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Abstract. The orientation space transform is a concept that can deal
with multiple oriented structures at a single location. In this paper we
extend the orientation space transform to 3D images producing a 5D
orientation space (z,v, 2, ®,0). We employ a tunable, orientation selec-
tive quadrature filter to detect edges and planes and a separate filter
for detecting lines. We propose a multi-resolution sampling grid based
on the icosahedron. We also propose a method to visualize the resulting
5D space. The method can be used in many applications like (paramet-
ric) curve and plane extraction, texture characterization and curvature
estimation.

1 Introduction

Three-dimensional images can be seen as compositions of numerous simple struc-
tures like planes, textures, edges and lines. Therefore multiple oriented structures
can be present at a single point. Here we will describe a method which can deal
with such occurrences in 3D. Detectors developed in the past, like the tensor ap-
proach [2I3I8], can handle single oriented structures but often fail on non-isolated
structures. Therefore we present a multi orientation analysis as first proposed
by [12] and later implemented in 2D by e.g.[6]. In our multi-orientation analysis,
we probe to see how much oriented structure is present that exhibits the probe
orientation. We filter the image with rotated versions of an orientation-selective
template filter m and stack the accumulated evidence in two extra angular di-
mensions

I (x,¢,0) = I(x)xm(x; ¢, 0). (1)

Here x contains the spatial dimensions, z, y and z. The template orientation is
given by ¢ and 6. With ¢ the counterclockwise angle in the xy-plane measured
from the positive x-axis, ranging from 0 to 27, and 6 measures the angular dis-
tance from the positive z-axis, with 8 ranging from 0 to 7. The asterisk denotes
the convolution operator.

Now let us define orientation for line and plane-like structures. When we draw
a line through the center of a unit sphere we will find two intersection points.
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These points can be specified by their respective 6 and ¢ coordinates. Both pairs
of {0, ¢}-coordinates can be used as orientation but to avoid ambiguities we have
to drop one pair. So let us now define the orientation of a line as the pair of
coordinates for which: 6 € [0,7/2) or § = w/2 A ¢ € [0, 7). For a plane we adopt
the same formulation in which the line is replaced by the normal to the plane.
Note that this coordinate representation contains discontinuities due to the fact
that ¢ and (7/2 — 6) are modulo 27 and 7/2 respectively. However these discon-
tinuities pose no problems for further filtering as they are coordinate discontinu-
ities which can be easily dealt with by applying a standard boundary extension
technique. This in contrast to the tensor approach in which the filter output is
discontinuous, the output therefore has to be remapped for further processing
in most cases [[1].

Further we will show a few ways of visualizing the results of the orientation space
transform.

2 3D-Orientation Space: Filter Design

In designing our filters the first thing to realize is the trade-off between ori-
entation selectivity and localization. By increasing the orientation selectivity
the filter becomes more extended and loses localization, i.e. the filter response
changes slowly along the long axes of the filter. We want to treat the orientation
and scale selectivity separately, therefore the filter is made polar separable in
Fourier space, see e.g. [0],

f{m}(fa ¢i>9i) = Mrad(f) Mang(¢79;¢i79i) with f = |f‘ (2)

With f = (f,¢,0) the spherical coordinates in Fourier space. Now the radial
function specifies the scale and the angular part the selectivity of the filter.
Proper sampling and discretization of the resulting orientation space require
that the input image, as well as the filters, are band-limited. For correct sampling
along the ¢ and 0 axes the filters should be radial and angular band-limited [5]
In 2D, lines and edges can be treated equally using quadrature filters. In 3D,
there is a similar relation between edges and planes. However the line appears
as a new structure which requires separate treatment and has no associated
quadrature structure. Therefore we design two filters, one for line like structures
and a quadrature filter for planar structures. Furthermore the 3D filters used
are generalizations of a 2D filter presented in [6, Chap. 3].

The angular part of the filters is defined as:

M

Mang(6,0: 60,01) = M(fp5) = 277 3)
where
_ {4( £, plane filter(spatial) @
w/2 — Z(f,4;) line filter(spatial),

with
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cos(¢;) sin(6;)
Yi = | sin(¢;)sin(6;) | , (5)
cos(6;)
and
o = 2arccos(l — 2/N). (6)

The orientation selectivity o is found by equating the surface area of the unit
hemi-sphere, S = 27, with N times the area Scone. Here Seopne is given by the
intersection of S with a solid cone with opening angle ¢. In this formulation the
orientation selectivity can be increased by raising N and the sampling distance
is approximately lo as required by band-limiting the Gaussian [I1] Chap. 2].
The quadrature structure for the planar filter only requires that the filter is zero
for p > m/2, this is approximately satisfied, as for N > 15 the 3¢ radius lies well
within 7/2. Now let us define the radial part of the filter [6],

fe)? 2_ 2
& -G
M,ywa = | = e ! (7)
Je

This Gaussian-like function has a bandwidth by and an central frequency f..
An advantage of this filter over a true Gaussian of bandwidth by and center
frequency f. is a guaranteed zero response to constant signals. The resulting
plane filter has a droplet shape and the line filter has a donut shape as footprint
in Fourier space.

Fig. 1. (a) Planar quadrature filter M; , with &, n and v the Cartesian Fourier coordi-
nates and filter orientation angles {¢;,6;}. (b) The same as (a) but for the line filter.
The parameters used for these filters: f. = 0.2, by = 0.16.

3 3D-Orientation Space: Sampling Grid

Sampling the orientation space by N samples requires filtering image I(x) with
N rotated copies of an elongated template filter m, such that its principle axis
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coincides with orientation {¢;,6;}. The result, I,,(x, ¢;,6;) is a 5D-orientation
space. Now let us look at how to distribute the N orientations, 1; over one
hemisphere, i.e. here the upper half of the unit sphere. We only need to address
the upper half as we cannot distinguish between opposite directions.

Ideally the angular distance from each point to its direct neighbors should be
constant, at least for 3D volume images like those acquired with MRI. But in
cases where the human perception is mimicked this is does not hold, e.g. our
perception of speed is not uniform across spatial frequencies [1]. As there is no
general solution for the problem of distributing a set of points equidistant over
a sphere [10], we have adopted a grid based on the icosahedron inspired by [4].
The icosahedron is the largest of the platonic solids and has 20 identical faces
consisting of equilateral triangles and 12 vertices, Fig. [@l.a and b. On each of
the faces we impose a hexagonal grid. This grid is then projected on the unit
sphere to obtain the orientations (Fig.[2). This pixelization scheme is symmetric
in the origin and allows easy indexation (addressing). We can easily change the
number of points by imposing a finer/courser hexagonal grid on the faces of the
icosahedron. The number of points is given by N = 5n? — 10n + 6 with n the
number of points on a single side of a face (n = 2). Furthermore the grid is
hexagonal with the exception of the vertex-points of the icosahedron which are
pentagonal. Points are indexed with three indices as shown in Fig. 2b. Index
F denotes a strip of 4 faces while I and J are subindices on this strip. Note
that the points on the border of the strip should be treated differently to avoid
multiple indexation of a single orientation. This scheme allows us to easily find
the neighboring orientations which is useful for connectivity issues.

Fig. 2. (a) Icosahedron, platonic solid with largest number of faces. (b) Unfolded icosa-
hedron. (c) Hexagonal grid at one face of the icosahedron

4 Test Experiments and Visualization

Now let us look how we can visualize orientation space. Therefore we investigate
a simple image of a fork structure constructed from three line segments with a
Gaussian profile of 1o (Fig.[Bl.a). The image size is 75% voxels and the parameters
used for calculating the orientation space are (f.,by,N)=(0.2,0.16,181). Figures
Blb-d show isosurfaces of the response of three filters on the fork image, where the
tree filters are those with the highest responses. As can be seen the orientation
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Fig. 3. (a) isosurface of a fork-structure with a size of 75 voxels. (b-d) isosurface of
Im(z, ¢c, 6.) for the three orientations ¢, with the highest responses.(e-f) Polar voronoi
diagrams of the voxel closest to the intersection point of the three line segments for an
orientation space of respectively 81 and 181 sample orientations.

space response is smooth and contains local orientation information. To use
orientation space for segmenting the image, the oriented structures which are in
this case line segments, should be resolved. Now we assume two structures can be
resolved if the minimum response between the two is less than half the maximum
response. This states that the minimum angle between the oriented structures
must be larger than 4v/In20 according to [6]. As the minimum angle of separation
in our image is 35° the minimum number of sampling orientations required is
140. Now we will show the output of two angular resolutions with respectively
81 and 181 sampling orientations. Let us inspect the angular responses of these
two spaces for the center voxel where the three line segments meet. In Fig. Ble-f
we show two polar voronoi plots of the angular response of the two orientation
spaces. A voronoi cell is defined as the set of orientations closer to ¢; than to
all other ¢;;. In the plot each voronoi cell has a gray value corresponding to
the height of the orientation space response. In the plot, 6 is the radial and ¢
the angular coordinate. Orientation (¢,8)=(0,0) can be found in the center of
the plot and orientations with # = 7/2 can be found on the inner solid circle.
In Fig. Ble we can see three peaks. But the two peaks centered around (0,7/2)
and (0,3/27) belong to one and the same orientation since a line through the
center of a sphere yields two crossings at opposite sides. More interesting is the
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other peak with the elliptical shape. This shape indicates that the underlying
structure(s) are not resolved, as predicted by the angular resolution criterion. In
Fig. Blf the number of sampling orientations is increased from 81 to 181. As can
be seen the responses of the two lines are now nicely resolved. Therefore, only
the orientation space with 181 sampling points can be used to segment the fork
image.

Now let us look at another visualization method for a 5D orientation space. In
Fig. lla we show an image with a line through its center. In Fig. Hlb we plot
the orientation space (46 sample orientations) of the 27 voxels in the center of
the image. On the individual spheres the voronoi cells are plotted in the same
way as for the polar voronoi plot. With orientation {¢,8} = {0,0} on top of the
spheres and all spheres rotated through an angle 7 around the ¢-axis. In the
image we see that the response is localized and drops off very quickly with the
distance to the line. It is actually possible to prove it has a Gaussian profile.

Fig. 4. (a) isosurface of a Gaussian line. (b) the corresponding 5D orientation space of
the 27 center voxels of the image in (a).

5 Conclusions

We have extended the principle of orientation space to 3D images by designing
orientation selective line and plane/edge filters. After an elaborate search for
sampling grids on a sphere we selected a multi-scale grid based on the icosa-
hedron which allows easy addressing. We presented methods to visualize the
resulting 5D structure. The method can deal with multiple intersecting oriented
structures and contains local orientation information. In the future we will try to
produce an orientation space formulation which is sparse and local. This to limit
the computational burden and memory consumption. Further we will investigate
some interesting applications of the orientation space approach.
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