible Solution Approaches

As already mentioned, our aim is to identify server assignments which minimize the
total communication costs. Special attention must be paid to dependent actor
assignments since they occur very often in practice. In principle, there are several
possible approaches for the assignment of WF servers to activities: The simplest and
most frequently applied method is to assign a fixed server (statically) to each activity
at build time or at the time the WF instance is started. This solution is not satisfactory
for WFs for which dependent actor assignments have to be supported as well (see
Section 1.3). Obviously, the best server assignments can be achieved if the WF server
for the activity to be executed is determined after the preceding activity has finished.
At this point in time, complete and current run time data of the WF instance is
available. Thus the most suitable WF server can be determined. Unfortunately, this
solution is not applicable in practice due to its high costs, in general. The execution of
the necessary analyses would heavily burden the WF servers and thus negatively
affect the performance of the WfMS. This is not acceptable for production WfMSs
that have to cope with a high load.

Therefore, ADEPTdistribution follows a strategy which combines a static pre-calculation
(at build time) with dynamic aspects (i.e., evaluation of run time data) and, by doing
so, combining the advantages of both approaches. Instead of a static WF server
assignment, logical expressions for server assignments are created at build time, if
this is reasonable. They reference run time data of the WF instance, thus making it
possible to simply and efficiently determine the appropriate WF server at run time.

The main challenge of this approach is how to get suitable variable server
assignments for the activities. One possibility would be to let the WF designer specify
them explicitly at build time (analogous to the actor assignments). Unfortunately, the
WF designer, without further support or information, will hardly be in the position to
estimate the load in the subnets for a particular distribution. Therefore, it is essential
to support him actively by means of a sophisticated WfMS modeling tool, which
estimates the load of each system component (server, subnet, gateway) for the server
assignments taken under consideration. This, in turn, requires an appropriate cost
model. This cost model and the calculation of appropriate server assignments are
described in the next section.

4 Determination of Optimal Server Assignments

In this section we describe how appropriate server assignments for WF activities can
be calculated already at build time.

4.1 Cost Model

A cost model for determining the load of the system components which are critical
under performance aspects (servers, subnets, gateways), has to consider at least the
following costs:

 Efficient Distributed Workflow Management Based on Variable Server Assignments 99

• Costs for the transfer of parameter data (between a WF server and a WF client)
when starting and finishing activity programs

• Costs for refreshing worklists at the client site
• Costs for data transfer between activity programs and external data sources
• Costs for migrating the control of a WF instance to another WF server (migration

costs for short)
In addition to the information available from the WF template and from the
organizational model, the estimated execution frequency and the average amount of
data to be communicated (e.g., the size of the parameter data) have to be determined
for each activity of the WF template. For already released WF templates, these data
may be obtained by analyzing the audit trails of executed WF instances. Otherwise,
they have to be estimated.

In the sequel we develop formulas which describe the data volume to be
transported for a single system action (e.g., “start activity” or “migrate WF”) and an
individual system component. Subsequently, these simple formulas are used to
construct a comprehensive formula, which describe the total load of the components.
Thereby, ExProbk(i, j) denotes the probability that activity k is controlled by the WF
server in subnet i and is processed by a user in subnet j (Table 1 summarizes the
expressions which are used in this chapter). MigrProbk,l(i, j) denotes the probability
that, when moving from activity k to activity l, the control migrates from the WF
server i to the server j. These probabilities depend on the server assignments selected.
We will show in Section 4.4 and 4.5 how they can be determined. For the moment,
we consider them as given.

The expected value for the data volume (abbreviated by data volume in the
following) for the execution of an activity (transport of input and output parameter
data between WF server and client) is calculated as follows: The data volume
emerging at server i for the execution of activity k results as the probability that server
i controls activity k, multiplicated by the average amount of data to be transported:

)____(),()(, kk
j

k
Act

iServer sizeparameteroutsizeparameterinjiExProbkVol +⋅









= ∑ (1)

Table 1. Abbreviations used in this paper

Name Meaning
ActorAssk actor assignment of activity k
ActorProbk(D|S) portion of the actors in the domain (subnet) D, given that activity k is

controlled by server S
DepMigrProbx,k(j|i) probability of a migration to the WF server in subnet j (when moving from

activity x to activity k), given that activity x was controlled by the server in
subnet i

DepServProbk(S|u) probability that activity k is controlled by server S, given that actor u
performs this activity

ExProbk(i,j) probability that activity k is controlled by the WF server of subnet i and
processed by an actor of subnet j

MigrProbx,k(i,j) probability of a migration from the WF server in subnet i to the WF server
in subnet j (when moving from activity x to activity k)

ServAssk server assignment of activity k
ServProbk(S) probability that activity k is controlled by the WF server S (in subnet S)

100 T. Bauer and P. Dadam

The load of the subnets is estimated as follows: In subnet i communication with
respect to the execution of activity k takes place, either when the server is located in i
or when a user of subnet i executes the activity. If both is valid, the communication
must be counted only once (therefore j ≠ i):

)____(),(),()(, kk
ij

k
j

k
Act

iSubnet sizeparameteroutsizeparameterinijExProbjiExProbkVol +⋅









+= ∑∑

≠

 (2)

The expected data volume at the gateway from subnet i to j (i ≠ j) is calculated as
follows:

kkkk
Act

jiGW sizeparameteroutijExProbsizeparameterinjiExProbkVol __),(__),()(,, ⋅+⋅= (3)

The expected data volumes for refreshing the worklists (VolWL(k)) as well as for the
communication of activity programs with external data sources (VolExt(k)) can be
calculated in a similar way (a detailed description can be found in [7]). The latter cost
factor can be used to calculate a suitable allocation of externally stored application
data (which is only referenced by the WF instances), in case this distribution is not
predetermined already.

The migration costs at the transition from activity k to activity l are, of course, of
special interest in the context of this paper. Incoming as well as outgoing migrations
have to be considered. To calculate the expected data volume for server i, the average
data volume communicated for this migration is multiplied by the probability that
server i is involved in the migration. Here, it has to be noted that no communication
takes place if the servers of the activities k and l are identical (therefore j ≠ i).

() lk
ij

lklk
Migr

iServer sizemigration_ijMigrProbjiMigrProblkVol ,,,,),(),(),(⋅+= ∑
≠

 (4)

The data volume caused by the migration in the subnets affected is the same as for the
WF servers:

),(),(,, lkVollkVol Migr
iServer

Migr
iSubnet = (5)

The gateways have to transport the following amounts of data:

lklk
Migr

jiGW sizemigration_jiMigrProblkVol ,,,,),(),(⋅= (6)

For each system component, these amounts of data have to be multiplied by the
execution frequencies ExFreq(k) of the activities (k) or of the migrations
MigrFreq(k, l), respectively. Then they have to be added up for all activities of all WF
types (WFTypes) in order to determine the corresponding load of this component. For
the servers the load is calculated as follows (LoadSubnet,i and LoadGW,i,j are determined
analogously):

∑ ∑
∈ ∈

⋅+⋅=
WFTypeswf wfk

WL
iServer

Act
iServeriServer kVolkExFreqkVolkExFreqLoad)()()()(,,, (7)

),(),()()(,, lkVollkMigrFreqkVolkExFreq
klwfl

Migr
iServer

Ext
iServer ∑

≠∧∈
⋅+⋅+

These loads are weighted with the component specific cost factors CServer,i, CSubnet,i, and
CGW,i,j and they are added up in order to get the total costs. These cost factors specify
the costs for transferring one byte over the server, the subnet, and the gateway. Thus,
the WF designer can influence the load of each component. A high value of CGW,i,j has
the effect that, for example, the WAN-connection (gateway) is used little. Hence, the
target function to be minimized is as follows:

 Efficient Distributed Workflow Management Based on Variable Server Assignments 101

∑∑∑∑
≠

⋅+⋅+⋅=
i ij

jiGWjiGW
i

iSubnetiSubnet
i

iServeriServer LoadCLoadCLoadCT ,,,,,,,, (8)

The following section describes which server assignment expressions are possible for
the activities. Section 4.3 shows how the server assignments can be selected in a way
that minimizes T.

4.2 Server Assignment Expressions

For static server assignments, the identifiers of the WF servers are directly used as
expressions. For variable server assignments, however, expressions may reference run
time data of the WF instance. For most of the practically relevant scenarios, the
location of the WF server or the actor of a preceding activity is referenced. In special
cases the usage of additional WF control data (e.g., the start time of an activity), the
inclusion of WfMS-external data (e.g., parameter data of activities), or the evaluation
of mathematical functions or logical expressions may be reasonable as well. While
server assignments of the first kind (see 1 - 4 below) can automatically be deduced
from the WF model, the assignment expressions for the special cases (5.) must be
explicitly specified by the WF designer. The server assignment expressions which are
supported by ADEPTdistribution are as follows:

1. ServAssk = Si
Server Si is statically assigned to activity k.

2. ServAssk = Server(x)
Activity k shall be controlled by the same server as activity x.

3. ServAssk = Domain(Actor(x))
Activity k shall be assigned to the server that is located in the domain of the user
who has executed activity x.

4. ServAssk = f(Server(x)) or ServAssk = f(Domain(Actor(x)))
A function f can be applied to all server assignments of type 2 and 3. Assume, e.g.,
that activity k is assigned to the manager of the actor who works on activity x. This
manager may belong to a different domain than the actor of activity x (e.g., if he is
assigned to a different department). In such cases, a simple mapping function can
be used to perform the desired transformation. In [7] we describe how a suitable
function f can be deduced automatically.

5. ServAssk = any given expression
The WF designer may specify own server assignment expressions, which do not
correspond to any of the expressions of type 1 - 4. Since they cannot be analyzed
by the WfMS, the PDs cannot be calculated automatically. Therefore, the designer
has to provide this information as well. The PDs are required by the algorithms of
Section 4.4 in order to perform the calculations.

4.3 Determination of Optimal Server Assignments

In order to determine an optimal distribution of the activities of a WF template, in
principle, the costs of all possible server assignments for all activities have to be
computed and, by doing so, the server assignments with the minimal costs can be
selected. Since a WF template may easily comprise more than 100 activities and each

102 T. Bauer and P. Dadam

server assignment may reference any predecessor, this approach is not feasible, in
general, due to its complexity O(#Act#Act), where #Act denotes the number of activities
of the WF template. Therefore, we suggest an algorithm (see Algorithm 1) which
performs this task with polynomial run time complexity. It is based on a greedy
approach and calculates the optimal result or a result that is close to this optimum for
the practically relevant cases. It consists of two phases, which work as follows:

In Phase 1 a legal initial solution is determined. This is achieved by computing the
optimal server assignment for each activity under the assumption (for the moment)
that migration does not cause any costs. For each activity k all possible server
assignments PotServAssk (using all possible expressions of type 1 - 4, c.f. Section 4.2)
are tested. The cost calculation is performed by the function calculate_costs(), which
uses the cost model described in Section 4.1.

As only single activities are analyzed in Phase 1, the result vector ServAss may
contain unprofitable migrations as well. In Phase 2, Algorithm 1 examines which of
these migrations are really reasonable. In order to eliminate undesirable migrations,
the partitions P are inspected (all activities of a partition are controlled by the same
WF server). It is analyzed, whether it is advantageous to combine such a partition P
with a direct predecessor partition or a direct successor partition, in order to eliminate
the migration between them. The motivation for this analysis is that it may be not
worth migrating the (complete) WF instance from one server to another and back for
only a few activities. Firstly, the algorithm considers small partitions P. By combining
them with adjacent partitions they, step by step, form larger groups of activities
among which no migrations take place. This integration process is continued until
there are no more unprofitable migrations.

Algorithm 1: Calculation of the Server Assignments for a WF Type (Process Template)
Phase 1:
for each activity k ∈ ProcessTemplate (in partial order corresponding to the control flow) do
 MinCost = ∞;
 for each ServAssk ∈ PotServAssk do
 Cost = calculate_costs(ServAss, k); // costs only of the activity k
 if Cost < MinCost then OptServAss = ServAssk; MinCost = Cost;
 ServAssk = OptServAss;
Phase 2:
MinCost = calculate_costs(ServAss, all); // costs of the whole WF (incl. migrations)
for PartSize = 1 to #activities(ProcessTemplate) do
 for each P: |P|=PartSize, P is a maximal subgraph with ∀ l1,l2∈ P: Server(l1) = Server(l2) do
 OptServAss = NULL;
 for each a ∉ P: ∃ l ∈ P: a = predecessor (l) ∨ a= successor (l) do
 for each l ∉ P do TestServAssl = ServAssl;
 for each l ∈ P do TestServAssl = ServAssa;
 TestCost = calculate_costs(TestServAss, all);
 if TestCost < MinCost then OptServAss = ServAssa; MinCost = TestCost;
 if OptServAss ≠ NULL then
 for each l ∈ P do ServAssl = OptServAss;

 Efficient Distributed Workflow Management Based on Variable Server Assignments 103

4.4 Calculation of the Probability Distributions

After having explained which server assignments are suitable for an activity and how
the corresponding costs can be calculated, the question remains, how the PDs
ExProbk(i,j) and MigrProbx,k(i,j) can be determined.

As server assignments depend on run time data of the WF instance, different
instances of a particular WF activity may be controlled by different WF servers. The
probability that activity k is controlled by server S is denominated with ServProbk(S).
As different instances of k can be located in different units (and therefore may be
controlled by different servers), the actor PD of k may be different for each server S.
The portion of the actors of activity k that are located in domain D is called
ActorProbk(D|S), for the case that server S controls activity k. In the sequel we
describe how ServProbk(S) and ActorProbk(D|S) can be determined. Once they are
known, the probability that activity k is controlled by server S and that is executed by
a user in domain D is given by: ExProbk(S, D) = ServProbk(S) ⋅ ActorProbk(D|S).

4.4.1 Calculation of the Server Probability Distribution ServProbk(S)
ServProbk(S) denotes the probability that server S controls activity k. It results from
the server assignment ServAssk and the PDs of the activity x, that is referenced in
ServAssk. In Algorithm 2, the activities of the WF template are analyzed in the
(partial) order defined by the control flow. Since activity x must be a predecessor of k,
these PDs are, therefore, already known when analyzing activity k. In the following
we describe how the server PD ServProbk(S) is calculated, if the server assignments as
defined in Section 4.2 are considered. Case 5 is not considered here (and further on),
as for this server assignment the PD has to be provided by the WF designer.

Algorithm 2: Calculation of the Server Probability Distribution ServProbk(S)

case ServAssk = Si: ServProbk(S) =
iSS ,δ 5 (1)

case ServAssk = Server(x): ServProbk(S) = ServProbx(S) (2)
case ServAssk = Domain(Actor(x)): ServProbk(S) = ActorProbx(S) with (3)
 ActorProbx(D) = ΣS ActorProbx(D|S) ⋅ ServProbx(S)
case ServAssk = f(Server(x)): ServProbk(S) = f(ServProbx(S)) (4a)
case ServAssk = f(Domain(Actor(x))): ServProbk(S) = f(ActorProbx(S)) with (4b)
 ActorProbx(D) = ΣS ActorProbx(D|S) ⋅ ServProbx(S)
Explanations:
(1) Since activity k is always controlled by the server Si, it follows ServProbk(S) = 1 for S = Si

and ServProbk(S) = 0 otherwise.
(2) The same server is used for activity k as for activity x. Therefore the server PDs are

identical.6

5 Kronecker symbol: δi,j = 1, if i = j and δi,j = 0, if i ≠ j.
6 Assuming that there are no branches between the activities x and k, which depend on the

choice of the server of activity x. Such facts are difficult to detect because they concern data
elements. Therefore, for branch and loop conditions, we have generally assumed that their
result is independent of the current server.

104 T. Bauer and P. Dadam

(3) The server of activity k is located in the domain of the actor of activity x. Therefore the
server PD of activity k results from the actor PD of activity x. It does not matter which
server has controlled activity x. Hence a server independent actor PD ActorProbx(D) is
created by the weighted sum of the actor PDs for the different servers.

(4a) ServProbk(S) is calculated as described for case 2. Afterwards the function f is applied to
the result (cf. [7] for details).

(4b) The same as case 3, but in addition f is applied to the result.

4.4.2 Calculation of the Actor Probability Distribution ActorProbk(D|S)
ActorProbk(D|S) describes the probability that the actor of activity k is located in
domain D, if the activity is controlled by server S. As an example take a hospital with
3 wards, each of which owning its own server. Assuming that only nurses of ward 1
(domain 1) are in charge of the patients of ward 1, it is reasonable that server 1
controls this activity. Hence, an actor PD ActorProbk(D|1) = (1,0,0) results.
Analogously, for server 2 we obtain ActorProbk(D|2) = (0,1,0) and for server 3
ActorProbk(D|3) = (0,0,1).

In the following, we present Algorithm 3, which calculates the actor PD
ActorProbk(D|S). It considers all possible actors of activity k and determines for each
of them the corresponding domain D (from the organizational model). Furthermore, it
determines the server S that controls the activity k if it is performed by user u. The
user is reflected in the actor PD ActorProbk(D|S) for the corresponding server S and
the domain D. Thus, the calculation of ActorProbk(D|S) is performed according to the
definition of the actor PD (see Section 4.4). Different servers may qualify − each with
a certain probability − for the control of activity k if it is performed by user u. These
probabilities are calculated by the function DepServ(k, "Actor=u") (see below) and
are stored in the vector DepServProbk(S|u). DepServProbk(S|u) determines the weight,
with which the user u is reflected in ActorProbk(D|S).

Algorithm 3: Calculation of the Actor Probability Distribution ActorProbk(D|S)
Actors = {u | user u qualifies as actor of activity k};
for each u ∈ Actors do
 D = Domain(u);
 DepServProbk(S|u) = DepServ(k, "Actor = u");
 for each S do ActorProbk(D|S) = ActorProbk(D|S) + DepServProbk(S|u);
normalize each line of ActorProbk(D|S) such that ∀ S: ΣDActorProbk(D|S) = 1;

The calculation of the server PD DepServProbk(S|u) for a certain user u is performed
similar to the calculation of the user-independent server PD ServProbk(S) (c.f. Section
4.4.1). DepServProbk(S|u) does not only depend on the server assignment of activity
k, however, but also on its actor assignment. In the following, due to lack of space,
only some selected examples are presented. A comprehensive discussion of all
possible cases of server and actor assignments can be found in [7].

• If the server assignment is static (ServAssk = Si) the calculation is trivial as the
server is always the same: DepServProbk(S|u) =

iSS ,δ .

• If the actor assignment is independent from other activities (e.g., "role =
physician") the server PD is independent from user u. Thus, the user-independent
server PD can be adopted: DepServProbk(S|u) = ServProbk(S).

 Efficient Distributed Workflow Management Based on Variable Server Assignments 105

• In Fig. 4a, the same physician, who works on activity x also performs activity k.
Assume that DepServProbk(S|u) for user u = “Dr. Smith” from domain 3 shall be
calculated. Because of ActorAssk = Actor(x), Dr. Smith must have performed
activity x as well. Since the server of activity k is allocated in the domain of the
actor of activity x, it is allocated in the domain of Dr. Smith. As this is domain 3,
the result is DepServProbk(S|u) = (0,0,1).

• In Fig. 4b, activity k is performed by another actor than activity x, but the actors
belong to the same unit. Assume that DepServProbk(S|u) for the nurse Jane from
the unit ward 2 shall be calculated. In this case, all users with the role physician
who belong to the unit ward 2 have to be considered. These are exactly those users
who could have executed activity x if activity k is performed by Jane. For each of
these physicians the domain D is calculated because it determines − if this
physician has performed activity x − the location of the server of activity k. This
domain D is reflected in DepServProbk(D|u). Finally, DepServProbk(S|u) is
normalized such that ΣSDepServProbk(S|u) = 1 holds.

Additionally to these aspects, it has to be noted that there are users who work part-
time, or who work only part of the working day with the WfMS, or who may work in
several domains. These users must not be treated in the same way as users working
“full-time” only in one domain, because they produce less load in the single domain.
In ADEPTdistribution, this circumstance can be modeled by assigning a weight Weight(u)
to each user u. This weight is used in Algorithm 3 to add DepServProbk(S|u)
proportionally. Further possible weights are discussed in [7].

4.5 Migration Costs

In Phase 1 of Algorithm 1, the migration costs are ignored. In Phase 2, these costs are
included. In order to calculate the migration costs, the migration probability
MigrProbx,k(S1,S2) – with which the WF is migrated from server S1 to server S2 – has to
be determined.

The probabilities for migrations from activity x to activity k can be described by a
migration matrix. An entry DepMigrProbx,k(S2|S1) of this matrix describes the
conditional probability that the WF migrates to server S2, if the preceding activity x
was controlled by server S1 (DepMigrProbx,k(S2|S1) is defined as P(server S2 controls
activity k | server S1 controls activity x)). Hence the migration probability results as:
MigrProbx,k(S1, S2) = ServProbk(S1) ⋅ DepMigrProbx,k(S2|S1). In the following we
describe how the matrix DepMigrProb can be determined.

By analyzing the server assignments, it can be deduced which sets of activities of a
WF instance are always controlled by the same server. At the transition between two

b) role = nurse ∧
unit = Unit (Actor(x))

a)

...x k
actor = Actor(x)

Domain(Actor(x))

role = physician
...x k

Domain(Actor(x))

role = physician

Fig. 4. Examples for the calculation of the server probability distribution DepServProbk(S|u)

106 T. Bauer and P. Dadam

activities x and k belonging to the same set, the WF never migrates. This results in:
∀ S1, S2: DepMigrProbx,k(S2|S1) =

21,SSδ

If the activities x and k are controlled by different WF servers, the usage of the
server PD offers a simple method for the estimation of DepMigrProbx,k(S2|S1). The
server PD ServProbk(S) describes the probability that the WF instance is located at the
server S2 after the migration. So the resulting migration probabilities may be
approximated as: ∀ S1, S2: DepMigrProbx,k(S2|S1) = ServProbk(S2)

More sophisticated algorithms for calculating DepMigrProbx,k(S2|S1), which
consider dependencies between the actors resp. the servers of the activities x and k,
are presented in [7].

5 Efficiency of the ADEPTdistribution Approach

In this section we demonstrate that the overall network load can be significantly
reduced by the use of variable server assignments. For this purpose, we simulated the
execution of a clinical WF when it is controlled by a central WfMS, by a distributed
WfMS that does not use migrations, by a WfMS with static server assignments, and
by a WfMS with variable server assignments. For further simulations and details
concerning the simulated application scenarios, the simulation environment, and the
interpretation of the results we refer to [5, 6].

Since the effects of variable server assignments shall be examined, the simulated
WF contains dependent actor assignments. The simulation component simulates in a
lifelike fashion the execution of many instances of this WF. At the same time it
memorizes all occurring communications. This information is used to compute the
total load of all WF servers, the average load per WF server, the load per subnet, and
the load of the gateways. For each case considered, the load of the central WF server
is used as reference basis. It is defined as 100. Fig. 5 shows the result of the
simulation. To avoid confusion: We have been interested to show the (positive and
negative) aspects of distribution and server migration with respect to server load and
network load. To provide a reasonable reference basis for comparing the loads, we
selected a scenario where a central WF server was not overloaded. It, therefore, could

101.9101.9100.0100.0

14.614.614.3

100.0

57.8

99.6100.0100.0

4.4

98.0100.0100.0

0

100

WfMS with a central server without migration static server assignments variable server assignments

total load of all WF servers
average load per WF server
average load per subnet
total load of the gateways

load

Fig. 5. Result of the simulation of a clinical WF

 Efficient Distributed Workflow Management Based on Variable Server Assignments 107

serve as reference point (100). This value (server load) cannot be improved in the
distributed case because the synchronization overhead and the migration costs
increase it. The simulation shows that variable server assignments significantly reduce
the load per subnet and the data volume that has to be transferred by the gateways:
The average load per subnet is 57.8% of the central case and the data volume
transferred by the gateways results as only 4.4%.

6 Discussion

This section summarizes important concepts for scalable WfMSs and outlines some
concrete approaches. For a more detailed discussion we refer to [4, 5, 6].

One extreme for the distribution model of a WfMS is a central server, which con-
trols all activities. As it has to manage the whole system load, obviously, it represents
a potential bottleneck. Some research prototypes which do not primarily deal with
scalability issues (e.g., Panta Rhei [13], WASA [22], [10]) and most of the commer-
cial systems belong to this category. The other extreme is a completely distributed
system, which does not use any WF servers at all (e.g., Exotica/FMQM [2], INCAS
[8]). In such a system, a WF migrates to the machine of the user who wants to per-
form an activity. With this approach, no server assignments are necessary as well.

Many approaches use multiple WF servers. As these systems require a strategy for
the assignment of the servers to the activities, they are classified according to this
criterion. In [1] identical replicates (clusters) of the WF engine are used. Whole WF
instances are controlled by a randomly selected cluster. Therefore, no server assign-
ments are necessary. In [20] the systems CodAlf and BPAFrame are described, which
allocate an activity’s WF server on the machine of the corresponding application (e.g.,
a DBMS). A similar approach has been suggested by METEOR2 [11] and by
METUFlow [12].

Like ADEPTdistribution, several approaches try to allocate the servers close to the actors
of the activities. MENTOR [16] partitions state/activity charts in a way that allows to
formally verify the equivalence of the distributed executions to the central case. All
users of one activity have to belong to the same “processing entity”. The server of this
processing entity is selected for that activity. The same distribution strategy is
followed by WIDE [9] using CORBA remote object access instead of migrations. In
MOBILE [15] the different aspects of a WF are treated by different servers but there
is no migration. This approach was extended in [21] by selecting the server for each
(sub) WF at run time. The TEAM model [17] considers cooperating organizations. In
this scenario, the locations of the WF servers are predetermined.

In ADEPTdistribution, the communication costs are considered by the distribution algo-
rithm. That is, it takes into account (and tries to avoid the case) that the communica-
tion system can become a bottleneck. To our knowledge, it is the only approach that
analyzes the load in order to minimize the communication costs by means of a suit-
able distribution. The other systems do not offer variable server assignments; the
influence of dependent actor assignments on the distribution is not considered.

108 T. Bauer and P. Dadam

7 Conclusion and Outlook

WfMSs that allow the explicit modeling of the flow of control, the flow of data, and
the dynamic assignment of actors to the activities offer a promising technology for the
realization of enterprise-wide, process-oriented application systems. The flexibility
achievable with these systems, however, is reflected in a relatively high communi-
cation load between the control components (the WF servers) and the application
components (the WF clients). In WfMSs with hundreds of WF clients and thousands
of active WF instances, the resulting load of the WF servers as well as of the
communication network plays an essential role for the response times and also for the
usability of the WfMS in total.

A possibility to reduce the network load is to keep, if possible, the communication
between WF servers and their WF clients local within one subnet; i.e., to avoid
subset-spanning communications. This can be achieved, if a WF instance is not
necessarily completely controlled by the initiating WF server. Instead, its control may
“migrate” to other WF servers, if necessary. In [3] we have presented an approach
using static server assignments. In this paper, we have significantly extended this
approach and examined how dependent actor assignments can be supported
adequately by a WfMS. With dependent actor assignments, the possible actors of an
activity depend on previous activities. This is a practically very relevant case, which
has not been considered in the WF literature so far. We have shown how suitable load
estimations can be already performed at build time. Additionally, we have shown how
the WF control can be realized in a way that the WF server of an activity can be
chosen dynamically at run time. For this purpose, we have introduced variable server
assignment expressions as well as models for probability and cost estimations. The
cost model and the distribution algorithms were implemented and measurements were
performed in order to show their correctness [14]. In addition, the effectiveness of the
techniques presented was confirmed by simulations. Distributed WF execution
(inclusive variable server assignments) was realized in the ADEPT-WfMS. Since the
whole system is implemented in Java, it can be used in the Internet.

To get a complete picture, several additional aspects have to be considered as well
(c.f. [18]). Transactional aspects, for example, may influence the communication
load. Due to lack of space we could not discuss that in this paper. Our analysis
performed so far make us confident that our approach suffers not much more (if at all)
than most of the other distributed approaches.

Acknowledgements: We would like to thank our colleagues Manfred Reichert and Clemens
Hensinger for their valuable suggestions.

References

1. G. Alonso, M. Kamath, D. Agrawal, A. El Abbadi, R. Günthör, and C. Mohan: Failure Hand-
ling in Large Scale Workflow Management Systems. Technical Report RJ9913, IBM Almaden
Research Center, 1994.

2. G. Alonso, C. Mohan, R. Günthör, D. Agrawal, A. El Abbadi, and M. Kamath: Exotica/FMQM:
A Persistent Message-Based Architecture for Distributed Workflow Management. Proc. IFIP
Working Conf. on Information Systems for Decentralized Organisations, Trondheim, 1995.

3. T. Bauer and P. Dadam: A Distributed Execution Environment for Large-Scale Workflow Mana-

 Efficient Distributed Workflow Management Based on Variable Server Assignments 109

gement Systems with Subnets and Server Migration. Proc. 2nd IFCIS Conf. on Cooperative
Information Systems, pages 99-108, Kiawah Island, SC, 1997.

4. T. Bauer and P. Dadam: Architectures for Scalable Workflow Management Systems – Classifica-
tion and Analysis. Technical Report UIB 98-02, Universität Ulm, Fakultät für Informatik, 1998
(in German).

5. T. Bauer and P. Dadam: Distribution Models for Workflow Management Systems – Classificati-
on and Simulation. Informatik Forschung und Entwicklung, 14(4):203-217, 1999 (in German).

6. T. Bauer and P. Dadam: Efficient Distributed Control of Enterprise-Wide and Cross-Enterprise
Workflows. In: Proc. Workshop Enterprise-wide and Cross-enterprise Workflow Management:
Concepts, Systems, Applications, 29. Jahrestagung der GI, pages 25-32, Paderborn, 1999.

7. T. Bauer and P. Dadam: Variable Server Assignments and Complex Actor Assignments in the
ADEPT Workflow Management System. Technical Report UIB 2000-02, Universität Ulm, Fakul-
tät für Informatik, 2000 (in German).

8. D. Barbará, S. Mehrotra, and M. Rusinkiewicz: INCAs: Managing Dynamic Workflows in
Distributed Environments. Journal of Database Management, Special Issue on Multidatabases,
7(1):5-15, 1996.

9. S. Ceri, P. Grefen, and G. Sánchez: WIDE − A Distributed Architecture for Workflow Man-
agement. 7th Int. Workshop on Research Issues in Data Engineering, Birmingham, 1997.

10. U. Dayal, M. Hsu, and R. Ladin: A Transactional Model for Long-Running Activities. Proc. 17th
VLDB, pages 113-122, Barcelona, 1991.

11. S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah: ORBWork: A Reliable Distributed
CORBA-based Workflow Enactment System for METEOR2. Technical Report #UGA-CS-TR-97-
001, Department of Computer Science, University of Georgia, 1997.

12. A. Dogac et al: Design and Implementation of a Distributed Workflow Management System:
METUFlow. Proc. NATO Advanced Study Institute on Workflow Management Systems and
Interoperability, pages 61-91, Istanbul, 1997.

13. J. Eder, H. Groiss, and W. Liebhart: Workflow Management and Databases. Proc. 2ème Forum
Int. d´Informatique Appliquée, Tunis, 1996.

14. H. Enderlin: Realization of a Distributed Workflow Execution Component on Basis of IBM
FlowMark. Master’s thesis, Universität Ulm, Fakultät für Informatik, 1998 (in German).

15. P. Heinl and H. Schuster: Towards a Highly Scaleable Architecture for Workflow Management
Systems. Proc. 7th Int. Workshop on Database and Expert Systems Applications, pages 439-444,
Zürich, 1996.

16. P. Muth, D. Wodtke, J. Weißenfels, A. Kotz-Dittrich, and G. Weikum: From Centralized
Workflow Specification to Distributed Workflow Execution. Journal of Intelligent Information
Systems, 10(2):159-184, 1998.

17. G. Piccinelli: Distributed Workflow Management: The TEAM Model. Proc. 3nd IFCIS Conf. on
Cooperative Information Systems, pages 292-299, New York, 1998.

18. M. Reichert, T. Bauer and P. Dadam: Enterprise-Wide and Cross-Enterprise Workflow-
Management: Challenges and Research Issues for Adaptive Workflows. In: Proc. Workshop
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems, Applications,
29. Jahrestagung der GI, pages 56-64, Paderborn, 1999.

19. M. Reichert and P. Dadam: ADEPTflex − Supporting Dynamic Changes of Workflows Without
Losing Control. Journal of Intelligent Information Systems, 10(2):93-129, 1998.

20. A. Schill and C. Mittasch: Workflow Management Systems on Top of OSF DCE and OMG
CORBA. Distributed Systems Engineering, 3(4):250-262, 1996.

21. H. Schuster, J. Neeb, and R. Schamburger: A Configuration Management Approach for Large
Workflow Management Systems. Proc. Joint Conf. on Work Activities Coordination and Colla-
boration, San Francisco, 1999.

22. G. Vossen, M. Weske, and G. Wittowski: Dynamic Workflow Management on the Web. Techni-
cal Report 24/96-I, Lehrstuhl für Informatik, Universität Münster, 1996.

	1 Introduction
	1.1 Motivation
	1.2 Distributed WF Execution in the ADEPT-WfMS
	1.3 Problem Statement and Contribution of the Paper

	2 Assumptions and Preconditions
	3 Possible Solution Approaches
	4 Determination of Optimal Server Assignments
	4.1 Cost Model
	4.2 Server Assignment Expressions
	4.3 Determination of Optimal Server Assignments
	4.4 Calculation of the Probability Distributions
	4.4.1 Calculation of the Server Probability Distribution ServProbk(S)
	4.4.2 Calculation of the Actor Probability Distribution ActorProbk(D|S)

	4.5 Migration Costs

	5 Efficiency of the ADEPTdistribution Approach
	6 Discussion
	7 Conclusion and Outlook
	Acknowledgements:
	References

