
Controlled Flexibility in Workflow Management�

Justus Klingemann

German National Research Center for Information Technology (GMD)
Integrated Publication and Information Systems Institute (GMD-IPSI)

Dolivostraße 15, D-64293 Darmstadt, Germany
klingem@darmstadt.gmd.de

Abstract. Traditional workflow models are centered around the struc-
ture of a workflow. Other requirements and goals like time and cost can
be represented only indirectly. As a result, when the workflow is executed,
the WfMS can only enforce the structural constraints. This becomes a
problem when the workflow deviates from its normal execution, e.g., due
to errors or delays.
In this paper we propose an approach to extend the definition of work-
flows which allows to make the underlying goals explicit. In addition, we
introduce flexible elements into the workflow specification. We make use
of these flexible elements in a controlled way to achieve a balanced ful-
fillment of all goals – structural as well as non-structural – under various
runtime conditions.

1 Introduction

Workflow management is a fast evolving technology which is increasingly being
exploited by businesses in a variety of industries [1,2,3,4]. Its primary mission is
to handle business processes. A workflow is the automation of a business pro-
cess. Such a business process has certain goals. These are often multidimensional:
Certain tasks have to be performed, a certain quality has to be achieved, the
business process or at least certain activities have to be performed in a certain
timeframe and the process shall not exceed a certain cost. To allow the system
to support the goal fulfillment, these goals have to be made explicit. In addition,
a sufficient degree of freedom is necessary to actively control the workflow execu-
tion towards an optimized goal fulfillment. To create this freedom, we integrate
execution alternatives in form of flexible elements into the workflow structure.
This approach to flexibility is especially useful for production workflows as well
as cross-organizational workflows in which manual ad hoc interventions are un-
desirable as they raise additional organizational problems like who is responsible
for a new activity or how they affect the autonomy of the involved organizations.
System support for the adaptation at runtime is also beneficial when the effects
of possible execution alternatives on the goals are too complex to allow a user
to perform these adaptations interactively.
� This work has been partially supported by the ESPRIT project CrossFlow
(www.crossflow.org). However, it represents the view of the author.

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 126–141, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Controlled Flexibility in Workflow Management 127

Process Customer
Request

Independent
Inspection

Estimate
Cost

Check
Cost

Finalize
Claim

Repair

Call Center Garage Coordinator Adjuster Garage Insurance

Accept Call
Gather

Information
Validate

Information
Assign
Garage

Fig. 1. A cross-organizational workflow to process a motor damage claim

To motivate our approach we will use an example from the insurance domain.
This application has been analyzed in the CrossFlow project [5]. Figure 1
shows a simplified workflow used to process a motor damage claim. The workflow
is started with the processing of the customer request which is performed by a
call center. Like each activity in this cross-organizational workflow, this is a
subworkflow on its own. The processing of the customer request for example
consists of four activities. In the first activity the call is accepted. Then, the call
center gathers information about the accident, the customer and other involved
persons. In the next activity, this information is validated. For example, it is
checked, whether the customer is properly insured to use this service. In the
final activity, the customer is advised about garages which are located nearby.
After the processing of the customer request, the garage which has been chosen
by the customer becomes active. It has to assess the estimated repair costs.
This cost estimate is then checked by an organization which is specialized in the
coordination of the processing of motor damage claims. If the estimated costs are
above a certain threshold, an independent adjuster is appointed to inspect the
damaged car and to re-assess the repair costs. When the independent inspection
is finished or it needs not be performed, the garage repairs the car. As a last
step in the workflow, the insurance performs some administrative tasks and thus
finalizes the claim.

The business goals are not exclusively captured by the sequence of steps rep-
resented in Figure 1. In the case of an insurance company an important business
goal is to keep the customer satisfied. The processing of an insurance claim is
one of the rare occasions where customers are able to judge the performance of
their insurance. Therefore, the insurance has to demonstrate that it handles the
claim of the customer efficiently. With respect to the workflow execution, this
translates to the requirement that the claim processing has to be finished within
five days.

Statically, this requirement can be taken into account by estimating the ex-
ecution times of all activities and making sure that on all execution paths the
sum of the estimated execution times is less than five days. However, in this ap-
proach the deadline is only represented implicitly. As a result, when unexpected

128 J. Klingemann

events occur only the structural constraints can be enforced, i.e., a workflow
management system (WfMS) makes sure that all activities are executed in the
prescribed order even though the deadline may be violated. Therefore, we call
a workflow multidimensional if it allows to represent explicitly non-structural
goals along other dimensions like time or costs.

The motor damage claim process is a typical example. On the one hand,
the processing of the claim should be cost efficient. On the other hand, it is
important for the insurance to execute the process within five days to keep
the customer satisfied. A cost efficient execution implies that in case of a more
expensive damage an adjuster is brought into play who inspects the car. Under
normal conditions enough time is available for this activity within the desired
timeframe of five days. However, if a delay occurs, e.g., due to communication
errors among the call center, the insurance and the coordinator, this might not
be the case. As a consequence, the runtime priorities can change. To maintain
the customer’s satisfaction, the insurance might be willing to drop activities like
the inspection of the car by an adjuster and instead make sure that the car is
repaired in time.

This decision also depends on the parameters. For example, it might be
desirable to adapt the workflow if the estimated repair cost is only a little bit in
excess of the threshold and on the other hand the risk of failing to repair the car
in time is high if the repair is delayed until the inspection is finished. However,
if the repair cost is very high and the delay only moderate so that there is a
good chance to finish the repair in time, it might be preferable to execute the
workflow as planned.

To increase the flexibility and allow an adaptation of the workflow to the
conditions at runtime the specification of different execution options is necessary.
This includes different aspects. First, alternative execution structures have to be
specified. Our approach to do this is described in Section 2. As a second part,
the desired quality of service (QoS) goals have to be provided. They allow to
compare the utility of the different execution options. The specification of QoS
goals and their relationship to QoS parameters is described in Section 3. In
Section 4 we give a complete example how our approach is applied to enhance a
workflow specification and adapt its execution. Afterwards, we give an overview
of the related work and finally some conclusions.

2 Making the Workflow Structure Flexible

To enable different execution options we have to relax the workflow structure.
We consider the workflow structure as consisting of two parts. The first part
is mandatory. It consists of activities which have to be executed (if the respec-
tive enabling conditions evaluate to true) for the workflow to be successful, as
well as ordering relationships which have to be obeyed. A second part consists
of execution alternatives which can be selected depending on requirements at
runtime.

Controlled Flexibility in Workflow Management 129

To specify the structure of a workflow, a set of constructors like sequence, or-
split, or-join, and-split and and-join has emerged which forms the basis of most
workflow models [6]. We use these constructors to specify the overall structure of
the workflow and its mandatory parts. To specify execution alternatives, we use
so called flexible elements. A flexible element (FE) is a construct that represents
different execution alternatives, i.e., it is a set of different subworkflows. We
identify three kinds of flexible elements namely alternative activities, non-vital
activities, and optional execution orders.

Alternative Activities This flexible element allows to represent different tra-
de-offs with respect to the goals of the workflow, e.g., a high-quality option
which requires a considerable execution time versus a quicker option which
produces results with a lower quality. This provides a way to switch among
these alternatives depending on the priorities at runtime. It is represented
by a list of activities in square brackets. At runtime exactly one of them will
be chosen for execution.

Non-vital Activity This flexible element specifies that an activity can either
be executed or omitted, i.e., it is non-vital. Activities are non-vital if they
are beneficial under certain conditions but should better be omitted in other
situations. Non-vital activities are represented by adding the tag nv to the
activity. Non-vital activities can be considered as a special case of alternative
activities, if they are modelled as the alternative between the activity itself
and an empty activity ∅.

Optional Execution Order This flexible element can be used if activities
should be re-ordered to expedite the execution of urgent activities. It allows
to specify a sequence of activities in a specific order which can be considered
as a preferred or default order. However, this order is not mandatory and
the activities can alternatively be executed without any restriction on their
order, i.e., in parallel. This flexible element is specified by a list of activities
in braces.

We call a traditional activity, i.e., a unit of work, an elementary activity.
A flexible workflow (FWF) is a workflow in which each activity is either an
elementary activity or a flexible element. If no ambiguity occurs, we will use the
terms activity and elementary activity interchangeably.

Note, that execution alternatives in flexible elements are different from or-
split/join structures. The decision which successor of an or-split is executed is
made based on the evaluation of a predicate and cannot be influenced. In contrast
to this, each choice among the alternatives of a flexible element is considered as
correct and the decision can be made based on global goals of the workflow.

To relate a flexible workflow to the possible traditional workflows that can
be derived from it, we define some additional terms. For a flexible element fe a
resolution is a function that maps fe to one specific alternative. For a flexible
workflow a resolution r maps each flexible element to a specific alternative, i.e.,
each flexible element fe is replaced by r(fe). Let fwf be a FWF and r a resolution
function for fwf then we call rfwf = r(fwf) a resolved flexible workflow (RFWF)
of fwf . With R(fwf) we denote the set of all RFWF of fwf .

130 J. Klingemann

S [A, B] E S A E

S {A, B} E

S B E

S A B E

S

A

B

E

S Anv E S A E

S E

Flexible Workflows Resolved Flexible Workflows

Fig. 2. Examples for flexible workflows and their resolved flexible workflows

Figure 2 shows examples of different flexible workflows and their correspond-
ing RFWFs. In this figure S, E, A, B are elementary activities. The first FWF
specifies that all RFWF have to start with S and end with E and in between
either A or B is executed. The second example shows an optional execution
order, i.e., either A is executed before B or both activities can be executed in
parallel. The last example contains the non-vital activity A.

3 Enhancing a Flexible Workflow with QoS Goals

In this section we will explain our approach to model QoS goals and how they
are used to enhance a workflow specification. The basic building block of a QoS
goal is a QoS parameter. A dimension on which QoS parameters can be defined is
called QoS dimension. Examples are time, cost or application specific dimensions
like the accuracy of a specific result. A QoS parameter is a specific quantity
defined on a QoS dimension. Examples for QoS parameters on the dimension
time are the duration of an activity or the duration of the overall workflow. As
QoS parameters we consider any property that can be assigned to or derived
from a partial or complete workflow instance. A QoS goal is an optimization
criterion that is assigned to a QoS parameter. To allow the formulation of QoS
goals we will in the following give a classification of QoS parameters.

Controlled Flexibility in Workflow Management 131

3.1 Classification of QoS Parameters

Depending on how they are obtained we distinguish three kinds of QoS param-
eters.

Elementary QoS Parameters As elementary QoS parameters we define pa-
rameters which can be directly observed, i.e., monitored, from a running
workflow instance. Examples are the output parameters of activities, the
current time, and the execution time or cost of terminated activities. Ele-
mentary QoS parameters form the basis for the measurement of QoS goals.

Derived QoS Parameters Derived QoS parameters are functions of other
QoS parameters, i.e., if qos0 is a derived QoS parameter, then there ex-
ists a user-defined function f and a set of QoS parameters qos1, . . . , qosn

with qos0 = f(qos1, . . . , qosn). An example for a derived QoS parameter in
the insurance scenario is the expected cost saving by appointing an assessor
depending on the repair cost estimated by the garage. A special case of de-
rived QoS parameters are 0-ary functions, i.e., constants. Constants can be
considered as external parameters. An example are the costs of the asses-
sor which are needed to determine the total cost savings by appointing an
assessor.

Predicted QoS Parameters Predicted QoS parameters are quantities which
make assertions about the future behavior of a workflow. Predicted QoS
parameters require a prediction function. Each prediction is related to a
resolved flexible workflow, i.e., a workflow for which decisions for each flexible
element have been made.

The dependency relationship among QoS parameters can be described as a
graph. We require that this graph does not contain any cycles. For example,
there must not be the dependency qos1 = f1(qos2) and at the same time qos2 =
f2(qos1). Each of the nodes in this graph can be assigned a QoS goal. Usually,
a QoS goal will be assigned to the root of a subgraph that forms a tree.

3.2 Specification of QoS Parameters

The necessary specifications depend on the respective class of QoS parameters.
For elementary QoS parameters we have to make sure that the relevant param-
eters are monitored. This is specified by means of a monitoring condition that
defines the parameter that has to be monitored as well as the activity to which
it belongs.

For the specification of derived QoS parameters we have to provide the nec-
essary function as well as the list of parameters.

To allow for predictions, we have to specify a prediction function. The struc-
ture, complexity, and specification effort for a prediction function heavily de-
pends on the QoS parameter to be predicted, the complexity of the used predic-
tion model and the available information about the behavior of the workflow. If
we want to predict the execution time of a workflow or a part of it, we can model

132 J. Klingemann

the statistical behavior of the workflow, i.e., the activities and the control flow
conditions. This means that we have to provide probabilities for the activation
of control flow edges originating from an OR-split and information about the
duration of activities. Depending on the desired accuracy, we can model the du-
ration of activities just by means of the expected duration or provide a complete
distribution function.

Instead of explicitly specifying the prediction function, we can alternatively
derive a prediction function from the observed behavior of earlier workflow exe-
cutions. In this case, we assume that the future behavior will be similar to the
observed behavior in the past. We call the use of existing workflow logs to de-
rive a prediction function offline monitoring. An approach for offline monitoring
based on continuous-time Markov chains has been described in [7].

3.3 Specification of QoS Goals

We define a QoS goal as a triple g = (q, f, w) where

1. q is a QoS parameter as defined in the previous section,
2. f is a fulfillment function,
3. w is a weight.

The fulfillment of a goal is specified by means of a function f : QoS parameter
→ [0, 1]. The fulfillment describes whether the goal is satisfied or not. For a
continuous function it describes the expected degree of fulfillment.

In the following we focus on two classes of QoS goals called extremity goals
and range constraints. A range constraint aims at keeping a QoS parameter
within a boundary. For notational simplicity we will interpret a boolean condi-
tion containing a QoS parameter as a function of this QoS parameter. In the
deterministic case the boolean value true is mapped to 1 whereas the boolean
value false is mapped to 0. Thus, an example of a fulfillment function for the
QoS parameter total execution time is

total execution time < deadline.

This boolean condition is a shorthand for the function

f(total execution time) =
{
1 if total execution time < deadline
0 else.

In the stochastic case the boolean condition represents the expected value of
this function. This is equivalent to the probability that the boolean condition is
evaluated to true.

An extremity goal aims at maximizing or minimizing the QoS parameter.
Usually the fulfillment function will be a linear mapping from the range of values
which are expected in real-world applications into the interval [0, 1]. For example
consider the minimization of the total execution cost. If we expect that the costs

Controlled Flexibility in Workflow Management 133

are always positive and can never exceed 100, then a fulfillment function f could
be

f(total execution cost) = 1 − total execution cost
100

.

Note, that values closer to 1 always indicate a higher fulfillment of the goal.
The weight of a goal is used to indicate the relative importance of the goals.

It can be an arbitrary positive number.

3.4 Specification and Optimization of Multidimensional Workflows

We now have the ingredients to define a multidimensional workflow as a flexible
workflow which is enhanced with a set of QoS goals. We formally define a multi-
dimensional workflow (MDWF) as an ordered pair (fwf , g) where fwf is a flexible
workflow and g = {g1, . . . , gn} is a set of QoS goals. We extend definitions for
FWFs in a straightforward way to MDWF by applying them to the FWF part
of a MDWF.

The relevant runtime conditions of a workflow execution are represented in
our model by the values of monitored elementary QoS parameters and the values
of predicted QoS parameters. For each runtime condition and each choice for the
different structural alternatives, i.e., each resolved MDWF rwf we can calculate
the fulfillment of each goal. Using this information we can define the total utility
as the weighted sum of the goal fulfillment:

total utility(rwf) :=
∑
gi∈g

weight(gi) ∗ fulfillment(gi)

The total utility is calculated for a resolved MDWF, i.e., a workflow for which
decisions for each flexible element have been made. To execute a workflow with
the maximal total utility possible for specific runtime conditions, we therefore
have to make the appropriate choice among the alternatives of the flexible el-
ements. Thus, to optimize the execution of a MDWF mdwf we have to find a
resolved MDWF rwf with

∀rwf i ∈ R(mdwf) : total utility(rwf i) ≤ total utility(rwf).

A straight forward optimization algorithm is therefore to enumerate all possi-
ble resolved FWFs which result from a flexible workflow specification, calculate
their total utilities and choose the flexibility alternatives according to the re-
solved flexible workflow with the highest utility. To adapt to possible changes
during the workflow execution, this algorithm is executed each time the execu-
tion thread encounters a flexible element. More efficient optimization strategies
have to depend on the QoS parameters subject to goals and the structure of
the workflows. One example for such an optimization algorithm which is used to
optimize a temporal and a utility goal is described in [8].

134 J. Klingemann

4 An Example for the Specification and Enforcement of
Multidimensional Workflows

In the following, we consider the simplified workflow for the motor damage claim
scenario described in Section 1. Using the primitives presented in Section 2, the
flexible workflow structure can be specified as shown in Figure 3.

Process Customer
Request

Independent
Inspectionnv

Estimate
Cost

Check
Cost

Finalize
Claim

Repair

Fig. 3. The motor damage claim process as a flexible workflow

This workflow has exactly one flexible element, namely the non-vital activity
Independent Inspection. Therefore, we have to execute the decision algorithm
exactly once, namely immediately after the activity Check Cost has terminated.
In the remainder of this section we will describe how the goals of this workflow
can be modelled and how these goals influence the execution of the workflow.

4.1 Use of Deterministic Predictions

Informally, the first goal of the workflow is to minimize the cost. For the motor
damage claim, this translates to the requirement to appoint an assessor to per-
form an independent inspection if this activity can save cost. The overall cost
savings of the independent inspection again depend on the expected reduction of
the repair cost as a result of the inspection, and the cost of the inspection itself.
The calculation of the total savings is therefore performed as follows. As elemen-
tary QoS parameter we need the estimated repair cost provided by the garage
as a result of the activity Check Cost. Hence, we have to define an appropriate
monitoring condition:

Monitor(Check Cost, estimated repair cost)

To derive the reduction of the repair cost due to the inspection, we specify
an appropriate function. In our example we use

repair savings(estimated repair cost) :=
estimated repair cost

10
.

To calculate the total savings we again specify a derivation function and in
addition to this provide an external parameter which describes the cost of the
assessment itself:

cost assessment := 50

Controlled Flexibility in Workflow Management 135

total savings(estimated repair cost) :=


repair savings(estimated repair cost)
−cost assessment if Independent Inspection executed

0 else

Since we want to specify a goal on the parameter total savings, we have to
define an appropriate fulfillment function. Assume that all repair costs are in [0,
10000]. Then we can define

fulfillment1(total savings) :=
total savings + cost assessment

1000
.

Note, that total savings could be negative, if the cost of the assessment exceeds
the savings in repair cost. To map the fulfillment into the interval [0, 1], we
therefore add the cost assessment. We further would like to give this goal a
weight of 10. This allows us to define the first goal as

goal1 := (total savings, fulfillment1, 10).

Our second goal is to execute the workflow within five days. To check this
range constraint we need information about the execution time that has already
been elapsed since the start of the workflow. To obtain this information we
specify the following monitoring condition:

Monitor(Check Cost, time until end of)

To get information about the remaining time until the end of the workflow,
we need a prediction function. The signature of such a function for the prediction
of the length of the time interval between the end of the activity Check Cost
and the end of the workflow would look as follows:

remaining time := Predict(resolved workflow, end,Check Cost, end,workflow)

Assume that we have provided a prediction function which uses a determinis-
tic model for the activity duration. For this example we further specify the exe-
cution time of activities used by the prediction function as duration(Independent
Inspection) = 1 day, duration(Repair) = 2 days, and duration(Finalize Claim)
= 0.2 days. As a result, the prediction function would return a duration of 1 + 2
+ 0.2 days = 3.2 days for the execution option including the inspection activity
and 2 + 0.2 days = 2.2 days for the execution option without the inspection
activity.

The monitored information about the elapsed execution time together with
the predicted information about the remaining execution time allows us to spec-
ify the derived QoS parameter total execution time as the sum of remaining
time and the time until end of the activity Check Cost. We can now specify the
fulfillment function as

fulfillment2(total execution time) := total execution time < 5 days

136 J. Klingemann

and the second goal (using a weight of 2) as

goal2 := (total execution time, fulfillment2, 2).

total savings

cost assessment repair savings

estimated
repair cost

total execution time

elapsed time remaining time

Fig. 4. The relationship of QoS parameters

Figure 4 shows the two trees that result from the dependency relationship of
the QoS parameters.

Now we will consider the different decisions depending on the parameters.
First, consider the total savings. For a workflow without an inspection, the fulfill-
ment of this QoS parameter always has the value of 0.05. For a workflow which
performs an independent inspection, the value of this QoS parameter linearly
increases with the repair cost. For a repair cost below 500, its fulfillment value is
below 0.05. In this case, the inspection will always be omitted as its contribution
to the total utility is inferior to the option to omit it. For repair costs above 500,
we have to make a trade-off with the second goal.

Considering the second goal, we see that the goal is always fulfilled, if the
elapsed execution time at the end of the activity Check Cost is less than 1.8 days.
In this case, both execution options make sure that the workflow is finished in
time. On the other hand, if the elapsed time is more than 2.8 days, none of the
execution options will allow the workflow to be finished in time. As a result,
for these two cases, the fulfillment of the second goal is independent from the
chosen structural alternative. The interesting case occurs if the elapsed time is
between 1.8 and 2.8 days. In this case, the execution of the inspection results in
missing the deadline whereas omitting the inspection allows to keep the deadline
and thus, increases the total utility by 2. Therefore, the decision depends on the
estimated repair cost. From the calculation of goal1 we see that the increase of
the contribution to the total utility resulting from the execution of the inspection
is equal to 2 for an estimated repair cost of 2500. Hence, if the elapsed time is
between 1.8 and 2.8 we will execute the inspection if the estimated repair cost
is above 2500. If it is below, we will skip the inspection. In case the estimated
repair cost is exactly 2500, both options have the same utility and a random
choice can be made.

Controlled Flexibility in Workflow Management 137

4.2 Use of Stochastic Predictions

Let us now consider a slightly modified example. The modification consists of the
statistical model for the prediction function. In the following, we will examine the
case where the prediction function provides us with a probability distribution for
the remaining execution time. Therefore, if the elapsed time when the activity
Check Cost is terminated is x, the prediction function provides us with the
conditional probabilities

p1 = P (remaining time < 5 − x | Independent Inspection executed),
p2 = P (remaining time < 5 − x | Independent Inspection skipped).

These probabilities constitute the fulfillment values of the second goal for the
different execution options depending on the time x at the point of decision.
As a result, the decision procedure has to be generalized. Due to the use of
probabilities, the expected increase in the utility of the second goal by means
of skipping the inspection is (p2 − p1) ∗ 2, where (p2 − p1) is the increase in
fulfillment and 2 the weight-factor. Note, that the technique described in Section
4.1 can be considered as a special case. If we have the same fixed execution times
for activities as in Section 4.1, we would have p2 = p1 = 0 for x > 2.8 and
p2 = p1 = 1 for x < 1.8 and thus, a utility of 0. For 1.8 ≤ x ≤ 2.8 we have
p2 = 1 and p1 = 0 and thus, a utility of 2. However, this generalization allows
us to get more precise results in case of non-deterministic activity durations.

To make a decision, we have to compare the gain in utility of the second
goal with a possible reduction in utility of the first goal if we skip the in-
spection. As discussed in Section 4.1, the fulfillment value of the first goal is
0.05 if the inspection is skipped and estimated repair cost

10000 if the inspection is per-
formed. Therefore, the decrease in utility resulting from skipping the inspection
is (estimated repair cost

10000 − 0.05) ∗ 10. If we combine these two results, we see that it
is beneficial to skip the inspection if

(p2 − p1) ∗ 2 >

(
estimated repair cost

10000
− 0.05

)
∗ 10. (1)

To make the example more concrete let us assume that the durations of the
activities ai follow a normal distribution N(µi, σ

2
i) with mean µi and variance

σ2
i . We still use the same expected values for the duration as in Section 4.1

but we a add a positive variance. For this example we specify the execution
times as duration(Independent Inspection) = N(1, 0.25), duration(Repair) =
N(2, 0.25), and duration(Finalize Claim) = N(0.2, 0.01), e.g., the duration of
the Independent Inspection has as normal distribution with mean 1 and variance
0.25 and thus, a standard deviation of 0.5.

Since the remaining workflow is a sequence, we know that the duration of
the remaining workflow is the sum of the individual durations of the activities.
Therefore, we can make use of the summation property of normal distributions
(see for example [9]):

138 J. Klingemann

Theorem 1. Let X1, X2, . . . , Xn be n independent random variables having nor-
mal N(µ1, σ

2
1), N(µ2, σ

2
2), . . . , N(µn, σ2

n) distributions, respectively. Then Y =
X1 + X2 + · · · + Xn is normally distributed with mean µ1 + µ2 + · · · + µn and
variance σ2

1 + σ2
2 + · · · + σ2

n.

Therefore, we know that the remaining execution time of the workflow after
the activity Check Cost has terminated is distributed N(3.2, 0.51) if the inspec-
tion is performed and distributed N(2.2, 0.26) if the inspection is omitted.

In the following, we will determine the advantageous execution structure
for the situation that exactly two days have elapsed when we have to make the
decision whether to execute the activity Independent Inspection or not. By using
the cumulative distribution function for normally distributed random variables
we can calculate that

p1 = P (remaining time < 5 − 2 | Independent Inspection executed) = 0.390,
p2 = P (remaining time < 5 − 2 | Independent Inspection skipped) = 0.942.

This means that we will keep the deadline with a probability of 39.0% if we
perform the inspection and with a probability of 94.2% if we skip the inspection.
Therefore, the expected increase in the utility of the second goal by means of
skipping the inspection is (0.942− 0.390) ∗ 2 = 1.104. From (1) we can calculate
that in this case it is beneficial to skip the activity Independent Inspection
exactly if the estimated repair costs are below 1604.

5 Related Work

The idea to incorporate additional constraints into workflow specifications has
especially drawn attention with respect to temporal goals. However, a common
feature of all these approaches is that they mainly check whether a temporal
constraint is fulfilled or not but do not actively apply this knowledge to adapt
the workflow. In addition to this, all deadlines are considered as hard, i.e., there
is no possibility violate them in certain situations.

Closest to our approach is the work of Panagos and Rabinovich [10,11,12].
They impose a deadline on a workflow execution and check at runtime, whether
the deadline will be kept or not. They transform the overall deadline into indi-
vidual deadlines for each activity and propose different criteria to decide when
a workflow is considered as late. Depending on the delay of a workflow and the
cost to abort the workflow at different stages, the workflow instance is either
allowed to continue or aborted. The approach is similar to our work in the sense
that they check the expected goal fulfillment at runtime and react on this. How-
ever, the only reaction policy in case of a late workflow is to abort the execution,
whereas we aim at a graceful service degradation by adapting the workflow.

Marjanovic and Orlowska [13,14] propose an algorithm which is a general-
ization of a shortest path algorithm and the critical path method to calculate
the maximal and minimal duration of a workflow. This algorithm is applied

Controlled Flexibility in Workflow Management 139

for verification purposes to find out whether deadlines are kept for all possible
workflow instances, which can occur for different decisions in or-splits. They fur-
ther extend this approach to check whether different temporal constraints are
inconsistent.

Other approaches for calculating temporal properties and specifying temporal
constraints of workflows can be found in [15,16]. In [15] a strategy is proposed to
ensure at runtime that a specific kind of temporal constraint, namely upper and
lower bounds on the temporal distance of two activities, is fulfilled. In case of an
upper bound, the first activity involved in the constraint is delayed and in case
of a lower bound, the second activity is delayed. However, this approach does
not help in situations where it is necessary to accelerate the execution instead
of delaying it.

Flexible workflows are a very active research area and since the seminal work
of Ellis et al. [17] numerous approaches have been developed. See for example
[18,19] for an overview. However, the goal of these approaches is to allow manual
changes to the workflow structure. These can be either ad hoc changes to react
to problems at runtime or evolutionary changes which are usually the result of a
business process reengineering effort. Problems considered in this research area
are for example the transition of running workflow instances to the new structure
[17] and techniques to ensure the consistency of the resulting workflow, especially
with respect to dataflow dependencies [20]. The only other approach known to
the author that automatically derives the necessary changes from the runtime
conditions is the work of Müller and Rahm [21]. They describe an approach using
logic-based rules. These rules decide when an adaptation to running workflow
instances is necessary and how the workflow structure has to be adapted. Hence,
the resulting specification can be viewed as a rule-based workflow specification
in which the possible execution paths and the conditions under which they are
taken are represented as rules. In contrast to this, in our approach the workflow
is adapted to a set of goals.

An approach to optimize and speed up the execution of workflows is de-
scribed in [22]. The idea of this approach is to separate the preconditions for the
start of an activity into data flow and control flow parts. Whereas an activity is
enabled to start when the corresponding control flow condition is fulfilled, it is
ready to start when the necessary input data is available. This makes it possible
to start activities that have no side effects immediately after all input data is
available. This can be the case before the control flow condition can be evalu-
ated. If the control flow condition eventually turns out to be false, the activity
is simply aborted. Although this is an interesting approach to speed up a work-
flow execution, it is limited to special cases and in many situations more severe
modifications are necessary to ensure that a deadline is kept.

Other optimization techniques are more oriented towards the appropriate
assignment of resources and tuning the underlying system components to the
application requirements. An example can be found in [23].

140 J. Klingemann

6 Conclusion

In this paper we have developed an approach towards multidimensional work-
flows. This approach makes the workflow structure flexible in a controlled way. It
further allows to model the underlying goals of a workflow and provides a way to
systematically make use of the flexibility to adapt the workflow execution for an
optimized goal fulfillment. As an initial step towards optimized decision mak-
ing we have presented an optimization algorithm which compares all possible
execution alternatives. We are currently working on more efficient optimization
strategies. These depend on the QoS parameters subject to goals and the struc-
ture of the workflows. One example for such an optimization algorithm which is
used to optimize a temporal and a utility goal is described in [8]. In addition,
we have started to implement our approach for controlled flexibility within the
CrossFlow demonstrator. The demonstrator system uses MQSeries Workflow
from IBM [24] (the former FlowMark) as its underlying Workflow Management
System. An overview about the components necessary to realize multidimen-
sional workflows as well as how flexible elements are mapped to the process
model offered by MQSeries Workflow can be found in [8].

Acknowledgements

The author would like to thank Karl Aberer, Thomas Tesch, Ralph Busse, Yigal
Hoffner and Paul Grefen for their helpful comments.

References

1. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases, 3(2), April 1995.

2. A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden,
and A. Wolf. Report from the NSF workshop on workflow and process automation
in information systems. ACM SIGMOD Record, 25(4):55–67, 1996.

3. A. Cichocki, S. Helal, M. Rusinkiewicz, and D. Woelk. Workflow and Process
Automation – Concepts and Technology. Kluwer Academic Publishers, 1998.

4. F. Leymann and D. Roller. Production Workflow – Concepts and Techniques.
Prentice-Hall, 2000.

5. S. Browne and M. Kellet. CrossFlow Deliverable D1a: Insurance (Motor Damage
Claims) Scenario. Report, Esprit Project No. 28635, January 1999.

6. WfMC. Workflow standard – Interface 1: Process definition interchange process
model. Technical Report WFMC-TC-1016-P, Workflow Management Coalition,
November 1998. Version 7.04.

7. J. Klingemann, J. Wäsch, and K. Aberer. Deriving service models in cross-
organizational workflows. In Proc. of RIDE – Information Technology for Virtual
Enterprises, pages 100–107, Sydney, Australia, March 1999.

8. J. Klingemann. CrossFlow Deliverable D8a: Flexible Change Control. Report,
Esprit Project No. 28635, January 2000.

Controlled Flexibility in Workflow Management 141

9. A. O. Allen. Probability, Statistics and Queueing Theory. Academic Press Inc.,
second edition, 1990.

10. E. Panagos and M. Rabinovich. Reducing escalation-related costs in WFMSs. In
Dogac et al. [25].

11. E. Panagos and M. Rabinovich. Predictive workflow management. In Proc. of the
third Int. Workshop on Next Generation Information Technologies and Systems
(NGITS), Neve Ilan, Israel, June 1997.

12. E. Panagos and M. Rabinovich. Escalations in workflow management systems. In
Proc. of the Workshop on Databases: Active and Real-Time (DART), Rockville,
Maryland, November 1996.

13. O. Marjanovic and M. E. Orlowska. On modeling and verification of temporal con-
straints in production workflows. Knowledge and Information Systems, 1(2):157–
192, May 1999.

14. O. Marjanovic and M. E. Orlowska. Time management in dynamic workflows.
In Proc. of the second Int. Symposium on Cooperative Databases and Applications
(CODAS’99), Wollongong, Australia, March 1999.

15. J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems. In
Proc. of the 11th Int. Conference on Advanced Information Systems Engineering,
pages 286–300, Heidelberg, Germany, June 1999.

16. H. Pozewaunig, J. Eder, and W. Liebhart. ePERT: Extending PERT for workflow
management systems. In Proc. of the first East-European Symposium on Advances
in Database and Information Systems (ADBIS), pages 217–224, St. Petersburg,
Russia, 1997.

17. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems.
In Proc. of the Conf. on Organizational Computing Systems, pages 10–21, Milpitas,
California, August 1995.

18. M. Klein, C. Dellarocas, and A. Bernstein, editors. Proceedings of the CSCW-98
Workshop Towards Adaptive Workflow Systems, Seattle, Washington, November
1998. http://ccs.mit.edu/klein/cscw98.

19. A. Sheth. From contemporary workflow process automation to adaptive and dy-
namic work activity coordination and collaboration. In Proc. of the DEXA Work-
shop on Workflow Management in Scientific and Engineering Applications, pages
24–27, Toulouse, France, September 1997.

20. M. Reichert and P. Dadam. ADEPTflex – supporting dynamic changes in work-
flows without loosing control. Journal of Intelligent Information Systems, 10(2):93–
129, 1998.

21. R. Müller and E. Rahm. Rule-based dynamic modification of workflows in a medical
domain. In Proc. of the GI-Fachtagung Datenbanksysteme in Büro, Technik und
Wissenschaft, pages 429–448, Freiburg, Germany, March 1999.

22. R. Hull, F. Llirbat, J. Su, G. Dong, B. Kumar, and G. Zhou. Adaptive execution
of workflow: Analysis and optimization. Working paper, Bell Labs, 1999.

23. D. Roller. Performance prediction and optimization in workflow-based applica-
tions. In Proc. of the sixth Int. Workshop on High Performance Transaction Sys-
tems, Asilomar, California, September 1995.

24. IBM. MQSeries Workflow: Concepts and Architecture, 1999. Version 3.2, GH12-
6285.

25. A. Dogac, L. Kalinichenko, T. Özsu, and A. Sheth, editors. Workflow Management
Systems and Interoperability. NATO-ASI Series. Springer Verlag, 1998.

	Introduction
	Making the Workflow Structure Flexible
	Enhancing a Flexible Workflow with QoS Goals
	Classification of QoS Parameters
	Specification of QoS Parameters
	Specification of QoS Goals
	Specification and Optimization of Multidimensional Workflows

	An Example for the Specification and Enforcement of Multidimensional Workflows
	Use of Deterministic Predictions
	Use of Stochastic Predictions

	Related Work
	Conclusion

