Towards Extensible Information Brokers Based
on XML

Jianguo Lu, John Mylopoulos, Jamie Ho

Department of Computer Science, University of Toronto
{jglu, jm, jamie}@cs.toronto.edu

Abstract. The exponential growth in the number and size of informa-
tion services available on the internet has created an urgent need for
information agents which act as brokers in that they can autonomously
search, gather and integrate information on behalf of a user. Moreover,
the inherent volatility of the internet and the wide range of information
processing tasks to be carried out, calls for a framework that facilitates
both the construction and evolution of such information brokers. This
paper proposes such a framework named XIB (eXtensible Information
Brokers).

Based on descriptions of relevant information services, XIB supports the
interactive generation of an integrated query interface, generates wrap-
pers for each information service dynamically, and returns to the user
the composed result to a query. XIB depends heavily on XML-related
techniques. More specifically, we will use DTDs to model the input and
output of the service, use XML elements to denote the input and output
values. By using this representation, service integration is investigated in
the form of DTD integration, and query decomposition is studied in the
form of XML element decomposition. Within the proposed framework, it
is easy to add or remove information services on the internet to a broker,
thereby facilitating maintenance, evolution and customization.

Keywords: XML, data integration, interoperability, wrapper, multi-agent
system, mediator, web-based information system.

1 Introduction

The availability of information sources, services and deployed software agents
on the internet is literally exploding. To find relevant information, users often
have to manually browse or query various information services, extract relevant
data, and fuse them into an usable form. To ease this kind of tedious work, var-
ious types of information agents have been proposed, including meta-searchers
[28], mediators [11][4], and information brokers [9]. These provide a virtual in-
tegrated view of heterogeneous information services, and perform a variety of
tasks antonomously on behalf of their users.

Two issues are critical in building such software agents: extensibility and
flexibility. The internet is an open and fast changing environment. Information

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 32-46, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Towards Extensible Information Brokers Based on XML 33

sources, internet connections, and the information agents themselves may appear
and disappear unpredictably, or simply change with no warning. Any software
agent that operates within such an environment needs to be easily adaptable to
the volatile internet environment. Likewise, in such an open environment there
will always be new users who have different requirements for their information
processing tasks. To meet such demands, the technology we use to build infor-
mation agents needs to support customizability and evolution.

The XIB (eXtensible Information Broker) is a framework intended to facil-
itate the construction of information brokers that meet such extensibility and
flexibility requirements. The basic idea is to make the web services currently only
available to users also accessible from within other applications. To enable this,
we define a service description language, called XIBL, intended to be used as
the common language for various services. XIBL is based on XML. More specif-
ically, the input and output descriptions are represented as DTDs, and input
and output data are denoted as XML elements. Due to the wide adoption of
XML notation, and the extensibility of the XML itself, XIBL is flexible enough
to describe various services ranging from web services, database, and even Java
remote objects.

There are three groups of users inside this framework, 1.e., wrapper engineers,
broker engineers, and end users. Wrapper engineers are responsible for wrapping
up a particular service in terms of XIBL, and registering the service in a service
server. Broker engineers select services from the service server, and build brokers
where they define how to integrate the services. End users use the brokers.

Correspondingly, we provide Wrapper Builder and BrokerBuilder tools.
Wrapper Builder is a visual tool that helps a user wrap up a service interactively.
Through an interactive session, Wrapper Builder produces a service description
written in XIBL and gets it registered in a service server. Broker Builder is a vi-
sual tool that interact with users to define a broker. The tool allows allow broker
engineers to select from the service server the services they want to integrate,
and to define the logic of the integration. Again, through an interactive session,
a broker is generated automatically, without writing program code. Brokers will
typically accept more complicated queries then any individual services, decom-
pose the query into sub-queries, and compose the results from sub-queries into
a coherent response to the user query. As well, facilities are provided so that
brokers can replace a source that is out-of-service with the help of matchmak-
ing capability of the service server. More details of the system can be found at
WWW.cs.toronto.edu/km/xib.

In the following we first introduce the information service description lan-
guage XIBL, which allows the description of websites or databases. Next we
describe how a broker engineer defines or customizes an information broker,
based on a set of such information service descriptions. Wrapper generation is
described next, while section 5 discusses result composition. The paper concludes
with a review of the literature and a summary of the key issues addressed.

34

J. Lu, J. Mylopoulos, and J. Ho

2 Information Service Description Language XIBL

We classify web ser-
vices into three cate-
gories, 1.e., static, dy-
namic, and interactive.
Static web services are
those static HTML web
pages. Dynamic services
typically allow users to
provide input on a HTML
form and get a dynam-
ically generated web-
page. One example of
such web services is a
generic search engine.
Interactive web services
are a special class of dy-
namic web services that
allow for the change
of the state on the
web server side and
accomplish the service
through multiple lay-
ers of interaction. E-
commerce websites usu-
ally provide interactive
services.

This paper focuses
mainly on dynamic web
services. This kind of
service could be modeled

<XIB>
<SERVICE NAME='"AmazonSearch"/>
<INPUT>
<elementType id="query"> <string/> </elementType>
</INPUT>
<0OUTPUT>
<elementType
<elementType
<elementType
<elementType
<elementType
<elementType
<element
<element
<element

id="author"> <string/> </elementType>
id="title"> <string/> </elementType>
id="publisher'> <string/> </elementType>
id="year"» <string/> </elementType>
id="price''> <string/> </elementType>
id="book">
type="#author" />
type="#title" />
types"#publisher" />
<element type='"#year" />
<element type='"#price" />
</elementType>
<elementType id=''books'">
<element type="#book" occurs="ZEROORMORE" />
</elementType>
</0UTPUT>
<INPUTBINDING>
<BASE method='"POST" action="cgi-bin'>
http://eww.amazon.com</BASE>
<BINDING variable = '"query" mapsTo="keyword-query'" />

</INPUTBINDING>
<OUTPUTBINDING>
<script>
titles = Elem(P, "a'") inside Elem(P,"dt");
dd = Elem(P,"dd");
title = Text(titles[i]);

</script>
</OUTPUTBINDING>
<DESCRIPTION> search for book information from Amazon.
</DESCRIPTION>
</XIB>

Fig. 1. Amagzon description

as a function. There are four layers of description for such services:

1. Where 1s the service. For our purposes, this may be the URL of a cgi script
for a website, or the URL address of a database server.
2. What queries can it answer. For a database, this would usually be determined
by the database query language (SQL or other). However, the queries that
can be answered by a particular website are usually very limited. The XIB
needs to provide a grammatical notation for specifying the set of queries that

can be submitted.

3. What information can it provide. This is the output data we expect from
the service, specified in a XML DTD.
4. Where is the data exactly located. For a database, this 1s specified in the
database schema. For a website, on the other hand, pertinent data is usually
hidden inside an HTML document, so we need to specify the exact location

of those data.

Towards Extensible Information Brokers Based on XML 35

We shall call these four components of a service description as INPUT BINDING
INPUT, OUTPUT, and OUTPUT BINDING, respectively. Figure 1 is an example of an
Amazon search service description.

2.1 Input and Output Descriptions

Information sources usually allow only a limited number of query forms to be
submitted. The input description defines the set of queries acceptable to a par-
ticular service. It consists of a set of variables that a user can associate values
with, and their corresponding range specification. One design goal of the de-
scription is to model the HTML form, so that a description can be generated
from an HTML form or vice versa.

The input descrip-
tion takes the form of
an XML schema ex-
pressed in XML-data
[15], an extension of
the XML DTD that
can be embedded in
an XML document. Fig-
ure 2 shows an exam-

<SERVICE NAME="computerSearchl'>
<INPUT>
<elementType id='"model'"» <string/> </elementType>
<elementType id="cpu'>
<attribute name="cpuValue" atttype="ENUMERATION"
values="PII350 PII400" /
</elmentType>
<elementType id='"memory">
<attribute name="memoryValue" atttype="ENUMERATION"
values="32H, 64M" />
</elementType>
<slemontType id="memories">

ple of a more compli-
cated input/output de-
scription. The input part
here means that the in-
put variable model can
be any string (which cor-
respouds to the text in-
put control in an HTML
form), cpu can take val-
ues PII350 or PII400
(which correspond to
the menus control in
the HTML form), and
memories can take val-
ues 32M, 64M, or both
{(which corresponds to
the menus control with

multiple selections in an
HTML form).

<element type="#memory" occurs="ONEORMORE"/>
</elementType>
</INPUT>
<0UTPUT>
<elementType id="computers''>
<element type="#computer' occurs="ZEROORMORE" />
<elementType id="computer'/>
<element type="#cpu'/>
<element type="#memories"/>
<element type='‘#hardDisk'/>
<olement type="#price'/>
<element type='"‘#address'/>
</elementType>
<elementType id="hardDisk'">
<attribute name="hardDiskValue'" atttype="ENUMERATION"
values="6G 8G" />
</elementType>
<elementType id="price'"> <atring/> </elementType>
<elementType id='"‘address'/>
<element type="#mail"/>
<element type="#email"/>
</elementType>
</OUTPUT>

For the output de- Fig. 2. computerSearchl input/output description

scriptions, it is not adequate to use a variation of the relational data model as
in [26]. Instead, we also use a syntax similar to DTD to allow for the description
of a tree-like data structure.

In the example shown in figure 2, the output consists of zero or more computer
elements, each consisting of cpu, memory, hardDisk, price, and address el-

36 J. Lu, J. Mylopoulos, and J. Ho

ements. The address element, in turn, consists of two other elements, mail
address and email address.

In figure 1, the INPUT
component 18 SlIIlply a'.query <SERVICE NAME="computerSearch2'>
that can take arbitrary [|<inpur>

. : <elementType id="cpu">
StI‘ll’lgS as its value. The <attribute name='cpuValue" atttype="ENUMERATION"

OUTPUT component, on the values="PII266 PII350" />
</elmentType>

other hapd, declares that <elementType id="hardDisk">

the result is books, and that <attribute name="hdValus"

books consists of zero or a atttype="ENUHERATION" values="4G 8G"/>
</elementType>

more book. Each book con- [</INPUT>

- <QUTPUT>

sists of elements author, colomontType id="computers's

title, publisher, year, <element type="#computer" occurs="ZEROORMORE" />
and price. </elementType>

<elementType id="computer'/>
<element type='"#model"/>
<element type="#cpu'/>

2.2 Input and Ol.ltpllt <element type='#memories'/>
. . <element type="#hardDisk"/>
Blndlngs <element type="#price"/>
</elementType>
An input binding provides <elementType ids"memory'>
| . <attribute name=''memoryValue" atttype="ENUMERATION"
necessary information for values="32M 64M 128M" />
the dynamic construction of </elementType> _ ,
<elementType id="price'"> <string/> </elementType>
an URL. For our example <elementType id="model'> <string/> </elementType>

of figure 1, the input bind- [</OUTPUT>
ing consists of the URL
of the website in question,
the cgi script name, and
the mappings between the
name used in the descrip-
tion and the attribute name
used in the HTML form (the mapping from query to keyword-query).

The OUTPUT BINDING uses the markup algebra introduced in [17] to define
the location of the data inside a HTML documents.

Fig. 3. ComputerSearch2 input/output descrip-
tion

3 Broker Synthesis

Once web descriptions are available, a broker engineer can interact with the XIB
to synthesize a broker as needed. First of all, the broker engineer needs to select a
set of services to be integrated. The publication and selection of relevant services
can be handled by a matchmaking agent [24].

To synthesize the broker with selected services, there are three things to
be defined by the broker engineer. First, the user interface through which a
query is submitted. Second, the output of the query, which consists of both
the output format and the means to compose the results from each information
source. Third, the mappings between the names in the broker and the names
in each service. The following two subsections describe how the broker interface

Towards Extensible Information Brokers Based on XML 37

is defined and how the results are composed, while name mapping issues are
discussed throughout these two subsections.

3.1 Definition of the Broker Query Interface

The broker query interface is an II'TML form through which a user can submit
queries. To derive the broker interface, first we must derive a broker XML schema
from a set of input XML schemata, one for each service. Then we can generate
an HTML form from the broker schema via XSL.

There are several requirements for the broker schema:

Generality The broker XML schema(DTD) should be capable of accepting
queries(XML instances of the DTD) for every service. That is, every instance
of each source XML schema should also be an instance of the broker schema.

Decomposability Every query acceptable by the broker schema (XML in-
stance of the schema) should be decomposable to sub-queries that are ac-
ceptable to the services. In general, it is not desirable for the interface to let
users submit queries that always fail to produce answers.

Normal Form The schema should be normalized so that the same element type
or attribute name and value will not be defined twice. Since each schema
element type or attribute will be transformed into an HTML form control,
multiple definitions of an element or an attribute will require a user to dupli-
cate the action to set a value in several places. Besides, to ensure the validity
of the schema, multiple definition of element types should be removed.

The steps required to

construct the broker input
schema are as follows. Given
two service input descrip-
tions A and B, first construct
the integrated schema (DTD)
as

<!ELEMENT X ((AIB)|(A,B))>
which means that the broker
input schema could be either
A, B, or the sequential compo-
sition of & and B. Obviously,
this schema satisfies condition
one. The next step is to ap-
ply a set of schema transfor-

<elamentType id="model"> <string/> </elementType>
<elementType id="cpu">
<attribute name="cpuValue" atttype="ENUMERATICON"
valuas="PII266 PII350 PII400" />
</elmentType>
<elementType id="hardDisk">
<attribute name="hdValue" atttype="ENUMERATION"
values='"4G 8G"/>
</alementType>
<elementTypa id="memories">
<element type="#memory" occurs="ONEORMORE"/>
</alementType>
<elementType id="memory'>
<attribute name="memoryValue" atttype="ENUMERATION"
values="32K 64M" />
</alementType>

Fig.4. Computer search broker input XML

mation rules to simplify the (ema

schema so that element types,
attributes, or values inside the integrated schema are not defined in multiple
places. Each transformation rule will preserve the equality of the schemas. The
process continues until no transformation rule is applicable.

Let’s look at the example of generating a computer search interface from the
descriptions in figures 2 and 3. To keep things simple, we suppose that the same

38 J. Lu, J. Mylopoulos, and J. Ho

entities in the two descriptions are denoted by the same name. When they are
denoted by different names, the broker engineer needs to construct a mapping
between those names.

By integrating the XML schemata in computerSearchi and computerSearch?2,
we have produced the INPUT description as in figure 4. We notice that in the
broker schema the valid values of the cpuValue is obtained by combining the
corresponding valid values from computerSearchl and computerSearch2. The
correspondence between this XML schema and an HTML form is as follows. El-
ement type model will produce an HTML text input control, element types cpu
and hardDisk will produce menus controls, and memories will produce menus

control that allows for multiple selection.

3.2

When the services are
selected, there are numer-
ous ways to integrate them.
Given the two services
GlobeChaptersSearch and
AmazonSearch, we can use
them to search for books
that appear in both places,
for books that can be
shipped within 24 hours,
etc. Here we are concerned
with the comparison of the
prices of the books in these
two places. Hence the bro-
ker engineer needs to inter-
act with the XIB to define
the output XML template.

Given the output XML
schemata for AmazonSearch
and GlobeChaptersSearch,
the broker engineer can de-
fine the output XML tem-
plate as in figure 5.

This kind of template
uses a simplified form of the
XML query language XML-

Definition of the Output XML Template

CONSTRUCT
<newbook>
<author>$a </author>
<title> $t </title>
<AmazonPrice> $p3 </AmazonPrice>
<GCPrice> $p2 </GCPrice>
</newbook>
WHERE <book>
<author>$a </author>
<title> $t </title>
<price> $pl </price>
</book> IN “http://cs.toronto.edu/XIB/amazonSearch”
CONDITION “amazonSearch.INPUT.query
=newSearch,INPUT.queryString"
AND
<chapterBook>
<authors>$a <fauthors>
<bookName> $t </bookName>
<ourPrice> $p2 </ourPrice>
</chapterBook> IN
"http://cs.toronto.edu/XIB/globeChaptersSearch"
CONDITION "globeChaptersSearch.INPUT.query
=newSearch.INPUT.queryString"
AND
<Converter>
<amount> $pl </amount>
<result> $p3 </result>
</Converter> IN
"http://cs.toronto.edu/XIB/ConverterService"
CONDITION 'ConverterServive.INPUT.from=USD;
ConverterService.INPUT.to=CND;
ConverterSerivce.INPUT.amount=$p1"

Fig. 5. XML template

QL [10]. The major difference in the syntax of XIB templates is that the IN
clause contains wrapper information, instead of an URL that points to an
XML file. The Construct component of the template defines the intended out-
put, i.e., a list of <newbook> elements which consist of elements <author>,
<title>, <AmazonPrice>, and <GCPrice>. The WHERE part defines how to

Towards Extensible Information Brokers Based on XML 39

compose results from different information services. Note that the strings pre-
ceded by the sign $ denote variables. In this example, the AmazonSearch
and globeChaptersSearch are joined on the author and title, and the
AmazonSearch and ConverterService are joined on the price (amount) in USD.
To do the currency conversion between US dollars and Canadian dollars, we need
to use another information service ConverterService whose input and output
definitions are as in figure 6.

4 ‘Wrapper Generation

Wrapping a system is the pro-

S i ict-
cess of deﬁnlng and restrict <SERVICE Name="ConverterService'/>

ing access to a system through |<mpurs
: " <elementType id="amnt"> <string/> </elementType>
an abst.ract 1nte'rface. A wrap <elementType id="frm"> <string/> </elementType>
per for information services ac- <elementType id="to"> <string/> </elementType>

S . </INPUT>

cepts queries in a given for OUTPUTS

mat, converts them into one or
more commands or sub-queries
understandable by the under-
lying information service and
transforms the native results

<elementType id="conversion">
<element type="#amount'/>
<element type="#result'/>
<glement type="#from"/>
<element type="#into"/>
</elementType>
</OUTPUT>

into a format understood by
the application. In the follow-
ing we discuss wrapper genera-
tion for websites and relational
databases.

Fig. 6. Currency Converter

4.1 Wrappers for Dynamic Web Services

A wrapper for a web-based information source is a special kind of wrapper
in that the source involves websites and applications, while the native results
are usually in the form of HTML documents. The basic functionality of such
wrappers includes accepting a query and constructing the corresponding URL;
also accessing a webpage given a URL, extracting the relevant information and
returning the resulting XML DOM object to the broker.

When the output XML template is defined, the wrappers for each service will
be generated dynamically. Wrappers are not developed a priori due to the fact
that each information source has a vast array of services, while different broker
or mediator will only use some of these service. For example, the AmazonSearch
service also provides information on publisher, publish year etc. However,
since the broker will not need this information, there is no need for the wrapper
to produce it.

The process of generating XML wrappers for websites is described in figure
7.

40 J. Lu, J. Mylopoulos, and J. Ho

Legend: === ®* Dataflow

® Control flow

§ DOM Object

———————— -
Owput DTD XML generator

~ Output Template

'}

~ WebL Interpreter

’ WebL-based Script

QUEI’Y RL construetor] - Web dmcnpuon ——————
- parser —— - Transformer

' escription

Fig.7. XML Wrapper generation

The description parser parses the web description. From the input binding,
the URL constructor is able to generate the URL to get the corresponding web-
page in HTML format. In the AmazonSearch example, suppose the query string
to the user interface is "XML” | to search for books about XML, the generated
URL is http://www.amazon.com/cgi-bin?keyword-query="XML".

At the same time, given the output template, the output bindings, and
the input/output descriptions, the Transformer will generate the WebL [17]
scripts that can extract the relevant data. In our example, according to the
AmazonSearch description, we can get information about publisher and publish
year. However, since this information is not needed according to the output tem-
plate, the generated WebL scripts won't extract it. The WebL inlerpreter will
mterpret the WebL scripts and extract the pertinent data. Finally, the XML
generator transforms the output of the WebL interpreter to the XML format
according to the output XML schema.

4.2 From Databases to XML

To allow for data exchange between databases and websites we need to be able to
build XML wrappers for database systems. For our book comparison example,
suppose there is another converter service provided by a relational database sys-
tem and its description is as in figure 8. In this description the INPUT and OUTPUT

Towards Extensible Information Brokers Based on XML 41

specifications are the same as in figure 6. Inside the binding part, there are defi-
nitions for the database URL, the database driver, user account, password, and
the database query.

5 Query Planning and Result Composition

Given a query from the broker interface, the broker needs to decompose the
query and form a plan to execute the query.

Let’s look at an example in the computer search case. Suppose that the
following query is submitted through the broker input interface specified in figure
4:

Q=<cpu>PII350</cpu> <hardDisk>4G</hardDisk><memory>32M</memory>,

This asks for the se-

lection of computer infor-
mation satisfying the con-
straints that cpu is PII350,
hardDisk is 4G, and memory
is 32M.

First, the broker needs
to decide which service is
capable of accepting this
query.

Suppose I and O are the
input and output schemata
of service S. A query @
is acceptable to a service
S(1,0), if either @ is an
instance of I, or there is
a decomposition of @ =
(@1, Q2), such that @; is an
instance of I, and @ is an
instance of part of O.

In our example, since
) is not an instance of

<SERVICE NAME="ConverterDBService'>

<INPUT>
<elementType id="amnt"> <string/> </elementType>
<elementType id="frm"> dstring/> </elementType>
<elementType id="to'"> <string/> </elementType>

</INPUT>

<OUTPUT>

<elementType 1id='"conversion'>
<element type="famount'/>
<olement type='"#result''/>
<alement type="#from"/>
<olement type="#into"/>
</elomentType>
</OUTPUT>
<INPUTBINDING>
<BASE> jdbc:msql://mika.ai.toronto.edu:1114
/converterDB </BASE>
<DRIVER> com.imginary.sql.msql.MsqlDriver </DRIVER>
<USER> guest </USER>
<PASSWORD> 12345 </PASSHWORD>
<DBQUERY>
SELECT amount, result, from, into
FROM ConversionTable
WHERE amount=amnt AND from=frm AND into=to
</DBQUERY>
</INPUTBINDING>

Fig. 8. Database description

the input schema of computerSearch2,

it is decomposed into

Q1= <cpu> PII350 </cpu> <hardDisk> 4G </hardDisk>

and

Q2= <memory>32M</memory>,

which are instances of the input and output schemata of computerSearch2,

respectively. Hence this query is acceptable to computerSearch2.

Once such decomposition is obtained, (71 is sent to the computerSearch2

and ()2 is used as a filter condition inside the broker.

With the XML documents produced from the wrapper and the output tem-
plate provided by the broker engineer, the task of result composition becomes

42 J. Lu, J. Mylopoulos, and J. Ho

easier. In our implementation, we transform the output template to the XML-
QL query with some variables instantiated and the service name replaced by a
concrete XML document. Then using the XML-QL engine, we can get the result
XML document.

One complication that can arise here is that some input variables may not
be instantiated beforehand. In our book search example, the converter can only
be activated after the AmazonSearch is completed, i.e, when the value for the
variable $P1 1s available from the AmazonSearch. Thus the result composer
needs to wait for that value, assign that value to the input variable of the
ConverterService, generate a new query, and send it to the wrapper.

6 Related Work

6.1 Information Integration

Much work has been done on query planning and rewriting for information
mediators[16]. Recently, XML-related issues have also been studied in this area.
For example, MIX[4] is an XML-based DTD driven mediator prototype. In MIX,
data exchange and integration relies on XML. The XML query language XMAS
is used to define the integration view, and the graphical user interface BBQ
(Blended Browsing and Querying) is used to generate complex queries driven by
the mediator view DTD. The view DTD is derived from the view definition and
source DTDs. MIX is not comparable with XIB in that MIX mediates between
static web pagesm, while XIB is intended to integrate dynamic services that are
modeled as functions.

Metawrappers [26] are components within a mediator architecture which de-
compose user queries and compose wrapper responses. The assumption here is
that there are hundreds of information sources in a dynamic WWW environ-
ment, so there is a need to group similar information sources, and generate a
non-redundant, least-cost plan for a given query. An extension of the relational
data model is used to describe the source and metawrapper schemata. An in-
put/output relation is used to describe the limited capability of a web source.
Unlike the XIB, where the input and output could be XML schemata, the input
and output in a metawrapper are sets of attributes. Moreover, the metawrapper
assumes the existence of wrappers which are responsible for the direct access
to information sources and the translation from different data model to a uni-
form data model, the source description in a metawrapper does not include the
BINDING part in XIB.

WebSemantics[18] proposes an architecture to describe, publish, register, dis-
cover, and access relevant data over the internet using XML and XML-data. The
focus i1s on data instead of the services available on the internet.

WIDL [27] is an XML application that tries to describe web sources so that
they can interoperate. In WIDL, the input and output are simply described as
a set of variables that have no structure, hence WIDL is unable to support the
integration of new query interface and the result composition based on certain
data schema.

Towards Extensible Information Brokers Based on XML

6.2 Wrapper Construction

Wrapper construction or gener-
ation is the task of producing
wrappers from source descrip-
tions. The approaches to wrap-
per construction vary with re-
spect to the level of abstraction
of the input/output descrip-
tions, the expressiveness of the
descriptions, also the degree of
tool support for the acquisi-
tion of the input/output de-
scriptions and the transforma-
tion from the descriptions to
executable code.

Input/output descriptions
could be represented in a

declarative language, e.g., [27][22]

They could also be represented
as executable scripts [17]. The
input/output descriptions may
be provided manually[27], or
obtained with the help of tools
[22]. Alternatively, they may
be induced automatically using
machine learning techniques
[20][13]. Our work has not ad-
dressed yet the important is-
sue of acquiring automatically
or semi-automatically such de-
scriptions.

Compared to other wrap-
per construction proposals, our
description language is very
expressive. By using XML
schemata to describe inputs

43

CONSTRUCT
<newComputer>
<cpur $cpu </cpu>
<memory> $mm </memory>
<hardDisk> $hd </hardDisk>
<price> $cndPrice </price>
<address> $addr </address>
</neuComputer>
WHERE
(
<computeril>
<cpu> $cpu </cpu>
<memory> $mm </memory>
<hardDisk> $hd </hardDisk>
<price> $cndPrice </price>
<address> $addr </address>
</computeri> IN
“http://eww.toronto.edu/XIB/computerSearchl”
CONDITION “computerSearchl.INPUT.cpu=
newComputer.INPUT. cpu;
computerSearchl. INPUT.mm =newComputer.INPUT.mm;
$hd=newComputer.INPUT.hd"
R
<computer2>
<cpu> $cpu </cpud>
<memory> $mm </memory>
<price> $usdPrice </price>
<address> $addr </address>
</computer2> IN
"http://uww.toronto.edu/XIB/computerSearch2"
CONDITION "computerSearch2.INPUT.cpu
=newComputer. INPUT.cpu;
computerSearch2. INPUT .hd
=newComputerSearch.INPUT.hd;
newComputerSearch.INPUT.mm"

(=)

$mm =
)
AND
<converter>
<amount> $usdPrice </amount>
<result> $cndPrice </result>
</converter> IN
"http://www.toronto.edu/XIB/converterService"
CONDITION "converterService.INPUT.frm=USD;
converterService. INPUT.to=CND;
converterService.INPUT.amnt=$usdPrice"

Fig. 9. Computer search template

and outputs, we allow for the description of complicated queries and richly struc-

tured outputs. This is particularly important in view of the increasing complexity

of HTML forms.

7 Conclusions

The key design features of the proposed eXtensible Information Broker (XIB)

is its extensibility and flexibility. Given information source descriptions, broker
engineers can build and maintain reliable information brokers with ease. Building

44 J. Ly, J. Mylopoulos, and J. Ho

a new information broker only involves several steps of interaction with the
XIB. Moreover, the evolution and maintenance of such brokers is simple, since
one can easily add or remove sources or services without consulting the code.
Finally, information brokers built through the XIB can be built for reliability
by including several redundant sources and services. For example, the broker
engineer can prepare several currency conversion services in case one of them
breaks due to a bad internet connection.

The main contributions of this work are as follows. Firstly, it provides a
language and a tool to model dynamic web services in terms of XML. Secondly,
it provides a platform for making web services accessible not only to users, but
also to applications. Thirdly, as an example of such an application, we provide
the BrokerBuilder that can integrate such services.

A prototype of XIB has been implemented and can be accessed at
WWW.cs.toronto.edu/km/xib. The implementation adopted the XML parser
XMLA4J developed by IBM. XSL is used to transform XML documents to HTML
presentation, and the XML-data to HTML forms. Also, XML-QL is used to
compose results. To construct wrappers for web sources, we used WebL to extract
relevant information from an HTML document. For database wrappers, currently
we are wrapping the miniSQL database and use JDBC to make the connection.
Finally, the service server is implemented using Java RMI, while brokers are
served using servlets.

We have experimented with the implemented XIB framework through four
groups of examples. One group is concerned with the integration of book store
information from sources such as amazon, globalChapters, along with currency
converter services. The second group of services includes generic search engines
like altaVista, hotBot, etc. By integrating this group of services, we provide
new services similar to the popular metasearcher like metacrawler. The third
group is to integrate movie review and local theater information services. This
experiment 1s intended to try out the XIB with complementary, rather than
similar, services. The fourth group concerns the integration of information from
a set of computer stores. This group of services requires more complicated input
and output format, and has allowed us to experiment with sophisticated input
DTD integration and query decomposition. '

Several issues need further investigation for this framework to scale up:

The vocabulary problem Although XML provides certain semantics for the
data and hence facilitates the integration of services, given the assumption
that service descriptions may be provided by different people, there may be
different DTDs for the same task. In our current implementation, broker
engineers have to specify the mappings between the D'TD tag names. This is
one of the bottleneck for the automatic generation of brokers. The problem
will be tackled in two directions. One is to follow industry standards that are
emerging, like RosettalNet and BizTalk. Another is to compute the distance
between tag names based on statistic methods like co-occurrence and trigger
pairs.

Towards Extensible Information Brokers Based on XML 45

Interactive web services Our current framework can only model and inte-

grate dynamic web services. There are many web services that need several
layers of interaction, and require the modification of the state on the web
server side. XIB is not able to cope with this kind of service.

Acknowledgments

The project was funded by the Government of Canada through the Networks

of Centers of Excellence and the Institute of Robotics and Intelligent Systems.
We would like to thank Kenneth Sinn for his contribution in the implementation
of the system.

References

10.

11.

12.

. Vidur Apparao et al, Document Object Model (DOM) Level 1, W3C recommen-

dation, http://www.w3.org/ TR/REC-DOM-Level-1/.

. Naveen Ashish, Craig Knoblock, Semi-automatic Wrapper Generation for Inter-

net Information Sources, Second IFCIS Conference on Cooperative Information
Systems (CooplS), Charleston, South Carolina, 1997.

. P. Atzeni, G. Mecca, P. Merialdo, Semistructured and Structured Data in the Web:

Going Back and Forth, In SIGMOD Record, Special Issue on the Workshop on the
Management of Semistructured Data, 1997.

C. Baru, A. Gupta, B. Ludaescher, R. Marciano, Y. Papakonstantinou, P. Velikhov,
XML-Based Information Mediation with MIX, In Exhibitions Program of ACM
SIGMOD 99.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Extensible Markup Lan-
guage(XML) 1.0, W3C recommendation, http://wwww.w3.org/TR/REC-xml,
1998.

Chen-Chuan K. Chang, Hector Garcia-Molina, Andreas Paepcke, Predicate Rewrit-
ing for Translating Boolean Queries in a Heterogeneous Information System, ACM
Transactions on Information Systems, vol. 17, no. 1, Jan. 1999.

. Chen-Chuan K. Chang, Hector Garcia-Molina, Mind Your Vocabulary: Query

Mapping Across Heterogeneous Information Sources, Proc. of the 1999 ACM SIG-
MOD International Conference On Management of Data, Jun. 1999.

. James Clark, Stephen Deach, Extensible Stylesheet Language(XSL), W3C working

draft, http://www/w3/org/TR/WD-xsl, 1998.

. K. Decker, K. Sycara, M. Williamson. Matchmaking and Brokering. Proceedings of

the Second International Conference on Multi-Agent Systems (ICMAS-96), Dec-96.
Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy,Dan Suciu , XML-QL:
A Query Language for XML, W3C note, http://www.w3.org/TR/NOTE-xml-ql,
1998.

Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish, Pragnesh
Jay Modi, lon Muslea, Andrew G., Philpot, and Sheila Tejada. Modeling web
sources for information integration, Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, Madison, WI, 1998.

David Konopnicki, Oded Shmuedi, A comprehensive framework for querying and
integrating WWW Data and services, Fourth IFCIS International Conference on
Cooperative Information Systems, Edinburgh, 1999.

46

13.

14.

15.

16.

17.

18.

19.

20.

23.
24.

25.

26.

27.

28.

J. Lu, J. Mylopoulos, and J. Ho

Bruce Krulwich, Automating the Internet Agents as User Surrogates, IEEE Inter-
net computing, Vol. 1, No. 4, July/August 1997.

Nicholas Kushmerick, Daniel Weld, Robert Doorenbos, Wrapper induction for in-
formation extraction, IJCAI’97,

Andrew Layman, et al, XML Data, W3C note,
http://www.w3.org/ TR /1998/NOTE-XML-data-0105.

Alon Y. Levy, Anand Rajaraman and Joann J. Ordille, Querying Heterogeneous
Information Sources Using Source Descriptions, Proceedings of the 22nd Interna-
tional Conference on Very Large Databases, VLDB-96, Bombay, India, September,
1996.

Hannes Marais and Tom Rodeheffer. Automating the Web with WebL. In Dr.
Dobb’s Journal, January 1999.

Mihaila, George and Raschid, Louiga, Locating Data Repositories using XML,
W3C Workshop on XML and Querying the Web, 1998.

Makoto Murata, Automatically Constructing the Intersection/Union/Difference of
Two Schemas, XTech’99, march 7-11, 1999,

I. Muslea and S. Minton and C. Knoblock, STALKER: Learning Extraction Rules
for Semistructured, Web-based Information Sources, AAAI-98 Workshop on Al
and Information Integration, 1998, 74-81.

. Y. Papakonstantinou, A. Gupta, L. Haas, Capabilities-Based Query Rewriting in

Mediator Systems (Extended Version), in DAPD.

. Raschid, Louiga and Vidal, Maria Esther and Gruser, Jean-Robert. A Flexible

Meta-Wrapper Interface for Autonomous Distributed Information Sources, Under
Review. http://wuw.umiacs.umd. edu/users/mvidal/

Arnaud Sahuguet, Fabien Azavant, Wysiwyg Web Wrapper Factory (W4F), 1999.
K. Sycara, J. Lu, M. Klusch, S. Widoff, Matchmaking among Heterogeneous Agents
on the Internet, in Proceedings of the 1999 AA Al Spring Symposium on Intelligent
Agents in Cyberspace, Stanford University, USA 22-24 March 1999.

Vasilis Vassalos, Y. Papakonstantinou, FExpressive Capabilities Description
Languages and Query Rewriting Algorithms, http://www-cse.ucsd.edu/ yan-
nis/papers/vpcap2.ps

Maria Esther Vidal, Louiqa Raschid, Jean Robert Gruser, A Meta-Wrapper for
Scaling up to Multiple Autonomous Distributed Information Sources, In Proceed-
ings CooplS’98.

WIDL: Application Integration with XML, in ”XML: Principles, Tools, and Tech-
niques”, the October print issue of O'Reilly’s World Wide Web Journal, fall 1997.
http://www.metacrawler.comn

	1 Introduction
	2 Information Service Description Language XIBL
	Input and Output Descriptions
	Input and Output Bindings

	3 Broker Synthesis
	Definition of teh Broker Query Interface
	Definition of the Output XML Template

	4 Wrapper Generation
	Wrappers for Dynamic Web Services
	From Databases to XML

	5 Query Planning and Result Composition
	6 Related Work
	Information Integration
	Wrapper Construction

	7 Conclusions
	Acknowledgments
	References

