
Gossip: An Awareness Engine
for Increasing Product Awareness

in Distributed Development Projects

Babak A. Farshchian

Dept. of Computer and Information Science
Norwegian University of Science and Technology, Trondheim

http://www.idi.ntnu.no/˜baf

Abstract. More and more product development projects involve geo-
graphically distributed groups of developers. One problem in such groups
is the long term lack of awareness of the activities in remote sites. In this
paper we discuss the importance of awareness in distributed product
development projects. We argue that generic services are needed in de-
velopment environments for providing continuous awareness of remote
sites. We introduce a product awareness model that puts focus on a
shared composite product and the propagation of awareness in it. We
describe the design and implementation of this awareness model in form
of an awareness engine called Gossip.

1 Introduction

Information systems development is an area of intensive human collaboration
[BJ75]. A normal practice for managing collaboration in large scale IS develop-
ment projects has been to divide the system into parts and have the parts be
developed separately by groups of developers, in this way reducing the amount
of ad hoc communication and dependencies [Par72,Con68]. However, many re-
cent case studies of project groups have revealed that this is not an easy task.
No matter how rational the division of the system into parts is, each group will
still need a large amount of information about what is happening within and
across the groups in order to coordinate its work [HG99,Gri98,KS95]. Access to
this ad hoc information becomes particularly problematic when the developers
are geographically distributed. The effect of geographical distances on long term
collaboration has been well documented in the literature. Herbsleb and Grin-
ter [HG99], Kraut and Streeter [KS95], and Krasner et al. [KCI87] document the
occurrences of communication breakdowns when there are organizational or ge-
ographical barriers among the group members.

In a study of researchers from 70 research labs, Kraut and Egido [KE88] found
that there was considerably higher collaboration frequency among researchers
having offices in the same corridor than among those who did not. The rea-
son, according to the authors, is that physical proximity increases the frequency
and the quality of communication, and decreases the cost of initiating commu-
nication. As members of co–located groups, developers have the advantage of

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 264–278, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



The Gossip Awareness Engine for Product Awareness 265

constantly being aware of the status of the product being developed by simply
using their social abilities, such as “looking over the shoulder” of each other,
being involved in chance encounters in the corridors, and having a much greater
opportunity for “keeping in touch” with each other. In distributed cooperation,
both the amount and the quality of this information decreases. In addition, pro-
viding and consuming this awareness information becomes an explicit burden
on the co–workers simply because most of the natural social channels of com-
munication are eliminated.

In the recent years there has been a large amount of research conducted with
the aim of developing tools to support distributed development groups in per-
forming specific and recurring types of tasks. Tools are developed for supporting
collaborative modeling [DLN97], JAD sessions [CGN95], programming [HW98],
and more. In addition to these specific tools and environments, we believe there
is a need for more generic tools for simulating long–term physical proximity of
the distributed project members, making it easy and less costly for the develop-
ers to initiate collaboration when they need it. In this way strict geographical
divisions can be relaxed, and the collaboration can proceed in a more natural
and flexible way. One essential step in doing this is to develop support systems
that increase the amount of long term awareness provided to project members
about the activities of remote co–workers.

As a part of our research on product development environments, we have
been developing a framework for supporting collaboration in distributed prod-
uct development projects. The framework consists of three parts (Fig. 1). An
underlying product layer is in charge of providing awareness of a distributed
virtual product consisting of parts. A cluster layer implements mechanisms for
grouping product parts into collaboration aware clusters, such as diagrams. An
application layer assists the integration and use of various development tools.

In this paper we describe Gossip. Gossip implements the product layer, and
is in charge of keeping all the other parts of the framework constantly aware of
user activities involving different parts of the product, in this way providing a
shared collaboration space for distributed development groups. The structure of
the paper is as follows: In Sect. 2 we will look at different approaches to awareness
support. In Sect. 3 we introduce our product awareness model. Section 4 describes
Gossip, which implements this awareness model in form of an awareness engine.
Section 5 provides a discussion and directions for future work.

2 Approaches to Awareness Support

Awareness is the information that human beings exchange with their environ-
ment in order to coordinate their work with others. Providing computer–based
mechanisms for supporting exchange of awareness information has shown to be
of central importance to the design of collaboration support systems [GG98]. For
the purpose of this paper, we will organize the research in awareness support
along two dimensions (Fig. 2). The first dimension focuses on the quantity of the
exchanged awareness information compared to the natural co–located situations.



266 B.A. Farshchian

Gossip network-based API

G
o

ssip
P

ro
d

u
ct

 L
ay

er

Cluster Cluster

Cluster network-based API

Cluster Layer

C
lu

st
er

 L
ay

er

Enter title here

< Back Next > Cancel

Graphical editor
Menu

A
p

p
lic

at
io

n
 L

ay
er

Text

Text

Text

Text

Text

Text Text

Text

Text

Fig. 1. A framework for supporting product awareness in distributed product devel-
opment environments.

The second dimension is the level of organizational awareness provided by the
awareness mechanism. By organizational awareness we mean awareness of the
overall organization of the work. High quantities of awareness information are
normally important in order to increase the “naturalness” of the collaboration,
while access to proper organizational awareness facilitates collaboration in large
groups.

The quantity of transmitted awareness information is largest in co–located
situations, where all the available social channels are used to their full capacity.
Media spaces are probably the closest imitations of co–located situations re-
garding the quantity of awareness information. A typical media space consists of
permanent video and audio connections between geographically distributed sites.
In addition to the large amount of awareness information, the permanence of the



The Gossip Awareness Engine for Product Awareness 267

Amount of awareness information

S
u

p
p

o
rt fo

r o
rg

an
izatio

n
al aw

aren
ess

CASE tools

Media rooms

Room-based
groupware

Spatial systems

Social
groupware

Activity-based
groupware

Co-located

DBMS

Fig. 2. A comparison of different awareness models.

connections reduces the cost of initiating collaboration, contributing further to
the creation of a common social space in the long run [BHI93].

Smaller amounts of awareness information are typically transmitted through
software based collaboration support systems. This is both because of the dif-
ficulty of collecting this information from the group’s natural context, but also
because of the difficulty of visualizing this information in a proper way. A chal-
lenging part of implementing awareness support is thus to find the proper awa-
reness model for the domain to be supported. This model will decide what awa-
reness information will be delivered to whom, in this way both making better
use of the limited information bandwidth, and ensuring that those who need the
awareness information will get it.

Several awareness models have been proposed in the literature. Normally,
awareness models have a notion of shared space, presence and focus. Shared
space is where collaboration objects have to reside in order to be able to produce
and consume awareness information. An object makes its presence known to the
shared space by registering itself with a set of parameters. Once present in the
shared space, the objects commit to update their presence information regularly.
Objects can in addition focus on other objects by providing to the shared space
a set of parameters that defines their focus. The focus can also be updated
regularly. In the spatial model of Benford and Fahlèn [BF93], for instance, each
object declares its presence in the shared space by its coordinates according to
some spatial measure (e.g. geographical location). By changing its coordinates,
an object can “move” in the shared space. The focus of each object is defined
in form of an “aura”; each object will be able to receive awareness about other
objects that are inside its aura, e.g. are close to it. Moving in the space will also
move the object’s aura.



268 B.A. Farshchian

The spatial model is mainly used in virtual reality settings. A similar awaren-
ess model is the room–based model, where awareness of the activities in a virtual
room is propagated to all the inhabitants of the room, while the “walls” limit
the propagation of awareness information to the outside. This model is used
in many shared workspace applications, notably TeamRooms [RG96]. A third
model is the activity–based model. Here, awareness information delivery is not
based on spatial relations, but on the activities the user is currently involved
in [FPBP95]. Social awareness models, on the other hand, put more focus on
human participants and interactions among these. One such model is the locale
model used in Orbit [MKF+97]. The locale model provides awareness based on
“social worlds,” e.g. centers of social activities.

Awareness can be connected to the immediate surroundings of a user, or to
a broader scope of happenings in an organizational context (the organizational
awareness axis in Fig. 2). The activity–based model used in GroupDesk [FPBP95]
provides a good example of high organizational support. GroupDesk is used in
conjunction with a workflow application, where a user involved in a step in
a workflow is made aware of the activities in other related steps. Spatial and
room–based awareness models are more limited in the organizational support
dimension since they strictly focus on the physical space surrounding a user.
Social models support well the informal organizational structure, which may or
may not mirror the formal structure.

Though CASE and similar product–based tools provide access to an organi-
zational context in form of a large shared product, the degree of awareness in-
formation exchange is low [VS95]. Central repositories used in product–centered
development tools provide a first technological step for supporting collabora-
tion, but more is needed. These repositories are normally developed in form
of time–sharing systems. In particular, they are based on the assumption that
conflicts among developers should be delayed as long as possible [JMR92], with
the consequence of isolating developers from each other. Despite this attempt
to isolate, Vessey and Sravanapudi [VS95] found that having access to a shared
product and being able to observe the changes done to it by others had an im-
plicit coordinative role in CASE tools. In the next section we will introduce a
new awareness model that tries to address this problem by supporting exchange
of explicit product awareness among developers.

3 A Product Awareness Model
for Distributed Product Development

In this paper we introduce an awareness model that uses the product, in par-
ticular its structure, as a basis for providing awareness to the developers in a
distributed project. Our assumption, as discussed in the introduction, is that a
developer needs to have constant awareness of the activities related to a shared
product. These activities are first and foremost related to the parts of the prod-
uct that a developer is directly working on, but a developer may also need to be
informed about the activities related to other parts of the product that are some-



The Gossip Awareness Engine for Product Awareness 269

how related to “his” parts. We believe this model can be useful in a distributed
product development context because the product is normally the main focus of
work for the developers, and the shared product is something the developers can
“talk about.” Being kept updated about what is happening to the product will
reduce the risk for double–work and integration problems. In addition, since the
product is normally used throughout the project’s life independent of the way
the developers work and the way they are combined in groups, the product can
be used as a permanent information basis for coordinating the work.

Our product awareness model will increase the quantity of product awareness,
and will make it easy for developers to exchange this awareness information.
Next section describes the details of the model. We emphasize that product
awareness is only one of several forms of awareness in a product development
environment [HG99]. Therefore the model introduced here should be used in
combination with other models in order to support true simulation of physical
proximity motivated in the introduction.

3.1 The Core Concepts of the Model

The product awareness model introduces a virtual space for exchanging awaren-
ess of activities involving a shared product. The model also supports propagation
of awareness; awareness information can propagate from one part of the product
to another, possibly through several intermediate parts. In this way, a group
of developers working on one part of the product can get the proper awareness
from any other part, in addition to the part they directly work with. This prop-
agation property is important because of often large size and complex structure
of the products being developed. The core concepts of the model are product
model, product object, awareness relation, direct awareness, mediated
awareness, awareness producer, and awareness consumer. These concepts
and the associated relations are shown in the ER diagram in Fig. 3.

Product model is a representation of the shared product being developed by
a group of developers. Product model constitutes the shared space where differ-
ent parts of a product can register their presence in form of product objects.
Product objects may represent documents, diagrams, source codes, etc. The
product parts may already be stored in a CASE repository, on the Internet,
or in a database elsewhere. For each such part, only one product object may
exist in the product model, but the granularity of the parts is not limited by
the awareness model. Each product object is capable of generating awareness
information as a result of being manipulated.

The model supports a notion of focus for product objects. Each product
object’s focus is defined by creating awareness relations from those product
objects it focuses on, and to the product object itself. Each awareness relat-
ion has therefore a source and a destination product object, indicating the
direction of the flow of awareness information. Criteria for deciding what each
product object should focus on, i.e. how awareness relations should be cre-
ated among product objects, is not defined by the model. Awareness relat-
ions may be defined based on product architecture, or other criteria such as the



270 B.A. Farshchian

Product model

Product Object
Awareness
producer

Direct
awareness

Mediated
awareness

Awareness
relation

contains

1

N

is source of

1

N

is
destination

of

N

1

is originator
of

N
1

is originator
of

N

1

N

N

is mediator
of

is produced
by

is produced
by

1

N

1N

contains

1

N Awareness
consumer

is consumed
by

is consumed
by

M

N

N M

is
manipulated

by
MN

Fig. 3. The main concepts of the product–based awareness model and the relationships
among them.

specific usage patterns of a project group. These criteria are mainly defined by
the cluster and application layers in the framework shown in Fig. 1. The aware-
ness model and its implementation only focus on providing easy mechanisms for
creating awareness relations as needed.

A product model is in this way created in order to mirror the real prod-
uct and the various relations among its parts. An example of a product model
is shown in Fig. 4. It represents a product consisting of three main modules,
database, middleware and user interface. In addition, each module consists of
other sub–modules. In this example, product objects are created for each mod-
ule or sub–module in the product. Awareness relations are created among the
product objects, reflecting the paths through which one would like product
awareness to be propagated. In this case an awareness relation exists from
the database module to the middleware module, and one from the middleware
module to the user interface module. For each of these modules, all the sub–
modules are also connected to their parent module using awareness relations.
This means, for instance, that if some object in the database module is modified,
the middleware module will get awareness information about the modifications.

As the product development process proceeds, product parts may be manip-
ulated in different ways. Manipulation activities include those that are normally
supported by development tools, such as creating, accessing and deleting prod-
uct parts. It is assumed that each manipulation of a product part is simulated in
the product model by manipulating the part’s corresponding product object.
The various types of manipulation are not defined by the awareness model.
Groups of developers can define and share their own manipulation types in the
application layer of our framework (shown in Fig. 1). The awareness model rep-
resents developers and their tools as awareness producers. Each manipulation
activity performed by an awareness producer will produce a unit of direct
awareness in the product model. This information indicates a change in the



The Gossip Awareness Engine for Product Awareness 271

Database
module

Middleware
module

User
interface
module

Sub-
module 1

Sub-
module 2

Sub-
module 3

Sub-
module 1

Sub-
module 2

Sub-
module 1

Sub-
module 3

Sub-
module 2

Developer A Developer B

Developer D

Developer C

Fig. 4. An example Gossip product model. The rectangles are product objects and the
arrows are awareness relations.

product object’s presence in the shared space. Each direct awareness con-
tains information about the awareness producer who did the manipulation,
the product object that was manipulated, an identifier for the manipulation
type, and other user–defined values depending on the type of the manipulation.

Developers sharing the same product object can exchange direct aware-
ness related to these objects. Moreover, direct awareness can be propagated
to other product objects.Propagation of awareness inside the product model
happens through the mediation mechanism. Each product object broadcasts
all its awareness to all the product objects in the product model. Each pro-
duct object that is focusing on the broadcasting product object will gen-
erate a new mediated awareness based on the broadcasted awareness. This
mediated awareness contains the same information as the original awareness,
except that its originator product object is changed to the receiving product
object. However, the mediated awareness also contains a pointer to the orig-
inally manipulated product object (the “is mediator of” relation in Fig. 3).
Mediation from a product object X to a product object Y is thus possible
only if a path consisting of (possibly several) awareness relations exists from
X to Y.

Awareness consumers represent developers or other applications that make
use of the awareness generated by the product model and its product objects.
In the framework of Fig. 1 awareness consumers are the clusters in the clus-
ter layer, but awareness may also be consumed directly by any application.
Awareness consumers have access to both direct awareness (produced by
the product objects they work with directly) and mediated awareness (pro-
duced by other product objects, related to the product objects they work



272 B.A. Farshchian

with directly). In Fig. 4 developer A is an awareness producer who is manip-
ulating the product part presented by “Sub–module 2” in the product model.
As a result of his manipulation, a direct awareness is generated. This direct
awareness is used by developer B, who is an awareness consumer working with
the same product object. In addition, the direct awareness is mediated by
product objects “Database module” and “Middleware module.” This causes
awareness consumers C and D to receive a mediated awareness from their
corresponding product objects. An actor (a developer or an application) can
be both awareness producer (producing awareness related to own activities)
and awareness consumer (consuming awareness of others’ activities).

Using this product awareness model, each developer produces awareness in-
formation based on his own activities related to the shared product, for instance
by manipulating a set of product objects in his workspace. Each developer
can also have access to relevant product awareness by simply having the rel-
evant product objects in his workspace. In addition, each unit of awareness
information is directly connected to the developer who did the manipulation, in
this way opening for social interaction among developers with related interests in
the shared product. Another advantage of the model is that each developer only
needs to focus on those product objects that are of direct importance to his
own work, disregarding the rest. The product objects he is working with will
inform him about peripheral changes in the product that might be of interest to
him, at the same time hiding the irrelevant part of the awareness information.
This can greatly reduce the effort needed for keeping an eye on everything that
might be important to the developer’s work.

4 Gossip: An Awareness Engine
for Supporting Product Awareness

In the recent years the need for having generic awareness services has increased.
A generic awareness service typically provides an interface for different kinds of
clients to produce and consume awareness information in an easy way. Notifica-
tion servers have been used widely as a technical solution for providing awareness
services [RDR98]. Using a notification server, a client can generate events, which
are captured by the server and redistributed to other clients. In addition, a notifi-
cation server also has to decide, based on an awareness model, which clients need
to receive which notifications. A notification server that implements an awaren-
ess model may be called an awareness engine. We have developed an awareness
engine called Gossip for implementing the product awareness model described in
the previous section. The functionality and the internal architecture of Gossip
are described in the next sections.

4.1 The Functionality of Gossip

Gossip provides a set of uniform network–based services for creating and main-
taining a product model in an evolutionary manner, and for delivering notifica-
tions based on the clients’ activities related to this model. The product model



The Gossip Awareness Engine for Product Awareness 273

Gossip product model

Gossip manipulation and notification servics

Gossip client CGossip client BGossip client A Gossip client D

Fig. 5. Clients can use the services provided by Gossip to register their product objects
and create awareness relations among them.

manipulation operations may be integrated into the various tools of the devel-
opers, making it possible to automatically maintain the product model while
each developer is working with his local product part. In addition, a uniform
notification delivery service makes it easy to recieve and consume notifications
of other developers’ manipulations.

Figure 5 shows a usage scenario for Gossip. Different clients communicate
with Gossip in order to register a subset of their product parts (objects with
black color) as product objects in Gossip (objects with gray color). In addition,
awareness relations are created among the product objects registered in Gossip
independently from which client owns which product objects. In this way, all
the clients are integrated in a shared collaboration space based on a shared
product model. Gossip enforces its own name space for the registered product
objects, and implements mechanisms for keeping the product model consistent.
The clients, on the other hand, are responsible for correct updates to the product
model using Gossip’s network protocol.

Manipulation mechanisms are accessible in form of operations on the shared
product model. There are two groups of manipulation operations, product ob-
ject manipulation and awareness relation manipulation. In addition, Gossip pro-
duces different notification events as result of product object manipulations.
Query mechanisms are also provided to the clients in order to ask Gossip about
various product model information. The following describes manipulation and
notification functions provided by Gossip.

Product Object Manipulation. Clients can issue requests for product object ma-
nipulation. Besides product object registration and deletion, Gossip supports
operations such as adding, changing, reading and deleting attribute=value pairs
for each product object. The attribute sets for each product object type are
defined by client groups, and will resemble the attributes of the real product
parts that are to be shared within the client group. Note that product parts
(e.g. the actual files, documents, diagrams, descriptive attributes, etc.) need not



274 B.A. Farshchian

be stored in Gossip, but a pointer to each part can be registered. This policy
requires that product manipulation operations precisely simulate the actual ma-
nipulations done on the product parts at each client site. This implies that the
clients can still use their local repositories, and at the same time use Gossip to
exchange product awareness. They will use product object manipulation opera-
tions to inform Gossip about how they manipulate their product parts. In this
way Gossip will help its clients to keep updated about each other’s activities
related to a shared (distributed) product. Each client can choose to register in
Gossip only a sub–set of its product parts (in Fig. 5, product parts with white
color are not shared among clients).

Awareness Relation Manipulation. In addition to object manipulation, clients
can also request awareness relation manipulation in order to create and manip-
ulate awareness relations among existing product objects. Awareness relations
are stored fully inside Gossip. Each awareness relation is represented in form of a
set of operation=strength pairs, where operation decides what kind of awareness
information the relation will mediate, and strength decides how many prod-
uct objects each awareness information can be mediated through. For instance,
if an awareness relation has an “updateAttribute” field with a strength of 2,
the relation will mediate awareness related to all “updateAttribute” operations
that have not already been mediated twice. Using operation=strength values
for each awareness relation one can filter most of the information that is con-
sidered unnecessary. For instance, awareness of read operations on an attribute
from a product object that is “three objects away” is normally considered not
so important, while it would be interesting to get information about who is cur-
rently reading the objects in one’s own workspace. Gossip supports operations
for adding and deleting awareness relations, and adding, deleting, and updating
operation=strength pairs on the existing awareness relations.

Notifications. Notifications are sent only for product object manipulations. There
are two types of notifications, direct and mediated. Direct notifications have a
pointer to the client who did the manipulation, and a pointer to the product
object that was manipulated. Mediated notifications have in addition a list of
pointers to all other product objects that the notification has passed through
(recall that for mediated awareness, the manipulated product object is different
from the product object that provides the awareness, as shown in Fig. 4). Addi-
tional information can be contained in each notification event for allowing the
receiving client synchronize its own state. For instance, a “createNewObject”
notification will contain the identifier of the new product object, and an “up-
dateObject” notification will have the name and the new value of the updated
attribute.

The set of available operations is extendable. In particular, there is no limit
on which attributes can be manipulated for each product object, and the manip-
ulation types that can be simulated are not predefined. All this can be decided
among the clients sharing the product model. Gossip will only propagate the
awareness and produce the proper notification events.



The Gossip Awareness Engine for Product Awareness 275

Gossip

Receiver Sender

Internal notification bus

Product
object

Register

Awareness
relation
Register

Agent

Agent

Filter
Register

Producer client Consumer client

Fig. 6. The internal architecture of Gossip.

4.2 The Architecture of Gossip

Figure 6 shows the internal architecture of Gossip. There are two types of Gossip
clients. Producer clients can send requests to Gossip for performing an operation
on the product model (product object or awareness relation manipulation). The
product model is stored in two registers, product object register and awareness
relation register. Each product object manipulation operation may change the
product object register, and will eventually generate one or more notification
events (awareness relation manipulations do not produce notifications). Con-
sumer clients can receive notification events from the server. A client can choose
to be a producer, a consumer, or both. When a request is sent to Gossip by a
producer client, Receiver receives the request and is responsible for performing
the requested operation on the product model. After an operation is performed,
the producer client will get an acknowledgement event, and a new direct no-
tification event is created. This direct notification is then sent to an internal
notification bus.

Each awareness relation is implemented in Gossip in form of an awareness
agent with a source and a destination product object. Awareness agents are
responsible for generating mediated notification events on behalf of their des-
tination product objects, and therefore listen to the internal notification bus
to monitor product object manipulations. Each awareness agent will check the
notification bus for events that have originated from the agent’s source product
object. For each such event, the agent will generate a new mediated notification
event on behalf of its destination product object. These mediated notification
events are again sent to the notification bus, and other awareness agents may in
turn generate new events based on them.
Sender receives all the notification events from the notification bus. It then

checks each event against a filter register before sending them out. Each con-



276 B.A. Farshchian

sumer client has the possibility for registering a filter that will prevent certain
events from being sent to it. The filter uses a set of criteria for filtering out
events. One important such criteria is to check for the owner of the event. Dif-
ferent clients, or groups of clients, may create their own awareness relations in
the shared product model, in this way specifying a particular configuration of
awareness information that is needed by that client or group. Each mediated
notification event therefore contains a field indicating which such configuration
the event belongs to.

4.3 The Implementation of Gossip

Gossip is implemented in the Java programming language. The server provides
a small set of public interface classes. These classes hide most of the network–
related details from clients. Making the interface as simple as possible has been
one of our main goals in order to motivate developers to develop Gossip–enabled
clients, or extend existing clients with Gossip–related functionality. Using the
interface classes the clients can easily send requests to, and receive notifications
from Gossip.

Network communication in Gossip, both towards clients and internally in
the notification bus, is based on JSDT1 (Java Shared Data Toolkit). JSDT is
a flexible toolkit provided by Sun as an extension to the Java Development
Toolkit. This toolkit implements useful groupware abstractions such as sessions
and channels. The connection between the clients and Gossip is through a JSDT
session. Inside this session, two channels are used for communication between
Gossip and the producer and consumer clients.

The internal notification bus is implemented in form of a network channel
that is accessible only by other Gossip servers. Several Gossip servers can share
the same notification bus, in this way creating a Gossip network. This is useful
for scalability and performance reasons. Our experience with using Gossip shows
that inside a high–speed local network notifications are distributed in real time.
We have in fact used Gossip in a synchronous graphical group editor where the
notifications are used to synchronize the screens of the clients. The notifications
are distributed in a much slower speed on the Internet. Having one local server
for each local group can help to build a more optimized Gossip infrastructure.

5 Conclusions

In this paper we have discussed the importance of awareness in product develop-
ment projects where the developers cooperate across geographical distances for
long periods of time. We have discussed product awareness, and have introduced
an awareness model that puts focus on the shared product and the propagation
of awareness in large composite products. This awareness model is implemented

1 http://java.sun.com/products/java-media/jsdt/



The Gossip Awareness Engine for Product Awareness 277

in form of an awareness engine called Gossip, which is used as a part of a frame-
work for collaboration support in distributed product development. The design
and implementation of Gossip are described.

In addition to Gossip, and as a part of the discussed framework, we have
implemented two test applications. One is a graphical editor for creating sim-
ple Entity–Relation models. This editor is used to demonstrate the capability
of Gossip to support synchronization of screens in real time. The editor also
demonstrates how the various operations in a tool can be configured to automat-
ically trigger operations in Gossip. The other application is a shared workspace
application that demonstrates how different awareness models can be used in
combination.

There are several issues that constitute our future research and development
agenda. One important issue is privacy. The high specialization of labor among
developers makes it unrealistic to expect that they will expose information about
their activities without a second thought. The name “Gossip” is chosen delib-
erately to emphasize this. Gossip provides easy mechanisms for inserting and
removing product parts from a shared space, but more advanced mechanisms,
such as access control, are needed.

The current version of Gossip does not fully implement the filtering mech-
anisms discussed in the previous section. We need more usage data in order to
find out what filter mechanisms and criteria are needed. With large scale deploy-
ment of Gossip, filter mechanisms will become a necessity not only for having
higher degree of individual tailoring, but also because of technical issues involved
regarding network bandwidth usage.

Acknowledgements

I thank Arne Sølvberg, Monica Divitini, and the anonymous reviewers for their
comments on this paper. Part of this research is supported by a grant from
Andersen Consulting Forskningsfond, Norway.

References

BF93. Steve Benford and Lennart Fahlèn. A Spatial Model of Interaction in Large
Virtual Environments. In Proceedings of ECSCW, Milano, Italy, pages 109–
124, September 1993. Kluwer Academic Publishers.

BHI93. Sara Bly, Steve R. Harrison, and Susan Irwin. Media Spaces: Video, Audio,
and Computing. Communications of the ACM, 36(1):28–47, January 1993.

BJ75. Frederick P. Brooks Jr. The Mythical Man–Month – Essays on Software
Engineering. Addison–Wesley, Reading, MA, 1975.

CGN95. Erran Carmel, Loey F. George, and Jay F. Nunamaker, Jr. Examining the
Process of Electronic JAD. End User Computing, 7(1):13–22, 1995.

Con68. Melvin E. Conway. How do committees invent? Datamation, 14(4):28–31,
April 1968.

CSC98. CSCW’98, editor. Proceedings of the Conference on CSCW, Seattle, Wash-
ington, USA, November 1998. ACM Press.



278 B.A. Farshchian

DB92. Paul Dourish and Victoria Bellotti. Awareness and Coordination in Shared
Workspaces. In Proceedings of the Conference on CSCW, Toronto, Canada,
pages 107–114, October 1992. ACM Press.

DLN97. Douglas L. Dean, James D. Lee, and Jay F. Nunamaker, Jr. Group Tools
and Methods to Support Data Model Development, Standardization, and
Review. In Proceedings of the 30th Hawaii Int’l Conf. on System Sciences.
IEEE Computer Society Press, 1997.

FPBP95. Ludwin Fuchs, Uta Pankoke-Babatz, and Wolfgang Prinz. Supporting
Cooperative Awareness with Local Event Mechanisms. In Proceedings of
ECSCW, Stockholm, Sweden, pages 247–262. Kluwer Academic Publisher,
September 1995.

GG98. Carl Gutwin and Saul Greenberg. Effects of Awareness Support on Group-
ware Usability. In Proceedings of CHI, Los Angeles, CA, USA, pages 511–
518, April 1998. ACM Press.

Gri98. Rebecca E. Grinter. Recomposition: Putting It All Back Together Again.
In CSCW’98 [CSC98], pages 393–402.

HG99. James D. Herbsleb and Rebecca E. Grinter. Splitting the Organization and
Integrating the Code: Conway’s Law Revisited. In Proceedings of ICSE’99,
Los Angeles, California, USA, May 1999. ACM Press.

HW98. Chung-Hua Hu and Feng-Jian Wang. A Multi–User Visual Object–Oriented
Programming Environment. In Proceedings of COMPSAC’98, Vienna, Aus-
tria, pages 262–268, 1998. IEEE Computer Society Press.

JMR92. Matthias Jarke, Carlos Maltzahn, and Thomas Rose. Sharing Processes:
Team Coordination in Design Repositories. Intelligent and Cooperative In-
formation Systems, 1(1):145–167, March 1992.

KCI87. Herb Krasner, Bill Curtis, and Neil Iscoe. Communication Breakdowns
and Boundary Spanning Activities on Large Programming Projects. In
Proceedings of Empirical Studies of Programmers, Washington D.C., USA,
pages 47–64. Ablex Publishing Corporation, December 1987.

KE88. Robert Kraut and Carmen Egido. Patterns of Contact and Communication
in Scientific Research Collaboration. In Proceedings of the Conference on
CSCW, Portland, OR, USA, pages 1–12. ACM, September 1988.

KS95. Robert E. Kraut and Lynn Streeter. Coordination in Software Development.
Communications of the ACM, 38(3):69–81, March 1995.

MKF+97. Tim Mansfield, Simon Kaplan, Geraldine Fitzpatrick, Ted Phelps, Mark
Fitzpatrick, and Richard Taylor. Evolving Orbit: a progress report on
building locales. In Proceedings of Group’97, Pheonix, USA, pages 241–
250, November 1997. ACM Press.

Par72. D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053–1058, 1972.

RDR98. Devina Ramduny, Alan Dix, and Tom Rodden. Exploring the design space
for notification servers. In CSCW’98 [CSC98], pages 227–235.

RG96. Mark Roseman and Saul Greenberg. TeamRooms: Network Places for Col-
laboration. In Proceedings of the Conference on CSCW, Cambridge, Mass.,
USA, pages 325–333, November 1996. ACM Press.

TW97. Hilda Tellioǧlu and Ina Wagner. Negotiating Boundaries – Configuration
Management in Software Development Teams. Computer Supported Coop-
erative Work, 6(4):251–274, 1997.

VS95. Iris Vessey and Ajay Paul Sravanapudi. CASE Tools as Collaborative Sup-
port Technologies. Communications of the ACM, 38(1):83–95, 1995.


	Introduction
	Approaches to Awareness Support
	A Product Awareness Model for Distributed Product Development
	The Core Concepts of the Model

	Gossip: An Awareness Engine for Supporting Product Awareness
	The Functionality of Gossip
	The Architecture of Gossip
	The Implementation of Gossip

	Conclusions
	Acknowledgements
	References

