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Abstract. A system is developed that from an image sequence of a de-
formable object automatically extracts features and tracks them through
the sequence, estimates the non-rigid 3D structure and finally computes
a surface triangulation. Also the camera motion is acquired. The object
is supposed to deform according to a linear model, while the motion of
the camera can be arbitrary. No domain specific prior of the object is
required.

For the structure estimation a two-step approach is used, where we first
obtain an initial estimate of the structure and motion, and then obtain an
optimal solution via a non-linear optimization scheme. The triangulation
is optimized to yield a non-rigid faceted surface that well approximates
the true 3D surface.

1 Introduction

The estimation of structure and motion from image sequences is one of the most
studied problems within computer vision. However, almost all the efforts in this
area have dealt with rigid objects. Since the world is not a rigid place, it is
important to have a system working for deforming objects as well. A common
approach to the non-rigid problem is to use a prior model of the object, for
example when human body or facial motion is studied [14, 12, 9].

We do not use a prior model, but employ the Principal Component Analysis
(PCA) framework, whereby the object is supposed to deform according to a
linear model. This type of model is fairly general and have proven to be very
effective for expressing many types of deforming objects, e.g. [5]. In the works
by [4,16] such a linear model was used and the structure was estimated via a
factorization algorithm. We extend this approach by applying a modified bundle
adjustment algorithm to minimize the ML-error.

However, the main novelty compared to previos work is the improved sur-
face modeling. We use the optimized structure to compute a non-rigid surface
triangulation, using an approach similar to that of Morris & Kanade [11].
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2 Tracking

The image sequence is supposed to be taken by a video camera. The feature
points are tracked through the sequence using a standard low-level tracking
technique, where the correlation of a small window around the feature point
between two consecutive frames is used to get the best whole-pixel position.
Then we optimize on sub-pixel level, allowing a small affine transformation of
the patch.

Without the use of a prior model, tracking can also be facilitated using optical
flow, as was introduced by Lucas & Kanade [10]. Applying rank constraints to
the flow field helps to overcome the aperture problem, and has been used for
both rigid [8] and non-rigid scenes [16].

3 Approximate Solution

3.1 Model Description

The structure of frame ¢ is denoted by S; = [Qﬂ - Qin ] , where @);; denotes the
3D coordinates of point j in frame 3. The Principal Component Analysis (PCA)
framework is employed, whereby the object is supposed to deform according to
a linear model, i.e.

T
Si =S+ BiSk (1)
k=1
where (;, is a scalar, Sy is a 3D mode of variation and S, is the mean shape.
However, we only have the 2D coordinates w;; = [;; yi; |7, which are the 2D
projections of the features @;;:

Zij -
n fug| =2 [ 9] ©)

where P; is a 3 x 4 projection matrix. Hence, the problem is to estimate the
camera motion P; and the structure S;, i.e. both the mean shape, its modes of
variation and the scalars (;, from the given image data w;;. Also the number
of modes of variation, r, needs to be selected. If too few modes are used, the
model cannot fully express the non-rigid structure, whereas excess modes would
lead to modeling noise. How this model selection can be done automatically was
described in [2].

3.2 Motion Estimation

An initial estimate of the camera motion is obtained assuming a rigid structure
and solving for structure and motion. This can be done applying the fast factor-
ization technique by Tomasi and Kanade [15], which assumes a linear approxi-
mation of the perspective camera model, or with some other standard structure
and motion estimation technique, see e.g. [7].
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3.3 Varying Structure Estimation

With the approximate motion estimate, the remaining task in getting an ap-
proximate solution is estimating the structure, i.e. S,, Sk and B;.

We note that good estimates of mean and variance of Gaussian distributed
variables are obtained by computing the mean of the observations and the
squared residuals with regards to this mean. However, full information of the
S; is unavailable, since the images are only 2D projections hereof. Thus, an im-
age can be viewed as having a 3D observation with high uncertainty along the
viewing direction. Hence, we form a weighted mean, where the weights V;, of size
3 x 3, capture the direction where there is no information. With S%" denoting
the direct estimate of the structure, the weighted mean becomes

m -1 m
S, = (; V) ;Vis?i" , (3)

and the variance
Sy = V! é Vi (s?" - s‘M) (s?" _ S_H)T A (4)

where V; and V are 3n x 3n matrices given by
Vi 0 m 1.--1
Vi=| - and V=Y Vi|: 1|V
0 Vi =1 1---1

T

The formulas for V; and S¥" are given in [2].

After the model selection, whereby Sy, & = 1,...,r are deducted from Sy,
the ;1 can be found by linear least squares minimization between the model
and the image data.

4 Perspective Solution

4.1 Optimal Solution

Similar to traditional bundle adjustment [13], we propose to use a non-linear
optimization algorithm on the observation model (2) to get a “gold standard
solution”[7]. The collection of object points are parameterized by (1), and a
Levenberg—-Marquardt approach is applied in order to minimize the reprojection
errors in the images.

We assume that the cameras are calibrated, but the same framework and
approach would work in the uncalibrated case as well. Each camera is parame-
terized with a rotation matrix and the coordinates of the camera centre.
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4.2 Ambiguities

In the rigid case, there is an ambiguity concerning the world coordinate system
and global scale, i.e. the structure and motion can only be determined up to an
unknown Euclidean transformation [7]. This ambiguity naturally extends to the
non-rigid case. In addition, each mode in the linear model (1) introduces four ex-
tra degrees of freedom in the reconstruction. In [1] it was shown that this results
in an ambiguity concerning relative translation and scale between the camera
centres and the deforming modes of the object. This ambiguity is restricted by
imposing a cost for two consecutive instances to differ, as a regularizing prior.
Also, there is an ambiguity concerning the parameterization itself, i.e. be-
tween (i) the mean S, and the modes Sj and (ii) the weights S;;. This intro-
duces r(r + 1) extra degrees of freedom for » modes. They will not change the
solution, but may slow down the convergence. More details are given in [2].

5 Surface Triangulation

5.1 Surface Model

It is a standard technique in computer graphics to represent a surface with a
triangulation, giving a faceted surface, see e.g. [6]. Our surface model is described
by the 3D points, S;, from Section 4 together with a triangulation, 7', and a
texture map, A. The triangulation specifies a set of edges and faces connecting
all the 3D points in such a way that one faceted surface is created. Since we are
dealing with deformable objects, a specific triangle, or facet, in the model has
different shape and position for each frame. The texture map for the triangle is
however constant through the sequence, since we assume constant lighting and
a lambertian reflectance model.

For a given set of points on a surface, the triangulation is not unique, and
our goal is to find the triangulation for which the faceted surface best matches
the true object surface. For this optimal triangulation, a corresponding texture
map is computed.

5.2 Surface Estimation

For a given triangulation, the texture map is easily found from the image se-
quence by mapping the images onto the triangulation. One particular triangle
corresponds to a 3D facet and, if not occluded, an image triangle for each frame,
cf. Figure 1. Now consider one such triangle. For each frame, the texture of the
image triangle is mapped onto the mean triangle. For a good triangulation, the
facets lies close to (the same part of) the true surface for all frames. This means
that the mapped textures will be more or less the same. A facet not coinciding
with the surface will look very different in different frames due to rotation and
deformation of the model. Hence, optimizing the triangulation corresponds to
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Fig. 1. The surface model is illustrated for two triangles. Here, S means the 3D points
plus the triangulation.

minimizing the variance of the mapped texture triangles,

E=3(Ai- A 6)

where A; denotes the texture map obtained from all triangles visible in frame 3,
A, is the mean texture across all frames and N is the number of frames. In the
optimal case all A; will be the same, i.e. 4; = A.

To optimize the triangulation we use the method described in [11]. A new
triangulation is obtained from edge swapping. Two adjacent triangles share an
edge and two vertices, and two new triangles are found by deleting this common
edge and making a new one between the two vertices of the triangles that were
not in common. Which edges to swap is found by a greedy search algorithm,
which at each iteration finds the edge swap that will reduce the cost (5) the
most. Once the optimized triangulation, T', is found, the texture map, A, is
given by the mean texture across all the frames, 4,,.

6 Experimental Results

6.1 Synthetic Data

The triangulation algorithm was first run on a synthetic data set consisting of
a box with a checkerboard pattern. Three sides of a box is constructed by 13
nodes, i.e. 7 corner nodes plus two nodes on each side, and a triangulation is
made in such a way that three planes are obtained. The box is deformed by
moving only the common corner node along a straight line, i.e. we have a one
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Fig. 2. The structure subject to some deformation. The box is shown without texture
but with lighting for better visualization.

mode deformation where the rectangular box deforms to a structure consisting
of several plane surfaces.

The same nodes that were made to build the box are used as nodes in the
triangulation algorithm. The initialization of the triangulation gives a mesh not
describing a rectangular box, but after optimization the triangulation is the same
as the true one, cf. Figure 3.

Fig. 3. The mean shape described by the initial (left) and final (right) triangulation.
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6.2 Real Data

The second test sequence is a 135 frames video sequence of a talking person. Cor-
ner points from the first frame were extracted as features, and these are mainly
located around the eyes, nose and mouth. In the structure estimation, every
5:th frame was used and some outliers had to be removed by hand. However,
we are facing problems with the triangulation, possibly because the deformation
is rather complex and we have only used two modes of deformation. To obtain
a smoother, more appealing, triangulated surface, we also need to have more
points at the cheeks and forehead, but such points are very hard to track. This
work is still in progress.

100 200 300 700

Fig. 4. Tracked (*) and reprojected (o) points after structure estimation.

Fig. 5. A triangulation of the surface. Note that the background points are part of the
model.
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