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Abstract. The purpose of this article is to present some of the fun-
damental principles of filter banks, wavelets and frames and their con-
nections, with special emphasis on applications in computer vision and
image processing. This is a vast field and we can only give a glimpse
of it. We start with a short historical review and a rather broad dis-
cussion of filter banks, wavelets and frames. It is discussed how filter
banks and wavelets are connected via multiresolution. Some of the most
important structures and properties are presented but hardly no mathe-
matical details are given. We focus especially on directional filter banks
and wavelets, on analysis and extraction of directional features in im-
ages and image sequences. A system for motion estimation (estimation
of optical flow) is presented.

1 Introduction

One of the primary tasks in computer vision is to extract features from an
image or a sequence of images. The feature can be points, lines, edges, textures,
velocity etc.. A given feature is characterized by position, direction, scale and
other property parameters. The most common technique, used in early vision
for the enhancement of such features, is linear filtering. This is also reflected in
models used in biological visual systems, e.g. for human visual motion sensing
see [1, 2]. Another line of development is in digital processing of images, see [3, 4]
and references therein. Objects in an image can have different sizes and therefore
the scale of the linear filter is of great importance. Objects at different scales
can arise from distinct physical processes. This leads to scale space filtering
[5], multiresolution [7] and the use of many filters organized in filter banks or
pyramids [6]. A single linear filter is described by its impulse response, a function
in the continues domain or a sequence of filter coefficients in the discrete domain.
The main issue is how to choose filter structure and impulse responses for the
filters in the system to achieve a certain goal. A lot of work has been done but
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there are still no simple answer to this question. Here we will give an overview
of some of the most common solutions suggested and applied to solve problems
in computer vision and image processing.

The search for general image processing operators (linear filters) was a vivid
research issue in the 1970’s [9]. Filter banks used for sub-band decomposition
of images has been known since the early 1980’s [10]. 1. The QMF (Quadrature
Mirror Filter Bank) was first presented in [11]. These filter banks have been
shown to be closely related to wavelets. Wavelets used for analysis of seismic
signals was published by Morlet in 1983 [12]. The connection between filter
banks, wavelets and multi-resolution signal analysis was recognized in the early
1990’s [13, 14]. Frames was first introduced in 1952 [15], but its use for signal
representation was first connected with wavelets [16]. The interest for wavelets
and frames has been increasing the last decade. The theory is well founded but
there is still much work to be done on applications. Our interest is discrete signals
in the form of images or image sequences. Subband compression of images is one
of the most known applications of filter banks [17]. More recently the traditional
filter bank has for some applications been replaced by filter banks implementing
the wavelet transform or wavelet packets. We will not discuss this further in this
paper, but affirm that in the JPEG 2000 still image compression standard the
DCT (Discrete Cosine Transform) is replaced by the DWT (Discrete Wavelet
Transform) implemented by a 2-band dyadic filter bank [19]. A comparison of
different wavelet filters for image coding is found in [20]. Another important
application of filter banks or wavelets is analysis of textures in images [13, 21,
22]. Filter banks and wavelets used for extraction of directional information like
lines, edges and velocity will be discussed in section 3. In the next section we
present some of the general principles and properties of filter banks, wavelets and
frames. In section 4 an example of a system for estimation of motion is given.
We end with a (preliminary) conclusion.

2 Filter Banks, Multiresolution, Wavelets and Frames

Filter banks and wavelets are connected. The connection is found via multires-
olution [13, 14, 18]. We start with a short introduction to filter banks and use
multiresolution as the link between filter banks and wavelets.

2.1 Filter Banks

We can define a digital filter bank [23], FB (= Filter Bank), as a collection
of digital filters, with a common input or a common output. The purpose of
the filter bank is usually to decompose the signal in sub-bands. Each filter, see
Figure 1, outputs a portion of the signal given by the properties of the filter.

This system has been used extensively for compression. The filter bank used
for decomposition is called the analysis bank and the filter bank used for

1 Filter banks used for sub-band decomposition of acoustic signals was ten years earlier
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Fig. 1. L-channel multidimensional multirate filter bank. The input is a D-dimensional
signal f(n) where n = [n0n1 . . . n(D−1)]

T , ni ∈ Z, i ∈ ZD (The set of integers is Z,
and the integers in the range {0, 1, 2, · · · , n − 1} is denoted Zn.). Hi, Gi, i ∈ ZD are
linear filters and the Mi, i ∈ ZD are decimator and expandor matrixes.

reconstruction is called the synthesis bank, see Figure 1. A necessary condition
for compression is that it is possible to reconstruct the signal from the sub-
bands. When the sub-band signals are coupled directly from the analysis bank
to the synthesis bank, and the reconstructed signal is equal to the input signal
2, f(n) = f̂(n), the filter bank is called a perfect reconstruction (PR) filter
bank. The aliasing that occurs in the analysis FB is compensated for in the
synthesis bank by proper design of the filters. Perfect reconstruction is also
important in denoising (removal of noise) applications. In compression it is also
important to keep the number of samples as low as possible. By using decimation
(down sampling) of the sub-bands, it is possible to keep the total number of
samples at the output of the analysis bank equal to the number of input samples.
Then the filter bank is said to be maximally decimated. In this system we have
at least two different sampling rates, it is therefore called a multidimensional
multirate filter bank. The filter bank in Figure 1 is a general FB where the
decimator (expandor) matrixes may be different for the different channels. For
the most common rectangular sampling structure the Mi’s are diagonal 3.

In other applications, e.g. texture analysis, feature extraction, motion esti-
mation etc., only the analysis part is of interest. The design problem is therefore
completely different from the compression case. We do not seek perfect recon-

2 For images where D = 2 we usually ignore the delay from input to output. For image
sequences, D = 3, the delay may be important for real time applications.

3 For a quincunx grid we haveM =

[
1 1
−1 1

]
and for a hexagonal structureM =

[
1 1
2 −2

]
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struction but try to extract sub signals with certain features. The reduction of
the number of samples is not necessarily important in such applications. In many
such cases the decomposition will be redundant or over complete, i.e. we have
more samples at the output than in the input signal.

By multiresolution we mean a decomposition in sub signals with different
resolution. This is obtained by a non-uniform tiling of the frequency domain.
For the 1D case this is usually done in octaves by reduction of the band-width
by 2 at each step. This is achieved by a binary tree structured filter bank. For
higher dimensions the possible number of ways to partition the frequency domain
increases dramatically with the dimension, D. In the following discussion D = 2.

In image processing, separable solutions based on tree structured filter banks
are preferred in many applications. Separable filters reduce the computational
complexity dramatically for higher dimensions. The result is a tiling of the fre-
quency domain by rectangular-like sub-bands. This gives a simple implementa-
tion with low complexity. Theoretical analysis can be based on knowledge from
1D studies. A fully decimated 2D tree structured filter bank is shown in Fig-
ure 2. In computer vision a different approach is often chosen. This is motivated
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Fig. 2. Maximally decimated 2D tree-structured filter bank.

by the fact that real images, usually have no preferred direction, i.e. all directions
should be treated equally. Circular sub-bands centered at the origin are there-
fore chosen. A simple structure for this is the Gaussian pyramid [6], Figure 3
4. The filter, HG, is in this case a LP-filter 5. Filter banks for the extraction of

4 The Laplacian pyramid has a similar structure but uses the high pass regions as well.
The high pass signals are generated by the difference between the signal itself and a
low pass signal found by using the filter |HG|2

910 I. Austvoll



�

�

�

f(n)

HG

HG

HG

M

M

M
v0(n)

v1(n)

v2(n)

Subbands

v0

v1

v2

−π 0 π
−π

0

π

Fig. 3. Gaussian pyramid

directional information will be discussed in section 3.

2.2 Wavelets

Only a brief discussion of wavelets will be given here. More details are found in
the literature [27, 13, 26, 23]. Most introductory work on wavelets are presented
for one dimensional signals. As our interest is images we chose to start by writing
an expression for the 2D Continuous Wavelet Transform (CWT):

wf (a,b) =
1
|a|

∫
f(x)ψa,b(

x− b
a

)dx, (1)

where x = [x y]T is the Cartesian coordinates, a a scale parameter and b =
[bx by]T is a translation vector. The continuous function ψ() is called the 2D
mother wavelet. Equation (1) can be written as a convolution between the 2D
signal f(x) and a filter with impulse response given by the reflected and scaled
mother wavelet. The scale parameter can be any real number. The result is
therefore an infinite number of such convolutions. If we choose a finite number
of scale parameters, {a0, a1, · · · aL−1}, we get L convolutions, that can be put
in the framework of an analysis filter bank. The result is a decomposition of
the 2D signal in L new signals, wf (al,b), l ∈ ZL with properties given by the
scaled “wavelet”-filters. In [28] the parameter space is extended with a rotation

5 A traditional choice is a Gaussian filter. In our work on motion estimation we have
used a filter with sharper transition [8, 25, 24] with cut off approximately at π/2.

The decimation matrix for 2D is then M =

[
2 0
0 2

]
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parameter in addition to the scale parameter. Then the CWT is

wf (a, θ,b) =
1
|a|

∫
f(x)ψa,θ,b(

R−1(x− b)
a

)dx, (2)

where R is a 2D rotation matrix. The CWT in (1) transforms the 2D signal to
3D, in (2) to 4D, it is therefore over-complete. The signal can be recovered by
inverse filtering/deconvolution, or by the formulation of an Inverse Continuous
Wavelet Transform (ICWT). This corresponds to the synthesis part in filter bank
theory.

As for the filter bank we are first of all interested in the analysis of the
signal. The important issue is the choice of a mother wavelet. Theory has been
developed for the construction and design of wavelets with special properties.
For image analysis the conditions formulated for many wavelets is in our view
(also expressed in [28]) not necessary in many applications.

In digital implementations all continuous parameters must be sampled. Dis-
cretizing the parameters lead to the Wavelet Series (WS) 6. This is usually done
in the following way. Let a = sk and b = sk∆xn, where n = [nx ny]T ∈ Z

2 and
∆x is the size of a translation increment. The transform is still continuous, but
results in a discrete parameter space (similar to the Fourier Series). For (2) and
θ ∈ {θ0, θ1 · · · θL−1} the result is a continuous filter bank 7.

Sampling of the signal coordinates finally results in the Discrete Wavelet
Transform (DWT) (analog to the DFT). A common case is to use s = 2, ∆x = 1
and we replace the coordinates, x, by the index vector n in equation (1). The
result is

wf (2k,n) = 2−k
∑
i

f(i)ψ(2k,n)(2
−ki− n), (3)

where i is the summation index vector. Considered as a convolution this ex-
pression includes decimation with 2 in both coordinates and for each level. The
signals, wf (20,n), wf (21,n), · · · , represent “detail” or high frequency infor-
mation in the signal. This wavelet transform (with binary scalings and dyadic
translations of the mother wavelet), the DWT, can be implemented as a binary
tree structured filter bank. The implementation can also be put in the same form
as the Gaussian Pyramid with the addition of a “wavelet filter” connected to
the signal at each level, after the decimator. This can also be seen as a recursion
[26]. In [26] it is discussed, for what functions (wavelets), ψ(), this recursion is an
exact implementation of (3) and how the DWT can be seen as an exact Wavelet
Transform.

As mentioned above the analysis by wavelets can be implemented as a fil-
ter bank. The properties of the filter impulse responses must however satisfy
certain conditions to represent wavelets. It is not quite obvious how important
these properties are for many applications and this subject may seme some-
what obscure for many practitioners. In a recent article by Unser et. al [30] this

6 In [23] this is called the Discrete Wavelet Transform
7 This is equivalent to the directional filter bank described in section 3 [25, 24]

912 I. Austvoll



has been discussed in an attempt to clarify the importance of some of these
conditions. Their arguments are entirely based on B-splines [31] and fractional
B-splines 8. From a theoretical point of view the elementary building block of
wavelets is the scaling function. In [30] it is shown that a valid scaling function
is represented by the convolution between a B-spline and a distribution. The
B-spline component leads to the primary mathematical wavelet properties order
of approximation, reproduction of polynomials, vanishing moments and smooth-
ness of the basis function. One of the consequences is that the analysis wavelet
essentially behaves like a γth-order differentiator 9

2.3 Frames

A nice introduction to discrete finite frames is found in [32]. Given a family of
vectors {h1,h2, . . . hk . . . } in a Hilbert space H. This family of vectors is called
a frame if there exist real numbers A,B > 0, such that for all x ∈ H:

A‖〈x,x〉‖2 ≤
∑
k

|〈x,hk〉‖2 ≤ B‖〈x,x〉‖2. (4)

A,B are the frame bounds. The frame is called tight when A = B. If the family of
vectors constitutes an orthonormal basis A = B = 1. Frames are a generalization
of bases. A signal can be represented by the bases vectors or the frame vectors
by

x =
∑
k

ckhk. (5)

Any collection of vectors {hk} that span the actual space is a frame. It does
not have to be orthogonal, and it is overcomplete. The expansion coefficients
{ck} are therefore not unique. This give more freedom in the choice of vectors
to represent the signal as compared to bases. The frame bounds are a measure
of the redundancy of vectors for signal representation. Two important examples
of discrete frames are the discrete Gabor 10 expansion and the wavelet frames
[32]. The connection between FBs, wavelets and frames are discussed in the next
subsection.

2.4 A Unified View on FBs, Wavelets and Frames

Some of the connections between filter banks, wavelets and frames have been
mentioned in the previous section. Here we will present this in the context of
signal expansions [33] for 1D vectors. For a given signal vector x we write

x = Hw =
∑
k

wkhk. (6)

8 Splines are closely related to approximation of functions and interpolation of sampled
data. Older then Shannons sampling theorem.

9 Here differentiation is extended to fractional derivatives. In the frequency domain
this can be described by |ω|γ where γ is a positive real number ≥ 1.

10 Theory of communication. J.Inst.Elec.Eng., 93 (1946) 429–457
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This corresponds to the synthesis or reconstruction part of the filter bank ap-
proach. If the matrix H is invertible the expansion coefficients can be found
by

w = H−1x. (7)

In many cases the inversion is not possible. This description can be used in
the case of transforms, frames, wavelets and uniform FIR filter banks (or
Lapped Orthogonal Transforms). The different cases can be considered as dif-
ferent structures of the nonzero elements in the matrix H. This is illustrated in
Figure 4 and Figure 5. The matrix H is band diagonal. Dots represent non zero
elements in each sub matrix H. In applications where the inversion of H is not
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Fig. 4. The support structure for examples of a Transform, a Wavelet transform and a
Filter Bank (Lapped Orthogonal Transform) represented by a band diagonal synthesis
matrix H. Each dashed box is a sub matrix H where dots represent non zero elements.

possible optimization methods can be used to find the expansion coefficients.
This has been done for image compression [34] and sparse representations [35,
36]. In [35] a Frame Texture Classification Method is suggested. Small image
frames are trained to represent different texture classes. Another application of
frames is in denoising of images. In all these applications the goal is to find a
sparse representation with as few nonzero elements in w as possible.
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Fig. 5. The support structure for examples of a Frame and an Overlapping Frame
represented by a band diagonal synthesis matrix H. Each dashed box is a sub matrix
H where dots represent non zero elements.

3 Directional Filter Banks and Wavelets (Frames)

In computer vision different types of directional analysis filter banks has been
suggested. In [37, 39] a set of at least 3 quadrature filters is used to estimate
the direction of an image structure. It was also suggested to use the same filters
for texture analysis. A very popular set of filters is the localized spatial filters
based on the Gabor functions. These where suggested by Daugman in the 1980’s
as a model for biological vision. In [41] it is suggested for texture analysis. A
comparison between different texture classification methods based on filter banks
and wavelets was presented in [22]. In this work it is shown that it is difficult to
find a best approach in general. Some of the specialized filter banks give the best
results in most of the cases. Both Gabor filters and common wavelet transforms
are inferior to non dyadic decompositions and specialized filter banks.

An important feature in images and image sequences is edges and ridges.
The common way of extending wavelets from 1D to 2D is to use the tensor-
product of one dimensional wavelets. This give good abilities in detecting point
singularities i. e. across edges but will not be able to follow along the edge. For
this purpose a better choice is the directional Gabor filters or two-dimensional
directional wavelets [29] based on the Morlet wavelet or Cauchy wavelet. We
have suggested a directional filter bank based on the discrete Prolate Spherio-
dal sequence (approximated by a Kaiser window) for decomposition of images
in a system for estimation of optical flow [25, 24]. A more complicated contin-
ues wavelet transform, the Galilean wavelet, has been suggested [40] for tuning
to four parameters, scale, position, spatial orientation and velocity. One of the
problems with these approaches is a high degree of redundance and large com-
putational complexity.
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A New development in the field of wavelets for computer vision and image
processing was started with the work of Candès on ridgelets [42] and Candès
and Donoho on curvelets [43] in 1998 and 1999 respectively. The observation
was that the traditional wavelet transform is good at detecting singularities in
one dimension, but do not capture the smooth structure along curves in two
dimensions. The curvelet is based on a two step procedure, where the image first
is decomposed in subbands and the ridgelet transform is used on each image
block. The ridgelet transform is based on a rotation by the Radon transform and
a one-dimensional wavelet decomposition. The success of the curvelet transform
is mainly due to the principle of anisotropic scaling where width and length is
related as width = length2. The problem with this approach for digital images, in
some applications, is a high degree of redundancy. A solution to this is suggested
by Do in [44, 45]. Here a two stage technique is used, first a Laplacian pyramid
and then a directional filter bank. The result is a frame composed of contour
segments called contourlets. Recently the finite ridgelet transform, FRIT, has
been developed [46] (based on the finite Radon transform, FRAT). Application
of the curvelet transform for image denoising is found in [47], and for speckle
reduction of SAR images in [48].

4 Estimation of Velocity and Optical flow

The purpose of this section is to give an example of a system for estimation of
optical flow based on three different filter banks combined. In Figure 6 the entire
block-diagram for our motion estimation system is given. The system contains
four different parts. The image sequence is first processed in the scale-space
filters. The filtering is done in the spatial domain by a 2D LP (low pass) circular
symmetric (non separable) filter with zero phase. This is equivalent to the system
in Figure 3.

The output from each scale is down-sampled by 2 before the next filtering
step. At each scale the LP-filtered sequence is sent to the directional filters.
These filters are also 2D filters operating on each image in the sequence sepa-
rately. Each filter is a complex filter with a directional BP (band pass) response.
In Figure 7 the frequency responses for a set of directional filters are shown. The
phase of the output from these filters is going to the third part of the system.
Here space-time slices is taken for each direction represented by the directional
filters. For those directions with highest energy a component velocity is found
by using tensors computed from the output of a set of quadrature filters. As
explained in [39] we need at least 3 filters to estimate direction in a 2D signal.
More filters give more accurate results. We have found from experiments that
four filters and more give good results. The improvement by going from 3 to
4 filters is appreciable, while for higher number of filters the improvement is
small. Component velocities from lower levels are propagated to higher levels in
a process using interpolation and compensation. The result is a set of component
velocity fields that is used in the fourth part to compute a full velocity field or
optical flow. More details and experimental results can be found in [25, 24].
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5 Discussion and Conclusions

The theoretical developments in the field of filter banks, wavelets and frames are
formidable. Also a vast amount of applications have been published. The start-
ing point has often been one dimensional signals and the results are extended to
higher dimensions by separable solutions on a cartesian grid. As we have seen
above, this is not favorable for images and image sequences. To get better re-
sults non separable solutions are usually needed. With the last developments in
directional filter banks and directional wavelets a step forward is done in the
effort to find good solutions for many computer vision applications. Computa-
tional complexity is an important issue for most applications. It is necessary to
find good algorithms for discrete digital images. There are therefore several non
trivial questions that has to be asked when we want to find good solutions to
practical problems.

– What structure should be chosen for the decomposition ?
– How many channels, how many subbands etc. ?
– What kind of filters or wavelets should be chosen ?
– How much redundancy is acceptable (or necessary to give accurate results)
?

For more complicated systems like the one described in section 4 there are too
many degrees of freedom to do a full optimization with respect to accuracy of
the result. We have found that a certain degree of redundancy is necessary to
get accurate results in our system for motion estimation.

What is needed is more work, more experiments and comparative studies
to find better solutions for important problems in computer vision, e.g. good
descriptions for objects, disparity in stereo vision, estimation of velocity in image
sequences etc..

Simple ad hoc methods are often dominant in the practical world. Why is it
so difficult to find and introduce more modern and more accurate methods in
practical applications?
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