A Formal Model
for Business Process Modeling and Design

Manolis Koubarakis! and Dimitris Plexousakis?

! Dept. of Electronic and Computer Engineering
Technical University of Crete
73100 Chania, Crete, Greece

manolis@ced.tuc.gr

2 Dept. of Computer Science
University of Crete

71305 Heraklion, Crete, Greece

dp@csd.uch.gr

Abstract. We present a formal framework for representing enterprise
knowledge. The concepts of our framework (objectives and goals, roles
and actors, actions and processes, responsibilities and constraints) allow
business analysts to capture enterprise knowledge in a way that is both
intuitive and mathematically formal. We also outline the basic steps of
a methodology that allows business analysts to produce detailed, formal
specifications of business processes from high-level enterprise objectives.
The use of a formal language permits us to verify that the specifications
possess certain correctness properties, namely that the responsibilities
assigned to roles are fulfilled and that the constraints are maintained.

1 Introduction

The problem of representing, analysing and managing knowledge about an organ-
isation and its processes has always been very important. Recently, management
and computer science researchers have debated the use of information technology
for tackling this complex problem [T0l22[9/TT33]. Ultimately this community is
interested in improving the understanding of organisations and their processes,
facilitating process design and analysis and supporting process management.
The topic is also of great practical importance to industry as an aid to designing
organisational structures, processes and IT infrastructure that achieve business
goals in an efficient and flexible way. A specific area of interest is in deriving,
checking and improving business process definitions used as input to wrokflow
systems.

In this paper we present a formalism that can be used to represent knowl-
edge about organisations and their business processes. Motivated by F* [19]
and EKD [12J2] we develop an enterprise model which consists of five inter-
connected submodels (organisational submodel, objectives and goals submodel,
process submodel, concepts submodel and constraints submodel) that can be
used to describe formally different aspects of an organisation. However, unlike

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 142-[I56] 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Formal Model for Business Process Modeling and Design 143

these projects, our framework emphasises formality and advocates the use of
situation calculus [20/27] and the concurrent logic programming language Con-
Golog [5] for representing knowledge about organisations and their processes. In
this respect, we continue the work of one of us [24125] (but also [33I5]) who
suggested to use these formal tools to model organisations. Early steps towards
the development of our model were presented in [13].

Creating an enterprise model can be instructive in itself, revealing anomalies,
inconsistencies, inefficiencies and opportunities for improvement. Once it exists
it is a valuable means for sharing knowledge within the enterprise. It can also be
used to formulate and evaluate changes. The knowledge sharing role also extends
to the enterprise’s IT infrastructure. It is in principle possible, for example, to
extract process definitions to be input to a workflow management system. Fur-
thermore, it would be possible for business process support software to query
the enterprise model to find out who is fulfilling a given role in a given process.
Formal enterprise models, such as ours, are ones in which concepts are defined
rigorously and precisely, so that mathematics can be used to analyze extract
knowledge from and reason about them. An advantage of formal models is that
they are self-consistent and have certain properties. For instance, one can prove
formally that responsibilities assigned to roles are fulfilled, and constraints are
maintained as a result of process execution. A few words about our represen-
tational framework are in order here. We will represent enterprise knowledge
using an extension of the formalism of situation calculus [20/27]. This formal-
ism has been designed especially for knowledge representation and reasoning in
dynamically evolving domains. Technically, our basic tool will be a many-sorted
first-order language £ which is defined in the following way. The logical sym-
bols of £ include parentheses, a countably infinite set of variables, the equality
symbol = and the standard sentential connectives. The remaining machinery of
L (sort, predicate and function symbols) will be defined in Sections 2 [3 and
where intuitive modeling concepts will need to be formalised.

The rest of this paper is structured as follows. Sections B} [3] and [4] present
our enterprise model. We then sketch a methodology that enables business ana-
lysts to go from high-level enterprise-objectives, to detailed formal specifications
of business processes for realizing these objectives. Finally, section [discusses
related work and presents our conclusions.

2 Organisational and Goal Modeling

In this section we initiate the presentation of the five submodels making up our
enterprise modeling framework. Throughout the paper we will demonstrate the
features of our proposal by considering an imaginary Computer Science depart-
ment DEPT as our enterprise. We assume that this department has so far no
postgraduate program, and it is now considering the development of processes
for the admission and education of postgraduate students.

The first submodel is the organisational submodel with main concepts actor
and role. An actor is a person or a software/hardware system in the context of
the organisation we are modeling (e.g., an employee, a customer, a printer etc.).

144 M. Koubarakis and D. Plexousakis

Actors are distinguished into human and automated ones. Actors are capable of
executing certain activities, but they might not be capable of executing others.

An organisational role involves a set of responsibilities and actions carried out
by an actor or a group of actors within an organisation [23]6]Organisational roles
can take many forms [23]: a unique functional group (e.g., Systems Department),
a unique functional position (e.g., Managing Director), a rank or job title (e.g.,
Lecturer Grade A), a replicated functional group (e.g., Department), a replicated
functional position (e.g., Director), a class of persons (e.g., Customer) or an
abstraction (e.g., Progress Chasing).

Role instances are acted out by actors. Different actors can play different
roles at different moments of time (e.g., today the Managing Director can be
John Smith, tomorrow it can be Tony Bates). Many instances of the same role
can be active at any moment in time.

The concepts introduced above can be defined formally by introducing appro-
priate constructs of £ (e.g., unary predicates Actor, HumanActor, Automated-
Actor and Role, and binary predicate PlaysRole) and writing axioms that cap-
ture their semantics.

The second component of our enterprise model is the objectives and goals
submodel. The central concept in this submodel is an enterprise goal. An en-
terprise goal is a desired state of affairs [[9IT4[2233|T2]. Examples of enterprise
goals are the following: “all customers enquiries are answered within one day”,
“profits are maximised” and so on. In our framework goals are associated with
the following components of other submodels:

— Roles and actors (organisational submodel). Goals are assigned to roles as a
matter of policy by the organisation. Organisational goals become responsi-
bilities of roles and the actors playing these roles.

— Processes (process submodel). The purpose of a process is the achievement
of one or more goals. For example, the process of managing project X might
have the purpose of achieving the goal “project X is completed successfully”.

— Entities (concepts submodel). Every goal refers to certain enterprise enti-
ties. For example, the goal “two C++ programmers should be hired by the
Systems Department” refers to entities “Systems Department” and “C++
programmer”.

Explicit capturing of enterprise goals is important because it allows us to
study organisations and their processes from an intentional point of view [32].
For example, this enables us to represent not only “what” information (e.g., what
sub-processes form a process) as in standard process representations, but also
“why” information (e.g., why a specific activity is done). When goals are com-
bined with other intentional concepts like actors and roles, we are also enabled
to represent “who” information (e.g., “who is responsible for bringing about a
state of affairs”).

2.1 Enterprise Goals

Organisational goals can be reduced into alternative combinations of subgoals
HIBTTATIT2)2] by using AND/OR goal graphs originally introduced in the area

A Formal Model for Business Process Modeling and Design 145

of problem solving [7]. For example, the goal “our sales targets are achieved”
can be AND-reduced to two goals “our sales targets for product A are achieved”
and “our sales targets for product B are achieved”.

We utilise the notion of goal reduction to define the concept of objective.
An organisational objective is a goal that does not present itself through goal
reduction. In other words, an objective is a top-level goal; it is an end desired in
itself, not a means serving some higher level end [I8].

Goals can conflict with each other [4I31]19/29]. In our framework goals G, . . .,
G, conflict if they cannot be satisfied simultaneously given our knowledge about
the enterprise [29]. Goals can also influence positively or negatively other goals
[2T3TT9]. Such interactions between goals must be noted explicitly to facilitate
goal-based reasoning (see Section [Bl).

2.2 Defining Goals Formally

Organizational goals can be described formally or informally. Organisational
objectives and other high-level goals are usually difficult to formalise. These
goals should be described only informally, and reduced step by step to more
concrete and formal goals. Appropriate formal concepts and tools for assisting
goal reduction (in the context of requirements modeling) are discussed in [4].
Because a goal is a desired state of affairs many concrete and formal goals
can be formalised as sentences of L as demonstrated by the following example.

Ezxample 1. The operational goal “enquiries are answered by a member of staff
as soon as they are received” can be formalised by the following sentence of L:

(Va)(Ve)(Vx)(Vs)(Vs')
(Staff(a) N Enquiry(e) A Action(xz) A Situation(s) N Situation(s’) A
Received(e,a,s) N s' = Do(x,s) D Answered(a,e,s’))

In the above sentence predicates have the obvious meaning and s’ = Do(z, s)
means that s’ is the situation (i.e., state) resulting from the execution of action
z in situation s. The sentence can be read as “any situation in which a member
of staff receives an enquiry gives rise to an action that causes the enquiry to be
answered by that member of staff”. Note also that the use of a formal language
forces one to be very precise and dispense with informal concepts such as “as
soon as”.

3 The Process Submodel

A complete process model should allow representation of “what is going to be
done, who is going to do it, when and where it will be done, how and why it will
be done, and who is dependent on its being done” [3]. Our process model allows
one to answer five of these seven questions. We do not include a spatial attribute
for processes and we do not consider dependencies explicitly [32].

The main concepts of the process submodel are: action, process, role, actor
and goal. The process submodel is connected to the organisational submodel

146 M. Koubarakis and D. Plexousakis

through the concepts of actor and role. All actions carried out as part of a
process are executed in the context of an organisational role by an actor playing
that role. In this respect we have been inspired by the Role-Activity diagrams of
[23]. The process submodel is also closely related with the objectives and goals
submodel: processes are operationalisations of organisational goals [1].

3.1 Primitive and Complex Actions

Our process submodel is built around the concepts of situation calculus [20/27]
and the concurrent logic programming language ConGolog [5]. The situation cal-
culus is a first-order language for representing dynamically evolving domains. A
situation is a state of affairs in the world we are modeling. Changes are brought
to being in situations as results of actions performed by actors. Actions are
distinguished into primitive and complex. Usually an action is considered to be
primitive if no decomposition will reveal any further information which is of in-
terest. To deal with these new concepts, we enrich our language £ with a sort
Action for actions and a sort Situation for situations. Actions are denoted by
first-order terms e.g., SendO f fer Letter(act, app). For an action « and a situa-
tion s, the term Do(a, s) denotes the situation that results from the execution
of action « in situation s. Relations whose truth values may differ from one
situation to another are called fluents. They are denoted by predicate symbols
having a situation term as their last argument. Primitive actions are introduced
formally by expressions of the following form:

action «
precondition ¢;
effect @2

endAction

where « is an action, and ¢1, ¢o are formulas of L.

Ezample 2. The following expression defines the action of forwarding an appli-
cation app by actor actl to actor act2:

action ForwardApp(actl,act2, app)
precondition Has(actl, app)
effect Has(act2,app) A —Has(actl, app)
endAction

Our framework permits the recursive definition of complex actions (simply
actions from now on) by adopting the syntax and semantics of ConGolog [5]:

— Primitive actions are actions.

— The special action of doing nothing is an action and is denoted by noOp.
— Sequencing. If a1, a9 are actions, then aq; a9 is the action that consists of
ay followed by as.

Waiting for a condition. If ¢ is a formula of £ then ¢7 is the action of waiting
until condition ¢ becomes true.

A Formal Model for Business Process Modeling and Design 147

— Non-deterministic choice of actions. If oy, an are actions, then aq|as is the
action consisting of non-deterministically choosing between a; and as.

— Non-deterministic choice of action parameters. If aq,as are actions, then
I, (a) denotes the non-deterministic choice of parameter x for «;.

— Non-deterministic iteration. If a is an action, then o denotes performing
sequentially zero or more times.

— Conditionals and iteration. If oy, as are actions, then if ¢ then «; else as
defines a conditional and while ¢ do «; defines iteration.

— Concurrency. If aq, as are actions, then a; || ag is the action of executing
a1 and as concurrently.

— Concurrency with different priorities. If a1, as are actions, then oy > ag
denotes that ay has higher priority than as, and as may only execute when
«q is done or blocked.

— Non-deterministic concurrent iteration. If « is an action, then ol denotes
performing a concurrently zero or more times.

— Interrupts. If T is a list of variables, ¢ is a formula of £ and « is an action
then (T : ¢ — «) is an interrupt. If the control arrives at an interrupt and
the condition ¢ is true for some binding of the variables then the interrupt
triggers and « is executed for this binding of the variables. Interrupts are
very useful for writing reactive processes.

— Procedures. Procedures are introduced with the construct proc [3(T)
endProc. A call to this procedure is denoted by 5(T).

Examples of complex actions are given in Figures [[land B (see Section [).

3.2 Categories of Actions

We distinguish actions into causal and knowledge-producing. Causal actions chan-
ge the state of affairs in the enterprise we are modeling (e.g., the action of
forwarding an application form). Knowledge-producing actions do not change the
state of the enterprise but rather the mental state of the enterprise actors (e.g.,
a perceptual or a communicative action) [28]16]. It is known that knowledge-
producing actions can be defined in the situation calculus formalism [28]16].

Finally, actions can be exogenous. This concept corresponds to the notion of
external event in other process frameworks. Exogenous actions are necessary in
an enterprise modeling framework since they allow us to “scope” our modeling
and consider certain parts of the enterprise (or its environment) as being outside
of the area we are modeling. Exogenous actions can also be handled by the
situation calculus formalism [5].

3.3 Business Processes

A business process can now be informally defined as a network of actions per-
formed in the context of one or more organisational roles in pursuit of some goal.
Formally, a business process is defined by an expression of the following form:

148 M. Koubarakis and D. Plexousakis

process id
purpose goals
RoleDefs

endProcess

where id is a process identifier, goals is a list of goals (separated by commas) and
RoleDefs is a sequence of statements defining roles and their local ConGolog
procedures. The purpose statement in a process definition introduces the purpose
of a process i.e., the organisational goals achieved by the process. The concept
of purpose captures why a process is done [3].

Processes are distributed among organisational roles and ConGolog proce-
dures are used to capture the details of a process. Roles and their procedures
are defined by expressions of the following form:

role id
responsibility resps
ProcedureDefs
endRole

where id is a role identifier, resps is a list of goals (separated by commas) and
ProcedureDefs is a set of ConGolog procedures. The responsibility statement
declares that role id is responsible for achieving the goals in list resps. Examples
of role definitions are given in Figures[I] and [2] (see Section [5).

Our formal framework permits the detection of conflicts that may arise due
to the presence of multiple roles or the association of multiple procedures with a
single role. This and other cases of incomplete or incorrect process specifications
can be detected using the machinery presented in section

4 The Concepts and Constraints Submodels

The concepts submodel contains information about enterprise entities, their re-
lationships and attributes. Information in this submodel is formally expressed
by sentences of £ using appropriate predicate and function symbols (e.g., for our
DEPT enterprise a predicate Has(act, app) might be used to denote that actor
act has application app). Enterprise data are part of this submodel.

The constraints submodel is used to encode restrictions imposed on the enter-
prise. Constraints can be formally expressed by sentences of £ using the machin-
ery of the situation calculus and the symbols defined in the rest of the submodels.
Constraints can be static (i.e., referring to a single situation) or dynamic (i.e.,
referring to more than one situation) [25]. An example of a static constraint is
given in Example Bl (Section BE3).

5 A Goal-Oriented Methodology
for Business Process Design

This section outlines a methodology which can be used by an enterprise that
wishes to develop a mew business process. The methodology starts with the

A Formal Model for Business Process Modeling and Design 149

objectives of the enterprise concerning this new development and produces a de-
tailed formal specification of a business process which achieves these objectives.
The formal specification is developed as a set of submodels (based on the con-
cepts discussed in previous sections) that capture the new process from various
viewpoints. The steps of the proposed methodology are the following;:

— Identify the organisational objectives and goals. Initiate goal reduction.

— Identify roles and their responsibilities. Match goals with role responsibilities.

— For each role specify its primitive actions, the conditions to be noticed and
its interaction with other roles.

— Develop ConGolog procedures local to each role for discharging each role’s
responsibilities.

— Verify formally that the ConGolog procedures local to each role are sufficient
for discharging its responsibilities.

The steps of the methodology are presented above as if strictly ordered, but
some of them will in practice need to run concurrently. Also, backtracking to a
previous step will often be useful in practice. The final product of an application
of the methodology is a complete enterprise model that can be used to study
and analyse the proposed business process. The specification can also serve as a
guide for the development of an information system implementing the process.

This section does not intend to present the methodology and its application in
detail (for this the interested reader should go to [I3]. We will only discuss some
of the issues involved in Steps 1 and 2, and then concetrate our attention to Steps
4 and 5, where our approach significantly improves on related methodologies
(e.g., EKD [2I12] or GEM [26]).

5.1 Goal Reduction and Responsibility Assignment

The first step of the proposed methodology is the elicitation of an initial state-
ment of the enterprise objectives and goals concerning the new process. This
will involve brainstorming sessions with the enterprise stakeholders, studying
documents (e.g., mission statement) outlining the strategy of the enterprise to
be modelled (and possibly other enterprises in the same industry sector), and
so on [2]. During this activity the analyst using our methodology must try to
uncover not only prescriptive goals, but also descriptive ones [1].

After we have a preliminary statement in natural language of the enterprise
objectives and goals, then the process of constructing a corresponding AND/OR
goal graph by asking “why” and “how” questions can begin [4]. This process
involves reducing goals, identifying conflicts and detecting positive and negative
interactions between goals. The process of goal reduction will lead to a better
understanding of the organisational goals, and very often to a reformulation of
their informal definition. This step of our methodology is identical with goal
reduction steps in goal-oriented requirements modeling frameworks [3TI21/41J30]
and related goal-oriented enterprise modeling frameworks [T9/12/2].

An important issue that needs to be addressed at this stage is the distinction
between achievable and unachievable (or ideal) goals. Ideal goals need to be

150 M. Koubarakis and D. Plexousakis

considered, but in the process of AND/OR-reduction they need to be substituted
by weaker goals that are actually achievable [30].

After the AND/OR graph corresponding to informal goals is sufficiently de-
veloped and stable, the process of goal formalisation can start. For example, one
of the goals in our postgraduate program example can be the follwoing goal G1:
“enquiries are answered by a member of staff as soon as they are received”. This
goal can be formalized as has already been shown in example [T}

In parallel with the process of goal reduction, the business analyst should
engage in the identification of roles and their responsibilities (Step 2 of the
methodology). Role identification is achieved by interacting with the enterprise
stakeholders and by considering goals at the lowest level of the developed goal
hierarchy. Given one of these goals and the the roles currently existing in the
organization, the analyst should then decide whether one of these roles (or a
new one) can be designated as responsible for achieving the goal. If this is pos-
sible then the goal becomes a role responsibility, otherwise it needs to be refined
further. This might sound simple, but role identification and responsibility as-
signment is a rather difficult task and business analysts could benefit from the
provision of guidelines for dealing with it. Such guidelines are discussed in [22].

In our example we assume that the following roles are introduced: Postgrad-
uate Tutor (notation: Tutor), Postgraduate Secretary (notation: Secretary) and
Member of Academic Staff (notation: Staff). For the purposes of our discussion
it is not necessary to consider a role for students enquiring about or applying to
the prostgraduate program. Students are considered to be outside of the process
and interaction with them is captured through the concept of exogenous actions.

Let us also assume that the following responsibility assignments are made.
The Postgraduate Secretary will be responsible for hadling all correspondence
with applicants but also for forwarding applications to the Postgraduate Tutor,
who will be responsible for doing an initial evaluation of applications and for-
warding applications to appropriate members of academic staff. The latter will
be responible for evaluating promptly all applications they receive. Once roles
have been identified and responsibilites assigned, the goal hierarchy should be
revisited. Now goal statements can be made more precise by taking into account
the introduced roles, and formal definitions of goals can be rewritten. For exam-
ple, goal Gy can be rephrased as “enquiries are answered by the Postgraduate
Secretary as soon as they are received”. This is formalized as follows:

(Va)(Ve)(Vx)(Vs)(Vs')
(Actor(a) A Enquiry(e) N Action(x) A Situation(s) A Situation(s’) A
PlaysRole(a, Secretary) A Received(e,a,s) A s = Do(zx,s) D
Answered(a, e, s’))

5.2 Defining Roles Using ConGolog

The first step in specifying a role is to identify the primitive actions that are
available to each role, the conditions to be monitored and the interactions with
other roles. Then the detailed specification of the dynamics of each role is given

A Formal Model for Business Process Modeling and Design 151

using the syntax of Section [3 For each role, the business analyst has to specify
a ConGolog procedure called main, which gives the details of the behaviour of
the role. Of course, main can invoke other local procedures.

In the process we have modelled so far, we have found ConGolog very natural
and easy to use. In most cases it was straightforward to write a piece of ConGolog
code for each responsibility of a role, and then combine those pieces to form a
complete specification of the dynamics of the role. We expect to come up with
more precise guidelines for using the language as our experience with it increases.

For our example let us first consider the role T'utor. This role can perform the
causal action ForwardApp (defined in Example 2)) and the knowledge producing
action SendM sg(sender, recipient, msg) which means that actor sender sends
message msg to actor recipient. A precise specification of SendM sg and other
useful communicative actions in situation calculus can be found in [I7]. Role
Tutor also needs to watch for condition Has(actor, app) where actor is the actor
playing the role T'utor and app is an application. The complete specification of
roles Tutor, Secretary and Faculty are shown in Figures [[l and [Z respectively.

The ConGolog code should be easy to understand but the follwoing comments
are in order. First, notice that in the interest of brevity we have omitted unary
predicates like Actor, Application etc. that are used to type variables. We have
also omitted specifying explicitly the responibilities assigned to each role; only
(31 is specified as a responibility got role Tutor. Symbol sel f is a pseudo-variable
denoting the actor playing the role inside which the variable appears. The reader
should notice how natural it is to specify in ConGolog reactive processes using
interrupts and concurrency. The specification of the role Secretary is perhaps
more involved because a message queue (in the spirit of [I7]) is used. The case
where more than one members of academic staff want to supervise the same
applicant is omitted. We also omit the specification of exogenous actions that
capture the interaction between the role Secretary and the applicants (that

role T'utor
responsibility G132

proc main
(app : Has(self,app) —
if AvgMark(app) < 70 then
for act : PlaysRole(act, Secretary) do
SendMsg(self,act,"IN FORM (Unacceptable(app))™)
endFor
else for act : PlaysRole(act, Lecturer) do
ForwardApp(self,act, app)
endFor
endIf)
endProc
endRole

Fig. 1. Role Postgraduate Tutor

152 M. Koubarakis and D. Plexousakis

role Secretary
responsibility Gi2, G131, Gi3a

proc main
(infoReq : Received(self,infoReq) — ReplyTo(infoReq))
>
(app : Has(self,app) —
for act : PlaysRole(act, Tutor) do
Forward(self,act, app)
endFor) >
while True do
SenseMsg;
if “Empty(MsgQ(self)) then
if First(MsgQ(self)) = (lect,"INFORM (W antsToSupervise(lect, app))™)
then SendOf ferLetter(sel f, app)
else if First(MsgQ(self)) = (tut,"INFORM (Unacceptable(app))”) then
SendRejectionLetter(sel f, app)
endIf
endIf
endWhile
endProc
endRole

role Faculty
responsibility Giss

proc Eval(self, app)
if GoodUniv(Univ(app)) N AvgMark(app) > MinMark(self) A NoO fStud(self) <
MaxNoO fStud(sel f) then

for act : PlaysRole(act, Secretary) do

SendM sg(sel f,act,"INFORM (W antsT oSupervise(sel f, app))™)

endFor
endIf
endProc

proc main

(app : Has(self,app) — Eval(sel f,app))
endProc

endRole

Fig. 2. Roles Post Graduate Secretary and Faculty

are part of the outside environment). Given the above specifications for roles
Secretary, Tutor and Faculty, the specification of the complete business process
is straightforward using the syntax of Section [3.

A Formal Model for Business Process Modeling and Design 153

5.3 Formal Verification

In this step we verify formally that each role responsibility is fulfilled and each
constraint is maintained by the ConGolog procedures defined for each role. To
perform verification we utilize the techniques reported in [24]25], which are based
on a systematic solution to the frame and ramification problems [27]. Specifi-
cally, we are interested in determining whether: (i) responsibilities of roles can
be fulfilled, and (ii) constraints are preserved or violated as a result of process
execution. In case where such a proof or disproof is not possible at process spec-
ification time, strengthenings to the specifications of actions that are relevant to
the responsibilities/constraints are proposed, so that any process implementation
meeting the strengthened specifications provably guarantees that the responsi-
bilities/constraints will be satisfied in the state resulting from action execution.
The method derives ramifications of constraints and action preconditions and
effects, and uses them to strengthen the action specifications [24]25].

Example 3. Consider the specification of the action SendOf ferLetter shown
below. The predicate Accepted(app) denotes that application app has been ac-
cepted by DEPT. Similarly, WantsToSupervise(lect, app) means that academic
lect would like to supervise the student of application app.

action SendOf ferLetter(app)
precondition (3 lect) WantsToSupervise(lect, app)
effect Accepted(app)

endAction

Assume that we wish to enforce the policy that no applicant can be both ac-
cepted and rejected. This constraint may be expressed by the following sentence
of £ (and belongs to the constraints submodel):

(Vp)(Accepted(p) D -Rejected(p))

It is evident that the action specification given above does not exclude a
situation in which both Accepted(app) and Rejected(app) are satisfied. We can
easily see that if the constraint is to be preserved in the situation resulting from
performing action SendO f fer Letter then —Rejected(p) is a logical implication
of the constraint, i.e., a ramification of the constraint and the action specifica-
tion. Our ramification generator proposes that the term —Rejected(p) be used
to strengthen the action specification (by conjoining the term with the action
precondition or effect). The strengthened specification is now guaranteed not to
violate the constraint in any possible execution of the action SendO f fer Letter.

Albeit shor] and simple, the above example conveys the idea behind the
derivation of ramifications for strengthening action specifications. More complex
examples and details can be found in [24l25]. The same ideas can be used to
verify formally that roles fulfill their assigned responsibilities.

The aforementioned work provides results for verifying properties of primitive
actions and of processes including sequencing of actions, when the constraints

! 'We have intentionally omitted presenting all the steps in the generation process due
to lack of space.

154 M. Koubarakis and D. Plexousakis

refer to at most two distinct states. The derivation of similar results for pro-
cesses synthesized using any of the remaining ConGolog constructs - including
concurrency and non-determinism - and for general dynamic constraints is a
topic of current research. Our previous work can also accommodate knowledge-
producing actions in a single-agent environment. The theoretical basis of Con-
Golog has been extended to include exogenous and knowledge-producing actions
in a multi-agent environment [16]. The adaptation of these ideas in our analysis
and verification techniques is an ongoing effort.

We argue that the ability to verify properties of processes is essential for
business process design and re-engineering. The process specifier realizes the
implications of actions as far as goal achievement is concerned and the imple-
mentor is saved the burden of having to find ways to meet postconditions and
maintain invariants. Furthermore, optimized forms of conditions to be verified
can be incorporated into process specifications and consistency is guaranteed by
the soundness of the verification process [25].

6 Discussion

The first paper to propose situation calculus and ConGolog (more precisely its
earlier version Golog) for business process modeling was [24]. Since then similar
ideas have appeared in [25I33/15]. But so far, ConGolog has not been used in con-
junction with a more general framework like ours that offers intentional concepts
like actors, roles and goals. Situation calculus is also the formalism of choice for
the TOVE enterprise modeling project [§]. However, TOVE concentrates mostly
on enterprise ontologies rather than process design and verification.

The concepts of goals, actors and roles also appear prominently in the ¢*
framework [3233] where the need for intentional concepts in enterprise model-
ing is emphasized. There is also clear connection of our work to goal-oriented
methodologies for requirements engineering especially KAOS [4]. This connec-
tion has been explained in detail in previous sections of this paper so we will not
elaborate on it here.

Our work is also related to (and has been inspired by) the enterprise modeling
frameworks of F? [19] and its successor EKD [2]. Lee’s Goal-based Process Anal-
ysis (GPA) is also related to our research [14]. GPA is a goal-oriented method
and can be used to analyse existing processes in order to identify missing goals,
ensure implementation of all goals, identify non-functional parts of a process,
and explore alternatives to a given process. Finally, our work has many common
ideas with the GEM models and methodology [26]. Detailed comparisons of our
work with these related efforts appears in the extended version of this paper
(available from the authors).

The vast majority of business process modeling efforts lack formal methods
for verifying properties of processes. Exceptions to this rule is the efforts in [I5]
where the use of ConGolog is advocated as well. We share similar long term
research goals with these researchers, and would like to demonstrate that formal
languages and methods can offer significant advantages in the design and analysis
of business processes.

A Formal Model for Business Process Modeling and Design 155

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A1 Anton, M.W. McCracken, and C. Potts. Goal decomposition and scenario
analysis in business process reengineering. In Proceedings of CAISE’94, pages 94—
104, 1994.

J. Bubenko, D. Brash, and J. Stirna. EKD user guide, 1998. Available from
ftp://ftp.dsv.su.se/users/js/ekd_user_guide.pdf.

B. Curtis, M. Kellner, and J. Over. Process Modelling. Communications of ACM,
35(9):75-90, 1992.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-Directed Requirements
Acquisition. Science of Computer Programming, 20:3-50, 1993.

G. De Giacomo, Y. Lesperance, and H. Levesque. Reasoning About Concurrent
Execution, Prioritised Interrupts and Exogenous Actions in the Situation Calculus.
In Proceedings of IJCAI’97, pages 1221-1226, August 1997.

J.E. Dobson, A.J.C. Blyth, J. Chudge, and R. Strens. The ORDIT Approach to
organisational requirements. In M. Jirotka and J. Goguen, editors, Requirements
Engineering: Social and Technical Issues, pages 87-106. Academic Press, 1994.

R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

M.S. Fox and M. Gruninger. Enterprise Modelling. The AI Magazine, pages 109
121, Fall 1998.

D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Worklfow Manage-
ment: From Process Modelling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119-153, 1995.

M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for
Business Revolution. Harper Collins, 1993.

N. R. Jennings, P. Faratin, M.J. Johnson, P. O’Brien, and M.E. Wiegand. Us-
ing Intelligent Agents to Manage Business Processes. In Proceedings of the First
International Conference on The Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAMI96), 1996.

V. Kavakli and P. Loucopoulos. Goal-Driven Business Process Analysis - Applica-
tion in Electricity Deregulation. In Proceedings of CAISE’98, 1998.

M. Koubarakis and D. Plexousakis. Business Process Modeling and Design: Al
Models and Methodology. In Proceedings of IJCAI-99 Workshop on Intelligent
Workflow and Process Management: the New Frontier for Al in Business, 1999.
J. Lee. Goal-Based Process Analysis: A Method for Systematic Process Re-
design. In Proceedings of the Conference on Organizational Computing Systems
(CO0CS’94), 1994.

Y. Lesperance, T.G. Kelley, J. Mylopoulos, and E. Yu. Modeling dynamic domains
with congolog. In Proceedings of CAISE’99, 1999.

Y. Lesperance, H. Levesque, and R. Reiter. A situation calculus ap-
proach to modeling and programming agents, 1999. Available from
http://www.cs.toronto.edu/~cogrobo/.

Y. Lesperance, H.J. Levesque, F. Lin, D. Marcu, R. Reiter, and R.B. Scherl. Foun-
dations of a Logical Approach to Agent Programming. In M. Wooldridge, J.P.
Muller, and M. Tambe, editors, Intelligent Agents Volume II — Proceedings of
ATAL-95, Lecture Notes in Artificial Intelligence. Springer Verlag, 1995.

P. Loucopoulos and V. Karakostas. System Requirements Engineering. McGraw
Hill, 1995.

156

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M. Koubarakis and D. Plexousakis

P. Loucopoulos and V. Kavakli. Enterprise Modelling and the Teleological Ap-
proach to Requirements Engineering. International Journal of Intelligent and Co-
operative Information Systems, 4(1):45-79, 1995.

John McCarthy and Patrick J. Hayes. Some Philosophical Problems From the
Standpoint of Artificial Intelligence. In B. Meltzer and D. Mitchie, editors, Machine
Intelligence, pages 463-502. Edinburg University Press, 1969.

J. Mylopoulos, L. Chung, and Nixon B.A. Representing and Using Non-Functional
Requirements: A Process-Oriented Approach. IEEE Transactions on Software FEn-
gineering, 18(6):483-497, 1992.

M. Ould. Modelling Business Processes for Understanding, Improvement and En-
actment. Tutorial Notes, 13th International Conference on the Entity Relationship
Approach (ER’ 94), Manchester, U.K., 1994.

M. A. Ould. Business Processes: Modeling and Analysis for Re-engineering and
Improvement. Wiley, 1995.

D. Plexousakis. Simulation and Analysis of Business Processes Using GOLOG. In
Proceedings of the Conference on Organizational Computing Systems (COOCS’95),
pages 311-323, 1995.

D. Plexousakis. On the efficient maintenance of temporal integrity in knowledge
bases. PhD thesis, Dept. of Computer Science, University of Toronto, 1996.

A. Rao. Modeling the service assurance process for Optus using GEM. Technical
Report Technical Note 69, Australian Artificial Intelligence Institute, 1996.

R. Reiter. The Frame Problem in the Situation Calculus: A Simple Solution (Some-
times) and a Completeness Result for Goal Regression. In Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
pages 359-380. Academic Press, 1991.

R. Scherl and H. Levesque. The frame problem and knowledge producing actions.
In Proceedings of AAAI-93, 1993.

A. van Lamsweerde, R. Darimont, and E. Letier. Managing Conflicts in Goal-
Driven Requirements Engineering. IEEE Transactions on Software Engineering,
November 1998. Special Issue on Managing Inconsistency in Software Development.
A. van Lamsweerde, R. Darimont, and Massonet P. Goal-Directed Elaboration of
Requirements for a Meeting Scheduler: Problems and Lessons Learned. In Pro-
ceedings of RE’95, 1995.

E. Yu and J. Mylopoulos. Understanding “Why” in Software Process Modelling. In
Proceedings of the 16th International Conference on Software Engineering, pages
135-147, Sorrento, Italy, 1994.

E. Yu and J. Mylopoulos. Using Goals, Rules and Methods to Support Reasoning
in Business Process Reengineering. In Proceedings of the 27th Annual Hawaii
International Conference on Systems Sciences, pages 234—243, Hawaii, 1994.

E. Yu, J. Mylopoulos, and Y. Lesperance. AI Models for Business Process Reengi-
neering. IEEE Ezpert, 11(4):16-23, 1996.

	Introduction
	Organisational and Goal Modeling
	Enterprise Goals
	Defining Goals Formally

	The Process Submodel
	Primitive and Complex Actions
	Categories of Actions
	Business Processes

	The Concepts and Constraints Submodels
	A Goal-Oriented Methodology for Business Process Design
	Goal Reduction and Responsibility Assignment
	Defining Roles Using ConGolog
	Formal Verification

	Discussion

