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Abstract. Previous research has provided metadata models that enable the
capturing of the static components of a Data Warehouse (DW) architecture,
along with information on different quality factors over these components. This
paper complements this work with the modeling of the dynamic parts of the
DW, i.e, with a metamodel for DW operational processes. The proposed
metamodel is capable of modeling complex activities, their interrelationships,
and the relationship of activities with data sources and execution details.
Finally, the metamodel complements proposed architecture and quality models
in a coherent fashion, resulting in a full framework for DW metamodeling,
capable of supporting the design, administration and evolution of a DW. We
have implemented this metamodel using the language Telos and the metadata
repository system ConceptBase.

1 Introduction

Data Warehouses (DW) are complex and data-intensive systems that integrate data
from multiple heterogeneous information sources and ultimately transform them into
a multidimensional representation, which is useful for decision support applications.
Apart from a complex architecture, involving data sources, the operational data store
(ODS), the global data warehouse, the client data marts, etc., a DW is aso
characterized by a complex lifecycle. The DW involves a permanent design phase,
where the designer has to produce various modeling constructs accompanied by a
detailed physical design for efficiency reasons. The designer must also deal with the
DW processes, which are complex in structure, large in number and hard to code at
the same time. Viewing the DW as a set of layered, materialized views is thus a very
simpligtic view. For example, the DW refreshment process can aready consist of
many different subprocesses like data cleaning, archiving, transformations,
aggregations interconnected through a complex schedule [2]. The administration of
the DW is also a complex task, where deadlines must be met for the population of the
DW and contingency actions taken in the case of errors. Finally, we must add the
evolution phase, which is a combination of design and administration: as time passes,
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new data are requested by the end users, new sources of information become
available, and the DW architecture must evolve to meet these challenges.

All the data warehouse components, processes and data are — or at least should be
— tracked and administered from a metadata repository. The metadata repository
controls the data warehouse components and is therefore the essential starting point
for design and operational optimization. Moreover, the schema of the metadata
repository, expressed as the DW architecture model should also be powerful enough
to capture the semantics and structure of the data warehouse processes (design,
refreshment, cleaning, etc.). Expressiveness and ease of use of the metadata schema
are crucial for data warehouse quality.

In [12], we have presented a metadata modeling approach which enables the
capturing of the static parts of the architecture of a data warehouse, along with
information over different quality dimensions of these components. The linkage of
the architecture model to quality parameters (quality model) and its implementation
in ConceptBase have been formally described in [13]. [27] presents a methodology
for the actual exploitation of the information found in the metadata repository and the
quality-oriented evolution of a data warehouse based on the architecture and quality
model. In this paper, we complement these approaches with the metamodeling for the
dynamic part of the data warehouse environment: the processes.

As we will show in this paper, this kind of meta-information can be used to
support the design and the evolution of the DW. In these phases of the DW lifecycle,
the designers of a DW need information about processes: what are they supposed to
do, why are they necessary, how are they implemented and how they affect other
processes in the DW. We have identified severa requirements for a DW process
model. Specifically, the requirements involve: (i) the coverage of the complexity of
the structure of DW processes, in terms of tasks executed within a single process,
execution coherence, contingency treatment, etc.; (ii) the capturing of the relationship
of processes with involved data; (iii) the tracking of specific executed processes, so
that people can relate the DW objects to decisions, tools and the facts which have
happened in the real world [10]; (iv) a clear separation of perspectives. what
components a process consists of (logical perspective), how they perform (physical
perspective) and why these components exist (conceptual perspective); and finaly (v)
the representation of the linkage of the modeled processes to concrete quality factors
which measure the quality of the DW.

The contribution of this paper is towards the fulfillment of all the af orementioned
requirements. We do not claim that our approach is suitable for any kind of process,
but rather we focus our attention to the internals of DW systems. Our model has been
implemented in the metadata repository ConceptBase [11]. Its usefulness is
demonstrated by the fact that the proposed model enables DW management, design
and evolution, as we will show in section 5. Our model supports the following steps
in the DW lifecycle: (i) the design of the DW is supported by extended use of
consistency checks, to ensure the correctness of the representation; (ii) the model
facilitates the administration of the DW, by enabling the measurement of quality of
DW processes and the spotting of inefficiencies; (iii) a specific task of DW
administration, namely evolution, is supported by the exploitation of the information
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on the interdependencies of DW components, to forecast any possible impact by the
change of any of these components. To facilitate these tasks, we derive the
description of the DW materialized views from the process definitions used for their
population, instead of treating the DW as a set of layers of materialized views.

This paper is organized as follows: in section 2, we discuss briefly related work.
Section 3 describes the process metamodel, and in section 4, we present its linkage to
the quality model. In section 5, we present how the metadata repository can be
exploited, when enriched with this kind of information. Finaly, in section 6 we
conclude our results and present issues for future research. For lack of space, many
issues are not thoroughly presented here. We refer the interested reader to [28] for
more examples and explanations.

2 Reated Work

Our approach is build around the Workflow Reference Model, presented in [29] by
the Workflow Management Coalition (WfMC). We have adapted this model to the
specific requirementsin DW systems.

We found the Workflow Reference Model too abstract for the purpose of a
repository serving DW operational processes. First, the relationship of an activity
with the data it involves is not really covered, athough this would provide extensive
information of the data flow in the DW. Second, the separation of perspectives is not
clear, since the WfMC proposal focuses only on the structure of the workflows. To
compensate this shortcoming, we employ the basic idea of the Actor-Dependency
model [31] (and its latest version, the Strategic Dependency model [30]) to add a
conceptual perspective to the definition of a process, capturing the reasons behind its
structure. In [31], three different ways to view a process are identified: what steps it
consists of, how they are to be performed and why these steps exist. This separation is
aso represented in a software process data model to support software information
systems [10]. The model captures the representation of design objects ("what"),
design decisions ("why") and design tools ("how").

The idea of mapping the conceptual representation of a workflow to its execution
is presented in [3]. The proposed model captures the mapping from workflow
specification to workflow execution (in particular concerning exception handling).
Importance is paid to the inter-task interaction, the relationship of workflows to
external agents and the access to databases.

An approach to validate workflow models is presented in [24,16]. The algorithms
uses a set of graph reduction rules to identify structural conflicts in a control flow
specification, and to check the consistency of workflow temporal constraints.

3 Metamodel for Data Warehouse Operational Processes

In [12] a basic metamodel for data warehouse architecture and quality has been
presented (Fig. 1). The framework describes a data warehouse in three perspectives: a
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conceptual, alogical and a physical perspective. Each perspective is partitioned into
the three traditional data warehouse levels: source, data warehouse and client level.

Conceptual Logcial Physical
Perspective  Perspective Perspecu ve

Meta Model DWL o Pr'\(/l)g;s;s
Level Leve
Source Model
Level
Models/ Process
Meta Data Model
Level
Processes /
Process
Traces

World

Fig. 1. Framework for Data Warehouse Architecture [12]

On the metamodel layer, the framework gives a notation for data warehouse
architectures by specifying meta classes for the usual data warehouse objects like data
store, relation, view, etc. On the metadata layer, the metamodel is instantiated with
the concrete architecture of a data warehouse, involving its schema definition,
indexes, tablespaces, etc. The lowest layer in Fig. 1 represents the real world where
the actual processes and data reside.

The static description of the architecture parts of the DW (left part of Fig. 1) is
complemented in this paper with a metamodel of the dynamic parts of the DW, i.e.
the DW operational processes. As one can notice on the right side of Fig. 1, we follow
again a three level instantiation: a Process Metamodel deals with generic entities
involved in al DW processes (operating on entities found at the DW metamodel
level), the Process Model covers the processes of a specific DW by employing
instances of the metamodel entities and the Process Traces capture the execution of
the actual DW processes happening in the real world.

Our process model (cf. Fig. 2.) has also different perspectives covering distinct
aspects of a process: the conceptual, logical and physical perspective. The
categorization fits naturally with the architecture model, since the perspectives of the
process model operate on objects of the respective perspective of the architecture
model. As mentioned in [31] there are different ways to view a process. what steps it
consists of (logical perspective), how they are to be performed (physical perspective)
and why these steps exist (conceptual perspective). Thus, we view a DW process from
three perspectives: a central logical part of the model, which captures the basic
structure of a process, its physical counterpart which provides specific details over the
actual components that execute the activity and the conceptual perspective which
abstractly represents the basic interrelationships between DW stakeholders and
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processes in aformal way. In the following subsections, we will elaborate on each of
the three perspectives, starting from the logical one.
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Fig. 2. The DW Operationa Process Metamodel

3.1 Complexity of the Process Structure

Following [29], the main entity of the logical perspective is an Activity. An activity
represents an amount of "work which is processed by a combination of resource and
computer applications’. Activities are rather complex in nature and this complexity is
captured by the specialization of Activity, namely CompositeActivity. We follow here
the lessons coming both from repository and workflow management: there must be
the possibility of zooming in and out the repository. Composite activities are
composed of ProcessElements which is a generalization of the entities Activity and
TransitionElement. A transition element is the "bridge" between two activities: it is
employed for the interconnection of activities participating in a complex activity. The
attribute Next of the process elements captures the sequence of events.
Formally, a Process Element is characterized by the following attributes:
— Next: a ProcessElement which is next in the sequence of a composite activity.
The attribute Next hasitself two attributes, that characterizeit:
- Context: Since two activities can be interrelated in more than one complex
DW processes, the context is captured by a CompositeActivity instance.
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— Semantics: This attribute denotes whether the next activity in a schedule
happens on successful termination of the previous activity (COMMIT) or in
the case where a contingency action is required (ABORT).

A TransitionElement inherits the attributes of ProcessElement, but most important,
is used to add more information on the control flow in a composite activity. This is
captured by two mechanisms. First, we enrich the Next link with more meaning, by
adding a Condition attribute to it. A Condition is a logical expression in Telos
denoting that the firing of the next activity is performed when the Condition is met.

Second, we specialize the class Transition Element to four prominent subclasses,
capturing the basic connectives of activities, as suggested by [29]: Split AND,
Split XOR, Join_AND, Join_XOR. Their semantics are obvioudly the same with the
ones of the WfM C proposal. The proposed model supports two other constructs of the
WIMC proposal, namely the dummy activities (modeled as simple Transition
Elements) and the LOOP activities, captured as instances of CompositeActivity, with
the extra attribute for, expressed as a string.

3.2 Relationship with Data

We introduce the entity Type to capture the logical representation of a data store. A
Type denotes the schema for al kinds of data stores. Formally, a Type is defined as a
specialization of Logical Object with the following attributes:

— Fields: a multi-value attribute. In other words, each Type has a name and a set

of Fields, exactly like arelation in the relational model.

- Sored: aDataStore, i.e., a physical object representing any application used to

manipulate stored data (e.g., aDBMS, cf. section 3.3).

Any kind of physical data store (multidimensional arrays, COBOL files, etc.) can
be represented by a Type in the logical perspective. For example, the schema of
multidimensional cubes is of the form [D,,...,.D,,M,,...M ] where the D, represent
dimensions (forming the primary key of the cube) and the M, measures [26].

Each activity in a DW environment is linked to a set of incoming types as well as
to a set of outcoming types. The DW activities are of data intensive nature, in their
attempt to push data from the data sources to the DW materialized views or client
data marts. We capture the outcome of a DW process as a function over the inputs.
These semantics are captured through SQL queries, extended with functions wherever
richer semantics than SQL are required.

Therefore, an Activity isformally characterized by the following attributes:

— Next: inherited by Process Element.
— Input: represents al data stores used by the activity to acquire data.
— Output: represents al data stores or reports, where the activity outputs data. The

Output attribute is further explained by two attributes:

— Semantics: a single value belonging to the set { Insert, Update, Delete, Select}.

A process can either add (i.e., append), or delete, or update the data in a data
store. Also it can output some messages to the user (captured by using a
"Message" Type and Select semantics).
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— Expresson: an SQL query (extended with functions) to denote the
relationship of the output and the input types.
— ExecutedBy: a physical Agent (i.e., an application program) executing the

Activity. More information on agents will be provided in the sequel.

— Role: a conceptual description of the activity. This attribute will be properly
explained in the description of the conceptual perspective.

To motivate the discussion, we will use a part of a case study, enriched with extra
requirements, to capture the complexity of the model that we want to express. The
discussed organization has to collect various data about the yearly activities of all the
hospitals of a particular region. The system relies on operational data from COBOL
files. The source of data is a COBOL file, dealing with the annual information by
class of beds and hospital (here we use only three classes, namely A, B and C). The
COBOL file yields a specific attribute for each class of beds. Each year, the COBOL
file is transferred from the production system to the data warehouse and stored in a
"buffer" table of the data warehouse, acting as mirror of the file inside the DBMS.
Then, the tuples of the buffer table are used by computation procedures to further
populate a”fact” table inside the data warehouse. Several materialized views are then
populated with aggregate information and used by client tools for querying.

We assume the following four Types: CBL, Buffer, Class info and V1. The sche-
mata of these types are depicted in Fig. 3. There are four Activities in the DW: Loa-
ding, Cleaning, Computation and Aggregation. The Loading activity simply copies
the data from the CBL Cobol file to the Buffer type. H_ID is an identifier for the
hospital and the three last attributes hold the number of beds per class. The Cleaning
activity deletes al the entries violating the primary key constraint. The Computation
activity transforms the imported data into a different schema. The date is converted
from American to European format and the rest of the attributes are converted to a
combination (Class_id, #Beds). The Aggregation activity simply produces the sum of
beds by hospital and year. The expressions and semantics for each activity are listed
in Fig. 4. All activities are appending data to the involved types, so they have INS
semantics, except for the cleaning process, which deletes data, and thus has DEL
semantics.

_ next ) next ) next )
oading ) =———————— ( Cleaning ) —— Computation —_— Aggregation
out in out
i out out

in

in s DEL INS INS
A 4 A 4
CBL Buffer Class_info V1
(H_I D, DATE, (H_I D, DATE, (H_I D, EDATE, (H_I D, EDATE,
CLASS_A, CLASS_B, CLASS_A, CLASS_B, CLASS_| D, #BEDS) SUM #BEDS) )
CLASS_O) CLASS_Q)

Fig. 3. Motivating Example
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Attribute Expression Semantics
name

Loading.Out: SELECT * FROM CBL I'NS
Cleaning.Out: | SELECT * FROM BUFFER BL DEL

WHERE EXI STS (SELECT B2.H I D, B2. DATE FROM
BUFFER B2 WHERE BI1.H ID = B2. H I D AND
B1. DATE = B2. DATE GROUP BY H_I D, DATE
HAVI NG COUNT(*) > 1)

Computation. | SELECT H_ID, EURCPEAN( DATE) AS EDATE, ' A, NS
CLASS_A AS #BEDS
out: FROM BUFFER WHERE CLASS A <> 0
UNI ON

SELECT H_I D, EURCPEAN(DATE) AS EDATE, 'B',
CLASS B AS #BEDS

FROM BUFFER WHERE CLASS B <> 0

UNI ON

SELECT H_I D, EURCPEAN(DATE) AS EDATE, 'C,
CLASS_C AS #BEDS

FROM BUFFER WHERE CLASS C <> 0

Aggregation. | SELECT H 1D, EDATE, SUM#BEDS) AS SUM BEDS NS

out FROM CLASS_| NFO

GROUP BY H_I D, EDATE

Fig. 4. Expressions and semantics for the motivating example

3.3 ThePhysical Perspective

Whereas the logical perspective covers the structure of a process ("what" in [31]
terminology), the physical perspective covers the details of its execution ("how").
Each process is executed by an Agent (i.e. an application program). Each Type is
physically stored by a DataStore (providing information for issues like tablespaces,
indexes, etc.). An Agent can be formalized as follows:
- Sate: avalue of AgentStateDomain = {In_Progress, Commit, Abort}.
— Init_time, Abort_time, Commit_time: timestamps.
— Execution_parameters: represent any information about the execution of an agent.
— In, Out: physical DataStores communicating with the Agent. The types used by
the respective logical activity must be stored within these data stores.
The information of the physical perspective can be used to trace and monitor the
execution of the processes. The relationship between the logical and the physical
perspective is done by linking each activity to a specific application program.

3.4 TheConceptual Perspective

A major purpose behind the introduction of the conceptua perspective is to help the
interested stakeholder to understand the reasoning behind any decisions on the archi-
tecture and characteristics of the DW processes. First of all, each Type (i.e. Relation,
Cube, etc.) in the logical perspective is a representation of a Concept in the
conceptua perspective. A concept is an abstract entity representing areal world class
of objects, in terms of a conceptual metamodel, e.g., the ER model. Both Types and
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Concepts are constructed from Fields (representing their attributes), through the
attribute fields.

The central entity in the conceptual perspective is the Role, which is the
conceptual counterpart both of activities and concepts. The Role is basically used to
express the interdependencies of these entities, through the attribute RelatesTo.
Formally, a Roleis defined as follows:

— RelatesTo: another Role.

— As avalue of the RelationshipDomain = { suitable, dependent} .

—  Wkt: amulti-value attribute including instances of class Conceptual Object.

— dueTo: astring documenting any extra information on the relationship.

A role represents any program or data store participating in the environment of a
process, charged with a specific task and/or responsibility. The interrelationship
between roles is modeled through the RelatesTo relationship. Since both data and
processes can be characterized by SQL statements, their interrelationship can be
traced in terms of attributes (Fig. 5). An instance of this relationship is a statement
about the interrelationship of two rolesin the real world, such as‘View V1 relates to
table Class _Info with respect to the attributes 1d, Date and number of beds as
dependent due to data loading reasons'.

Attribute Example 1 Example 2
Role 1 Buf f er Aggr egati on
Rol e 2 CBL Class_Info
As Dependent Dependent
Wt CBL. * H | D, Edate, #Beds

Fig. 5. Examples of role interrelationships for the motivating example

The conceptual perspective is influenced by the Actor-Dependency model [31]. In
this model, the actors depend on each other for the accomplishment of goals and the
delivery of products. The dependency notion is powerful enough to capture the
relationship of processes where the outcome of the preceding process in the input for
the following one. Still, our approach is more powerful since it can capture suitability,
too (e.g., in the case where more than one concept can apply for the population of an
aggregation, one concept is suitable to replace the other).

In the process of understanding errors or design decisions over the architecture of a
DW, the conceptual perspective can be used as a reasoning aid, to discover the
interdependencies of the actors (possibly in a transitive fashion) and the possible
alternatives for different solutions, through a set of suitable candidates. Moreover, the
provided links to the logical perspective can enable the user to pass from the abstract
relationships of roles to the structure of the system. Finally, DW evolution can be
designed and influenced by the interdependencies tracked by the Role entities. It can
be shown that these interdependencies do not have to be directly stored, in all the
cases, but can also be computed due to the transitivity of their nature [28].
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4 Issueson Process Quality

We adopt the metamodel for the relationship between architecture objects and quality
factors presented in [13], which is based on the Goal-Question-Metric approach
(GQM) described in [21]. Each object in a DW architecture is linked to a set of
quality goals and a set of quality factors (Fig. 6). A quality goal is an abstract
requirement, defined on DW objects, and documented by a purpose and the
stakeholder interested in it. Quality dimensions are used to classify quality goals and
factors into different categories. A Quality Factor represents a quantitative
assessment of particular aspect of a DW object, i.e. it relates quality aspects both to
actual measurements and expected ranges for these quality values.

The bridge between the abstract, subjective quality goals and the specific,
objective quality factors is determined through a set of quality queries (or questions),
to which quality factor values are provided as possible answers. Quality questions are
the outcome of the methodological approach described in [27]. The methodology
offers “template” quality factors and dimensions, defined at the metadata level and
instantiates them, for the specific DW architecture under examination. As a result of
the goa evaluation process, a set of improvements (e.g. design decisions) can be
proposed, in order to achieve the expected quality. An extensive list of such
“templates’ can be found in [12].

Quality goals describe intentions or plans of the DW users with respect to the
status of the DW. In contrast, our process model presented in section 3 describes facts
about the current status of the DW and what activities are performed in the DW.
However, the reason behind the execution of a processis a quality goal which should
be achieved or improved by this process. For example, a data cleaning process is
executed on the ODS in order to improve the accuracy of the DW. We have
represented this dependency between processes and quality goals by extending the
relationship between roles and DW objects in the conceptual perspective of the
process model (relationship Expressed For). Thisis shown in the upper part of Fig. 6.

Expressed for
Role [«

QualityGoal
y A

has Defined on Refers to

Role Evidence for

Activi j i Quality
ty | [pwobject ‘ Quallthuery ‘
Executed Evaluated by

by measures Refers to

A

Agent pr— > QualityFactor

Fig. 6. Relationships between processes and quality
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The lower part of Fig. 6 represents the relationship between processes and quality
on amore operational level. The operation of an agent in the DW will have an impact
on quality factors of DW objects. The relationship affects represents both the
measured and expected effect of a DW process on DW quality. The effect of a DW
process must always be confirmed by new measurements of the quality factors.
Unexpected effects of DW processes can be detected by comparing the measurements
with the expected behavior of the process.

The vocabulary / domain of the quality questions, with respect to the process
model is anticipated to be the set of DW activities, which can of course be mapped to
reasons (roles) and conditions (of agents) for a specific situation. Thus, the
discrimination of logical, conceptual and physical perspectivesis verified once more,
in the quality management of the DW: the quality goals can express “why” things
have happened (or should happen) in the DW, the quality questions try to discover
“what” actually happens and finally, the quality factors express “how” this redlity is
measured.

We define a set of generic quality dimensions to classify quality goals and factors
of DW processes. It is influenced mainly from the quality criteria for workflows
defined in [7] and the quality dimensions for software evaluation presented in [9]: (i)
Correctness: a specification exists, describing the conditions under which the process
has achieved its aim; (ii) Functionality: the process satisfies specific needs of data
warehouse stakeholders; (iii) Efficiency: the process has a good balance between level
of performance and amount of used resources; (iv) Maintainability: the degree of
easiness with which the process can be modified.

5 Exploitation of the M etadata Repository

We exploit the metadata repository in al the phases of the DW lifecycle. During the
design phase, the user can check the consistency of his’/her design, to determine any
violations of the business logic of the DW, or the respect of simple rules over the
structure of the DW schema. During the administration phase (i.e., in the everyday
usage of the DW) we can use the repository to discover quality problems. A particular
task in the DW lifecycle, DW evolution, is supported by the repository, in order to
determine possible impacts, when the schema of a particular object changes.

The consistency of the metadata repository should be checked to ensure the
validity of the representation of the real world in the repository. For example, the
repository can check if the type definitions of activities, agents and data stores are
consistent with each other. The repository can also be used by external programs to
support the execution of consistency checking algorithms like the ones proposed in
[24, 16].

In addition, the quality information stored in the repository may be used to find
deficiencies in data warehouse. For example, we can search the repository for al the
data cleaning activities which have decreased the avail ability of a data store according
to the stored measurements. The significance of such a query is that it can show that
the implementation of the data cleaning process has become inefficient.
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We do not elaborate these two issues and proceed to deal with the problem of DW
evolution. We refer the interested reader to [28] for a complete discussion.

Algorithm Ext ract _Type_Definiti ons

Input: alist of processes P=[ P1, Py, .., Pn] , aset of typesT={ T1, T2, .., Tn} . Each
processP[ i ] hasatypeP[i]. out,belongingto T, and an expression P[ i ] . expr . Each
typeof T, say t , hasan SQL expressiont . expr comprised of aset of “inserted data’
(t.i_expr)and“deleted” data(t . d_expr). Also thereisasubset of T, S, with the
source types.

Output: A set of SQL definitions for each type of T.

Begi n
Initialize all the expressions of T-Sto {}.
For i :=1ton
Case
P[i].semantics = ‘I NS
Pli].out.i_expr := P[i].out.i_expr UN ON
Reduce(P[i].expr)
P[i].semantics = ' DEL’
P[i].out.d_expr := P[i].out.d_expr UN ON
Reduce(P[i].expr)
End_case
P[i].out.expr := P[i].out.i_expr MNUS P[i].out.d_expr
End_f or
End
Where Reduce(expr):

1. Usethetechnique of [17] to represent SQL queries; if self-references exist (e.g. in the
case of DEL statements) discriminate between multiple occurrences of the same table.

2. Usethe reduction techniques of [22,14,15] wherever applicable to reduce the query
definition to a compact form.

Fig. 7. Algorithm for extracting the definition of atypein the repository

5.1 Interdependencies of Types, Processes and Roles

We suppose that there is a set of types belonging to the set SourceSchema, denoting
al the types found in the data sources. We treat the types of SourceSchema as source
nodes of a graph: we do not consider any processes affecting them. For the rest of the
types, we can derive an SQL expression by using existing view reduction algorithms.
Several complementary proposals exist such as [14], corrected with the results of [5,
18, 19] (to which we will collectively refer to as[14] in the sequel) aswell as[15, 17,
22]. The proposed agorithm is applicable to graphs of activities that do not involve
updates. In most cases, an update operation can be considered as the combination of
insertions and deletions or as the application of the appropriate function to the
relevant attributes.
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5.2 Repository Support for Data Warehouse Evolution

The problem that arisesisto keep al the DW objects and processes consistent to each
other, in the presence of changes. For example, suppose that the definition of a
materialized view in the DW changes. This change triggers a chain reaction in the
DW: the update process must evolve (both at the refreshment and the cleaning steps),
and the old, historical data must be migrated to the new schema (possibly with respect
to the new selection conditions, too). All the data stores of the DW and client level
which are populated from this particular view must be examined with respect to their
schema, content and population processes.

In our approach, we distinguish two kinds of impact:

— Direct impact: the change in the DW object imposes that some action must be
taken against an affected object, e.g., an attribute is deleted from a materialized
view, then the activity which populatesit must also be changed accordingly.

— Implicit impact: the change in the DW object might change the semantics of
another object, without obligatorily changing the structure of the latter.

Our model enables us to construct a partially ordered graph (which can be
produced by proper queries in Telos): for each Type instance, say t, there is a set of
types and activities, used for the population of t ("before" t), denoted as B(t). Also,
there is another set of objectsusing t for their population ("after" t), denoted as A(t).

In Fig. 7, we showed how we could derive an SQL definition for each type in the
repository. Suppose that a type t is characterized by an expression e which is
supported by a set of auxiliary SQL expressions producing, thus the set
e={e.e,....€}. Obvioudy some of the expressions belonging to e belong also to B(t).
Thus, we extend B(t) as B(t)Oe (with set semantics). Suppose, then, that the final
SQL expression of atypet, say e, changes into €. Following the spirit of [8], we can
use the following rules for schema evolution in a DW environment (we consider that
the changes abide by the SQL syntax and the new expression isvalid):

— If the select clause of € has an extra attribute from e, then propagate the extra
attribute down the line to the base relations: there must be at least one path from
one type belonging to a SourceSchema to an activity whose out expression
involves the extra attribute. If we delete an attribute from the select clause of a
Type, it must not appear in the select clause of the processes that directly popul ate
the respective type, as well as in the following Types and the processes that use
this particular Type. In the case of addition of an attribute, the impact is direct for
the previous objects B(t) and implicit for the successor objects A(t). In the case of
deletion the impact is direct for both categories.

— If the where clause of € is more strict than the one of e, then the where clause of
at least one process belonging to B(t) must change identicaly. If this is not
possible, a new process can be added just before t simply deleting the respective
tuples through the expression €'-e. If the where clause of € is less strict than the
one of e, then we can use well known subsumption techniques [20, 25] to
determine which types can be (re)used to calculate the new expression € of t. The
having clause is treated in the same fashion. The impact is direct for the previous
and implicit for the successor objects.
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— If an attribute is deleted from the group by clause of e, then at least the last
activity performing a group-by query should be adjusted accordingly. All the
consequent activities in the population chain of t must change too (as if an
attribute has been deleted). If this is not feasible we can add an aggregating
process performing this task exactly before t. If an extra attribute is added to the
group by clause of e, then at least the last activity performing a group -by query
should be adjusted accordingly. The check is performed recursively for the types
populating this particular type, too. If this fails, the subsumption techniques
mentioned for the where-clause can be used for the same purpose again. The
impact is direct both for previous and successor objects. Only in the case of
attribute addition it isimplicit for the successor objects.

We do not claim that we provide a concrete algorithmic solution to the problem.
Rather, we sketch a methodological set of steps, in the form of suggested actions to
perform this kind of evolution. Similar algorithms for the evolution of viewsin DW’s
can be found in [1,8]. A tool could easily visualize this evolution plan and allow the
user to react to it.

6 Conclusions

This paper describes a metamodel for DW operational processes. This metamodel
enables DW management, design and evolution based on a high level conceptual
perspective, which can be linked to the actua structural and physical aspects of the
DW architecture. The proposed metamodel is also capable of modeling complex
activities, their interrelationships, the relationship of activities with data sources and
execution details. Finaly, the metamodel complements existing architecture and
quality models in a coherent fashion, resulting in a full framework for DW
metamodeling. We have implemented this metamodel using the language Telos and
the metadata repository system ConceptBase.

In this paper, we have used the global-as-view approach for the DW definition,
i.e., we reduce the definition of the DW materialized views to the data sources. We
plan to investigate the possibility of using the local-as-view approach (which means
reducing both the view definitions and the data sources to a global enterprise model),
asit appears to provide several benefits over the global-as-view approach [4].
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