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Abstract. This paper presents a semi-automatic method for segmenta-
tion of digital images. The segmentation method is based on snakes and a
novel implementation of the snake evolution algorithm is presented. An-
alytical expressions describing the snake evolution are derived using the
Fourier transform. These expressions can be sampled and used in a fast
algorithm for snake propagation. Experiments are carried out on images
of histopathological tissue sections and the results are very promising. In
particular the method is able to cope with overlapping nuclei.

1 Introduction

This paper presents a semi-automatic, snake-based method for segmentation of
histopathological sections. Histopathology is a diverse field consisting of a wide
range of different analyses and it is therefore motivated to investigate semi-
automatic segmentation methods that may be generally applicable to a group of
problems.

The tissue sections studied are Hematoxylin- and Eosin-stained sections of
bladder tumors and normal urothelium. This staining method is the most com-
monly used, implying that some of the results would be applicable to other
problems. Although not used in practice, steps have already been taken towards
an automated grading system [1], in which watershedding is used to segment
the nuclei. Watershedding has also been used to segment clustered fluorescent-
stained nuclei [2]. However, watershedding fails to correctly segment overlapping
nuclei, something that the proposed method handles. In [3] and [4] active contour
models are used to segment histological and cytological images. In [4] the level-
set method is used, a method that has some advantages over snakes, although
it is more computationally costly. In [3] a traditional snake is used with some
modifications and the update scheme used for propagating the snake is similar
to the original one [5].

In this paper we use the GVF- (Gradient Vector Flow) snake [6]. Insights
into the snake’s iterative evolution algorithm are presented and based on those
a novel implementation of the algorithm, which requires fewer calculations than
previously used methods, is proposed.
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Snakes

In the original paper [5] on snakes, a snake is defined as a curve v(s) = [z(s),y(s)],
s € S = [0,1], that moves through an image minimizing the following energy
functional

B~ [ 5 @VER + BV E)P) + Bt (v(5) s (1)

where v'(s) and v’ (s) are the first and second derivatives of v(s) with respect to
5. The weights o and (3 control the tension and rigidity of the snake. The external
energy Fext, is a scalar field derived from an image with low values for the
structures sought. A typical example of Fey is Eext = —|V Gy (z,y) x I(z,y)|? ,
where I(x,y) is an intensity map derived from the image, V denotes the gradient
operator and G, denotes a Gaussian kernel with standard deviation o. Using
the Euler equations it is found that a necessary condition for v to minimize the
functional (1) is

av’(s) — BvP(s) = VEex (v(s)) =0 . (2)

Gradient Vector Flow

One of the main draw-backs with using snakes is that the contour has to be
initialized close to the final solution, in order to converge. To solve this prob-
lem several different methods have been proposed [7] [8]. However, the most
promising extension to snakes seems to be the Gradient Vector Flow [9].

In a Gradient Vector Flow snake the scalar-valued, external force is replaced
by a vector-valued function g(x,y)= [u(x,y), v(x,y)]- The corresponding dynamic
snake equation is found by replacing the potential force —V Eey; in (2) with g.
The GVF field is defined as the vector field, g(x,y), minimizing the following
integral

/ / p 2 402 1 02) + [V Plg — Vi 2ddy (3)

where f(z,y) denotes an edge map and p is a scalar parameter. The edge map
f(x,y) is a scalar field having the property that it is largest near edges. Hence
setting f(x,y) = —Fext gives a suitable edge map. The Euler-equations for
minimizing (3) can be solved iteratively [10]. Notably, the Euler-equations, in
this case, give both necessary and sufficient conditions for the integral to be
minimal [11].

2 A Fast Scheme for Snake Evolution

Whether GVF-snakes or traditional snakes are used a solution to Equation (2)
is found by introduction of a time variable and discretization. The solution can
then be found using an explicit method, which requires fewer calculations, or
using a semi-implicit method, which is more stable cf. [5]. We now show how
the semi-implicit method can be used, with about the same time complexity as
the explicit method. If the snake is to be updated semi-implicitly the iterative
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evolution of the snake involves solving two equations in each time-step, one for
x¢ and one for y¢ of the type

(A +0T)x¢ = 0x¢—1+Gx (Xe—1,¥¢_1) - (4)

A straight-forward approach to solving this equation is to invert the matrix

(A + 6I), which would be acceptable provided that the calculation was just per-

formed once. However, the snake is continuously resampled in order to maintain

adequate resolution [12]. This requires us to update the size of the matrix each

time the snake is resampled, which in turn makes it necessary to recalculate the

inverse. Since the matrix is large, calculating its inverse is a computationally

costly operation. One solution is to use sparse methods for LU-decomposition
[5]. However, by observing that (A + JI) is the discrete approximation of

0? o
A=4§ a852+ﬁ854 (5)

and performing the discretization only in time and not in space we may write
Az = 6241 + G (T4-1, Y1) (6)

regarding = and y as continuous periodic functions. Taking the Fourier transform
gives
(6 + aw? + 6w4) Fay =F (6xp—1+ Go (@4—1,Ye-1)) - (7

Since z;—1 and G, are bounded periodic functions, their Fourier transforms
exist, at least in a distributional sense. Solving for Fz; in (7) and performing
the inverse transformation results in

- 1
zp=F ! <§+aw2—|—ﬁw4) x (0xg—1 + Go (Tp—1,y1—1)) - (8)

Using standard methods, an explicit expression for the inverse transform

1) = F 7 (sracbean
and is defined on [—L/2,L/2], L being the period, corresponding to the arc
length, usually in the region of hundreds. Using this filter we have

) can be found. The function f(t) is rapidly decreasing

—+o0

:L't(s):f*R:R*f:/R(sz)f(s)dT, (9)

— 00

with
R(s) = 0m4-1(s) + G (ze-1(8) , Ye-1 (5))

Now, (9) can be approximated by

L2

x4 (8) ~ / R(s—z) f(z)dx . (10)

L2
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The approximation is justified, since f is rapidly decreasing and thus very small

for all k£ # 0. Finally by approximating the integral with its Riemann sum, we
obtain

x¢ (i) = ;;R(ik)f(kh) : (11)

o[ 0 [1]2[3[4]
0 [L[7 [11[13]15
1119 [11]15][17
2 [ 13] 9 [11][15[17
3 159 [13[15[17
4 |[15 [11 [13]15 | 17

Table 1. Table showing the number of non-zero elements in the convolution kernel
using different o and 8 with § = 1. All elements with a magnitude smaller than 2 %
of the largest value where set to zero.

This way of computing x¢ allows for a fast algorithm, since we have both got
rid of the matrix inversion and obtained a filter which is symmetric and of very
limited length, see Table 1.

3 Experiments

The constructed system was implemented as a semi-automatic tool. After having
loaded an image the user is required to specify a circle as a rough demarcation
of the object of interest. A 111x111 pixels image, centered on the user-specified
point, is cut out. The small picture then goes through a series of computations
aiming at calculating a GVF-field. The image processing chain can be summa-
rized as: color reduction, edge map calculation, and calculation of the GVF-field.
Finally, the program iterates the snake starting from the specified circle.

The color reduction is performed by subtracting the red component from the
blue component, which stands to reason since the acidophilic stain Hematoxylin
is blue and has affinity for the nucleus, whilst Eosin is pink and basophilic,
therefore staining the cytoplasm. The edge map is computed from a gradient
field, found by convolving the color-reduced image with the gradient of a gaussian
kernel (with standard deviation o). Instead of only making use of the gradient
field’s magnitude, as is customary, we also take into account the directions of
the gradient field. This is done by taking the scalar product of the gradient field
and a normalized circular field. This results in a scalar field having high positive
values for the edges whose normal direction is correct; i.e. a direction from the
chosen point. To eliminate edges with opposite normal direction all negative
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Fig. 1. From left to right: The colorreduced image, the gradient field and the edgemap
obtained by scalar multiplication of a circular field with the gradient field.

values of the scalar field are set equal to zero (see Figure 1). To further suppress
irrelevant information, the edge map is multiplied with a binary mask, computed
using Otsu’s method [13].

As noted in Section 2 the snake should be resampled in order to maintain
a good approximation of the function it represents. Lobregt [12] proposes a
method in which the snake is traversed twice; once to delete redundant points
and once to insert points where needed. Here, this process is implemented as a
one-pass operation. Bilinear interpolation is used to find values of the GVF-field
in-between the points where it is calculated [9].

In accordance with the methodological developments in Section 2, the snake
is convolved with a filter in each iteration. The filter is cut off for small absolute
values (less than 2% of the maximal value of the filter), yielding symmetric filters
of small sizes (e.g. 13 for a = 2 and (§ = 3).

4 Results

In the experiments the following parameters where used. When initializing out-
side the boundaries of the nucleus; ¢ = 0.5 and no additional filtering. When
initializing inside the boundaries of the nucleus; ¢ = 1.5 and a min-filter was
applied (see Section 5 for details). In both cases a = 2 and § = 3 was used.

Initializing Outside the Boundaries of the Nucleus

Figure 2 shows two examples of snakes being initialized outside the boundaries
of the nucleus. On the top row an isolated nucleus is segmented. In such cases
the segmentation is relatively simple, since there are no disturbances due to ad-
jacent nuclei. Using snakes on such easily segmentable objects may be considered
redundant since the segmentation can be achieved by simpler means. However,
the snake can be used to obtain a more exact result.

On the bottom row of Figure 2 one of two nuclei overlapping each other are
segmented. The problem of separating these two nuclei cannot be solved using
e.g. thresholding or watershedding. The snake on the other hand solves this given
a fair initialization.
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Fig. 2. Segmentation of nuclei by initializing the snake outside the nuclei. Top: Seg-
mentation of an isolated nucleus. Bottom row: Segmentation of one of two overlapping
nuclei.

Initializing Within the Boundaries of the Nucleus

When two nuclei overlap it is often preferable to initialize snakes inside the nu-
clei. Figure 3 illustrates an important aspect about this segmentation technique.
Two overlapping nuclei are shown. Most segmentation methods are based on
the assumption that a pixel can belong to one and only one object. Using this
technique no such limitations apply and two overlapping objects can both be
perfectly segmented.

Computational Time

The main improvement, considering speed compared to standard methods, is the
computations concerning the iterative evolution of the snake. Implemented in
C and using an 800 MHz Pentium 3 processor the preprocessing performed on
the cutout 111x111 pixel image is performed in less than 10 ms. To iterate the
snake until convergence is done in about the same amount of time, for an average
snake. In every iteration we are convolving the snake with a symmetric filter.
Hence, the complexity of our algorithm depends on the number of iterations, I,
the number of points of the snake, N, and the size of the filter, F', see Table 1.
The complexity of the algorithm, counting the number of multiplications, is
IN(F +1)/2. This is in the same order of complexity as for the explicit method,
which requires IN - 3 multiplications.

It has been found that it takes less than 10~ %s per iteration and point to
iterate the snake. Typically 50 — 100 iterations are required, sometimes however
as many as 400 are needed and a typical snake in this application consists of
100 — 150 points; yielding execution times normally lower than 10 ms or in
worst-case scenarios of about 60 ms. The only slow part of the program is the



Segmentation of Histopathological Sections Using Snakes 601

”~

Fig. 3. Segmentation of two overlapping nuclei initializing snakes inside the nuclei.

calculation of the GVF-field that requires about 3 ms per iteration for the image
size used, resulting in a total calculation time of 150 ms, when 50 iterations are
used.

5 Discussion and Conclusions

The formulation of the GVF-field provides for good convergence even with a
rather poor initialization. Yet, because of high magnitude gradients in the nuclei
remaining in spite of the pre-processing, it has been found suitable to pre-process
in two different fashions depending on whether the snake is initialized inside or
outside the nuclei’s boundaries.

The first method, used when the snake is initialized outside the object, uses
o = 0.5 and no additional filtering. The second method is used when the ob-
ject to be segmented is not separated from adjacent objects. Then it can be
better to initialize the snake inside the objects’ boundaries. However, there are
high magnitude gradients in the nuclei resulting in an edge map with a lot of
noise therein. This in turn may cause the snake to get stuck in local minima not
achieving the desired result. The simplest and rather good solution to this prob-
lem is to increase the standard deviation of the Gaussian kernel used to extract
the gradient field, resulting in a smoother edge map. However, when combining
an increased o with a 3 by 3-pixel min-filter the results are further improved.
Since the min-filter has a reducing effect on edge widths it is highly suitable to
use these two strategies in combination.

What to be considered "a fair initialization" requires some discussion. In
simpler cases when a rough delimitation of the object may be found by means of
e.g. thresholding, the snake will converge to a good result given any initialization
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outside the object. In tougher cases the snake will not converge if for example
initialized too close to the occluding nucleus’ further edge or outside both nuclei.
However, in almost all tried cases there is a wide range of initializations that
produce the desired result, which gives at hand that the system works well as a
semi-automatic tool.

This paper has shown that snakes can be a very good segmentation tool in
a semi-automatic system for analysis of histopathological sections and even if
no fully automatic system has been developed, the work has pointed out great
possibilities of using snakes in such systems as well. In a fully automatic system
snakes can be used to improve upon mediocre results from other simpler methods
and perhaps more importantly to segment overlapping objects. When used to
segment overlapping objects, snakes bring a very important thing that few other
segmentation methods handle. A subset of an image can be classified as belonging
to two or more different objects. The analysis that has been performed on the
iterative evolution of snakes has made it possible to perform the calculations in
a very fast way.
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