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Abstract. Robust parameter estimation methods have become very
popular in the computer vision community. Nevertheless, both opti-
mization models and resolution algorithms coming from robust statis-
tics must be adapted to correctly tackle the specificities of visual data.
Among these adapted techniques, computer-vision researchers frequently
use bucket-based partitions of the data (bucketing techniques). This work
points out the key ideas and features of bucketing techniques. A new
stochastic sampling scheme is proposed and defended. We also try to
answer several questions, which are generally –and perhaps voluntarily–
bypassed : “does the bucketing strategy influence the regression process
?” ; “ how should the data be split into buckets to get the best fits both
numerically and physically ?” . . .

1 Introduction

Solving computer vision problems often requires a fundamental step of parameter
estimation. The present work focuses on resolution techniques for regression
problems. We represent here a regression problem as a black box :

x =




x1

...
xm


 −→ β =




β1

...
βp


 −→ y = f(x, β) =




f(x, β)1
...

f(x, β)q




f represents a physical system which takes a vector x ∈ R
m for input and

returns a vector y ∈ R
q, depending on the parameter vector β ∈ R

p.
The main task is to estimate β̂ ∈ R

p so that the model can predict as well
as possible a set of output measures {ỹi}i=1..n, resulting from a set of stimuli
{x̃i}i=1..n.

A common way to solve this is to minimize a least squares criterion. We
associate to each measure a residual distance r2

i = r2
i (β) = ‖ỹi − f(x̃i, β)‖2.

The sum of these residuals is then minimized in order to estimate optimal
parameters in the Ordinary Least Squares (OLS) sense: Minβ∈Rp

∑n
i=1 r2

i (β)
However, the OLS scheme cannot be used in cases where gross errors con-

taminate input or output measures. That is why Computer Vision researchers
widely use so-called ”robust” methods.
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This paper is constructed as follows. First, several robust estimators and
algorithms are presented. Then, we identify the main ideas that allowed Vision
researchers to adapt general methods coming from robust statistics. Finally, we
propose a new stochastic sampling scheme and defend it.

2 Robust estimation

Classical robust estimators, as LMS 1, LTS 2, TLS or ODR are described in [12,
1, 6, 5, 8] and have been widely used [15, 18]. In practice, these estimators cannot
be computed exhaustively. Since the median function is not differentiable, the
optimization problem (for instance in the LMS case) cannot be solved exactly
(excepted the LMS-based line fitting case in R

2.
In the general case a random sampling technique is required : the key idea,

also found in RANSAC [3] or PROGRESS [11], is to randomly select a number
n′ of measures to provide an hypothesized fit. The general algorithm presented in
figure 1 exploits these candidates. If we call n0 the minimal number of measures
which allows the estimation, choosing n′ = n0 (minimal subsets principle) avoids
(with a great probability) beeing systematically contaminated with outliers.

1. Choose sample data size n′ (n0 ≤ n′ ≤ n).
In the minimal subsets case, n′ = n0.

2. For j = 1..N Do
– Build a sample of size n′ among the (x̃i, ỹi)i=1..n.
– βj ← solution for the OLS problem built with this sample.
– Evaluate the problem criterion (for example median of residuals).

3. End For
4. Keep the βj associated with the best criterion.

Fig. 1. Classical random sampling algorithm for LTS or LMS criterions minimization

The choice of a N big enough to make this stochastic algorithm efficient has
been studied [12].

3 Works specific to Vision

3.1 Strong hypothesis due to visual data nature.

We point out here the inefficiency of the classical algorithms for Computer Vision
data and problems. Since sampling is random (following the minimum subsets
principle), these samples risk being spatially (that means visually) badly ar-
ranged.

1 β̂ = argminβ∈Rp Mediani=1..n r2
i

2 β̂ = argminβ∈Rp

∑bn/2c
i=1 r2

σ(i), where σ is the permutation linked with the sorted
residuals.
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Avoid a physically unfounded search Physically, the fits we are looking for
have to be valid on the whole working space. For example, a strong calibration
has to be homogeneous for the entire working environment. It would be pointless
to obtain a perfect camera model from a small 3D calibration target which would
be valid only on a small part of the image. Hence an hypothesized fit βj coming
from a random sample (step 2 of algorithm 1) built with neighboring measures
has probably no interest.

Artefacts and numerical risks By extension, looking for too local fits can
become crafty. It is known that data can be slyly laid out to produce excellent
numerical fits for the optimization criterion (LMS or LTS), but be physically
degenerate3. This unfortunate coalition of data can be explained by the nature
of Vision models (numerous parameters, non-linearities...).

Some propositions from literature Researchers have proposed alternative
strategies to the “minimal subsets” in order to avoid a blind sampling process.
Veelaert [16] uses rigid sample chains. Braivlovsky proposes a similar idea in
a bayesian context [2], but his method cannot be easily generalised. Roth and
Levine [4] investigate the recombination of good samples.

The MINPRAN estimator [14] intrinsically leads to fits which are well spread
over the (visual) measure space. Bucketing techniques are also used and provide
random sampling methods which are physically constrained.

Robust estimation using buckets Bucketing techniques use clusters of mea-
sures –buckets– that cover the whole data space. There are several ways of build-
ing subsets of data. Points can be grouped in equally sized subsets. They can
also be spread across buckets that split the space arbitratily along one or several
dimensions, as shown in figure 2 (fixed-size buckets are suggested in [18]).
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Fig. 2. Buckets gathering a defined num-
ber of points and dividing space.

Fig. 3. Two proposed ways of dividing space
into 3×4 buckets.

All variations for this method are possible. They allow to divide the visual
space without necessarily turning it into a partition (the intersection between
two buckets may not be empty).

3 Stewart [13] talks about “hallucinated fits”.
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The sampling stage of the previous algorithm is now directed by buckets. In
our work, we build buckets by cutting along dimensions of (input) data. The
space is first split along a dimension and then each slice is divided along the
other dimensions. Figure 3 shows possible instances of this cutting policy for 2D
input data.

4 Our working context and our contributions

As a revealing example in the Computer Vision field, we investigate an homogra-
phy estimation problem [9, 7]. In our method, we use a LTS robust estimator for
which each sample provides a βj candidate in the TLS sense. We want to mea-
sure the influence of different bucket based clusterings (cuttings) on the robust
regression process. We also compare three sampling strategies:

– ssmin: classical minimal subset strategy (not directed by buckets),
– ssminBuckets: a minimum number of points n0 is sampled, each point be-

longing to a different bucket [17] (minimal subset strategy among buckets),
– onePerBucket : one point is randomly sampled from each bucket (this strat-

egy has not been used before as far as we now).

The onePerBucket strategy seems to be incompatible with robust solving
algorithms. Indeed, if one bucket is filled with outliers, all samples will be con-
taminated. However:

– we propose to use several cuttings. Among these cuttings, we hope that one
will allow a good diffusion of outliers among the buckets. This will permit
to find a good sample, for at least one cutting.

– forcing the measures of a sample to cover the bucketed space is a natural
way to respect the Computer Vision specific hypothesis (section 3).

– in terms of the bias-variance compromise, we force the exploration to look
around a fit which is physically satisfying. We also put limits to the numerical
quality of the estimation (giving limits to variance implies increasing the
bias).

5 Experimental context (homography estimation)

Fig. 4. Images and interest points (in white)
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In the homography estimation problem, the (x̃i, ỹi) are couples of correspond-
ing points on two images (figure 4). The parameters β of the model are the
coefficients of the homography matrix. Following the black box representation:

x

(
x1

x2

)
−→ β =


 h11 h12 h13

h21 h22 h23

h31 h32 .


 −→ y

(
y1

y2

)

with (
y1

y2

)
= f

([
x1

x2

])
=




h11x1+h12x2+h13
h31x1+h32x2+1

h21x1+h22x2+h23
h31x1+h32x2+1




We use synthetic images for which we know the ground-truth parameter
vector β∗ (corresponding mosaic on left part of figure 5).

Fig. 5. expected homographies : perfect (left) and sly (right)

We contaminate the data by introducing 35% of sly points fitting locally to
another homography βsly (left part of figure 5). We evaluate the quality of the
process with two criteria:

– Best Criterion (BC ): the optimization criterion (sum of residuals),
– Quality Distance (QD): based on the ground-truth, QD = 1

nr

∑nr

i=1 ‖f(xi
l, β̂)−

f(xi
l, β
∗)‖, where (xi

l)i=1..nr
are arbitrarily chosen points on the left image.

As presented in section 4, we use different sampling strategies : ssmin (N =
8000), ssminBuckets (N = 800) and onePerBucket (N = 300). For ssminBuckets
and onePerBucket, the cuttings (from the dividing space family) vary from 2×2
(2×3...) to 6×6.

For each strategy, N has been chosen experimentally to guarantee repro-
ductibility (low variance of BC and QD around MeanBC and MeanQD through-
out executions, for hundreds of points).

5.1 Results

(a) (b) (c)

Fig. 6. Representative resulting mosaics for ssmin (a), ssminBuckets (b) and onePer-
Bucket (c) strategies.
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With this corrupted data, ssmin gives the worst results. SsminBuckets produces
homographies strongly affected by the sly data. OnePerBucket manages to find
good fits (visually coherent homographies, with excellent QD).

(a) (b)

Fig. 7. Values of the criteria in function of the cuttings (number of x and y divisions)
in the case of the onePerBucket (a) and ssminBuckets (b) strategies

onePerBucket strategy. Figure 7(a) shows:

– that the onePerBucket strategy is sensitive to the different cuttings,
– a correlation between the worst values of MeanBC obtained for 6×x and the

high values of MeanQD. This can be used to detect which cuttings are the
least adapted to the onePerBucket strategy.

ssminBuckets strategy. We see in figure 7(b) that:

– ssminBuckets is less sensitive to the different buckets partitions on MeanBC
(low value differences between buckets and low correlation with MeanQD).
As for ssmin, the optimization criterion LTS is always minimized, even arti-
ficially (effect of sly data).

– however, the MeanQD criterion could be revealing (as its values are different
among buckets) but it is not available in real problems.

Thus, there is no systematic way for ssminBuckets to find a good cutting for
data and possibly a good estimation.

5.2 Introduction of a diagnostic

Since the onePerBucket method is cutting-sensitive, we can easily:

– detect (in the meanBC sense) the correct cuttings by eliminating the worst
ones.

– use these best cuttings to eliminate outliers. These outliers are caracterized
by the biggest cumulated residuals (see the “Median Absolute Deviation”
based diagnostic for instance [10].

– redo the estimation on the epurated data.

We propose a general scheme for an algorithm associated to a diagnostic (fig-
ure 8).
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1. Repeat
– Build cuttings (from 2×2 to 6×6 for example).
– Run onePerBucket strategy (still with LTS based on TLS) with a few iterations.
– Keep the best cuttings (MeanBC criterion).
– Eliminate a fixed small fraction of outliers (rejection of the points with the biggest

cumulated residuals).
until solving has become unsensitive to the different cuttings

2.3. Keep the best estimation of this last step.

Fig. 8. Diagnostic algorithm

Stopping criterion. Along the outlier rejection step, onePerBucket strategy
becomes less sensitive to the different cuttings (see the evolution of MeanBC
among cuttings between 9(a) and 9(b)). At the same time, estimations get better
(strong decreasing of MeanQD and MeanBC values between 9(a) and 9(b)). Thus
we call the solving unsensitive when the variance of MeanBC among buckets
drops below a treshold. After one run of algorithm 8, mosaics are perfect.

(a) (b)

Fig. 9. onePerBucket : before (a) and after (b) one run of the diagnostic algorithm.

The efficiency of this algorithm can be verified by introducing gaussian (null
mean and variable standard deviation) errors on the coordinates of interest
points (figure 4) initially precisely detected and matched. The following table
shows the compared efficiency of diagnostics. The measures presented are the
percentage of true outliers (known by to the ground-truth) that are correctly
identified. These results are averaged over numerous executions.

σ = 0 σ = 1 σ = 2 σ = 3
ssmin 64 % 45% 35% 35%

ssminBuckets 60% 51% 53% 38%
onePerBucket 70% 65% 86% 90%

Here again, the onePerBucket strategy is the most efficient. Experiments on
real images are also conclusive, and we still work on an automatic parametriza-
tion of the diagnostic algorithm.

6 Conclusion

We have shown the interest of a resolution strategy based on the use of buckets.
We have also proposed a random sampling strategy using “one measure per
bucket” in order to physically restrain the exploration. The choice we made to

615Bucketing Techniques in Robust Regression for Computer Vision



work on several cuttings has been crucial. This method is fast (less iterations
are needed), precise, and robust (sly data is evicted).

We will now focus on decision criterions less directly correlated with opti-
mization criterions in order to identify the best bucket repartition.

In this article, we give conclusions in the case of a LTS estimator and a TLS
resolution, but our tests suggest that other estimators behave similarly.
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