Temporal Dynamical Interactions between
Multiple Layers of Local Image Features for
Event Detection in Video Sequences

Daniel Kottow*, Mario Képpen and Javier Ruiz-del-Solar
daniel kottow@ipk.fhg.de|mario.keoppen.ipk.fhg.de|jruizd@cec.uchile.cl

Fraunhofer IPK, Dept. Pattern Recognition, Pascalstr. 8-9, 10587 Berlin, Germany
DIE, U. de Chile, Tupper 2007, Santiago, Chile

Abstract. In this paper an approach for storing and employing local
image features in video processing is presented. The approach is based
on the usage of memory cells representing local image features and (non-
fixed) spatial positions, which are organized in memory layers. By assign-
ing frame-based recall function and learning procedure to the cells, the
memory layers establish a content-based auto-associative memory. Thus,
they can be applied to solve several event detection tasks, as it is exem-
plified by dynamic background supression in a traffic scene, and counting
of persons halting before a shopping window in an indoor scene. The case
studies suggest that information gathered from the cells (like cell history
based scoring values) can be used in various manners for video process-
ing tasks circumventing the need for object segmentation and tracking,
typical in many conventional background-differencing methods.

1 Introduction

Local image features are a common starting point for image analysis and typi-
cally computed at each image pixel: a new (vector) image representing the feature
values is obtained. We propose an alternative way of storing and computing lo-
cal image features called content-based memory layers. A memory layer stores
features in a spatially organized way but allows access to the information only
through local operations for recalling or learning a certain image position. These
operations are based on a definition of matching between an image feature and
features stored in the memory layer that allows user-defined tolerances for the
feature value and its position. Section 2 defines content-based memory layers
and their usage and illustrates particular system properties.

Event detection in video sequences refers to the analysis of video streams
searching for predefined, anthropocentric events that may manifest diversely
on the actual images. Applying all stages of traditional image processing to
video sequences typically leads to algorithms that segment and track multiple
moving objects; a task that gets exponentially more difficult as the number of

* This work was partially funded by a DAAD doctoral grant

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 223-231, 2003.
© Springer-Verlag Berlin Heidelberg 2003

224 D. Kottow, M. Koppen, and J. Ruiz-del-Solar

objects in the scene increases. Event detection many times is built on top of
these algorithms, as for example in [3]. Our work focuses on events that may be
detected using motion information only, circumventing the need for individual
object segmentation. In section 3 we present two algorithms for event detection
in real-world environments using multiple memory layers and suitable temporal
dynamics between them.

2 Content-based Memory Layers

Content-based memory layers store local image features in a spatially organized
way. Thereto each feature held in a memory layer bears an associated image
coordinate. Interactions between an image and a memory layer are localized
spatially: first a local feature is extracted from the image at a certain position
and then the memory layer is searched for similar features with an associated
position close to the query position. When operating in a learning mode, local
image features that are not recalled by the memory are added to it.

Section 2.1 defines a memory layer, the fundamental operations between a
layer and an image; section 2.2 builds upon these definitions and introduces color
features in this context. Section 2.3 illustrates some system properties processing
images taken from a traffic scene [1].

2.1 Basic Definitions

We start by defining the basic element of our content-based memory called a cell.
A cell is made out of a local image feature and an image coordinate x = (z,y)
and may be written ¢ = {f.,Xc}. In this context it suffices to say that a local
image feature is the output of a feature extraction function f(x,I) that only
depends on the values of the image I at the position x and a local neighborhood
(features are typically vectors in 7).

We define a predicate called matching between a cell ¢ = {f;,Xc} and an
image I at a position x as:

m(c,x, 15,0, f(x, 1)) = d(fe, f(x,1)) <& A d(xc,x) < (1)

where d(x1,x3) is the Euclidean distance in the image coordinate plane and
d(f1, f2) is a distance measure in the feature space to which both, f, and f(x,I),
belong. Matching introduces the fundamental operation of our system: it com-
pares a stored bit of information ¢ = {f.,xc} and a local image feature f(x,I)
allowing control over the accuracy in the representation of feature values and
positions through the parameters £, respectively.

A memory layer is a collection of cells C' = {¢;}, all bearing feature vectors
in the same space, and a corresponding matching function. We define two basic
operations on a memory layer. A recall function R(x, I, C) searches for a cell
in C' that matches the image I at the position x:

Temporal Dynamical Interactions between Multiple Layers 225

(2)

where ¢patcn 1S any cell in C that satisfies the matching predicate (1). A learning
procedure L(x,1,C) creates a new cell if the recall function fails:

Cmaten 1f Jc € C (m(c,x,1; f,€,0))
]

E(x,1,C) = { otherwise

C + CU{cpew) if R(x,1,C) =0

nothing otherwise

(3)

where Cpe is @ new cell that must satisfy the matching predicate. The most
straightforward way to generate ¢y, is by extracting a feature at the position
where the recall function failed and setting the cell’s feature and position ac-
cordingly.

An alternative way of recalling starts with a certain cell and determines a
possible matching position. We define a recall-cell function as:

L, 1,0) = {

_) Xmatch Zf Ix (m(c,x,I; faaa(s))
RC(e, T) = { 0 otherwise (4)
where X,,qtcn 18 any position where the matching predicate holds.
We define the score of a cell s, as a dynamic variable, which is updated
every time the recall-cell function is called, according to:

sc — (1=XNsc+ X if RC(c,I)# 0
¢ + (1=XNs.— X otherwise

(5)

where A € [0,1] is a user-defined adaptation rate. Initially, when creating a cell
we set s, = 0. Similarly, we define the update of a cell’s feature value:

UF(c;p) = {fc — (L=p)fe+pf(xe,I) if RC(c, 1) #0 (6)

nothing otherwise

US(e;\) = {

with p € [0,1].

2.2 Further Definitions

Equations 2 and 3 process a single image position. A straightforward generaliza-
tion for processing an image area is obtained by processing all positions in the
area A = {x;} independently:

R(A,I,C) = {R(x:,I,C) }xiea (7)

where R(x,I,C) may be replaced by the learning function. Note, however, that
learning is dependent on the order in which the positions are processed, because
each learning procedure may add a cell to C' which in turn influences subsequent
learning results.

Seed growing strategies consider areas of similar image values which by def-
inition are of previously unknown spatial extent. Given a set of seeds S = {x;}
we define a seed growing algorithm for learning in Algorithm 1.

226 D. Kottow, M. Koppen, and J. Ruiz-del-Solar

Until now we have not needed to specify a definite kind of local image feature
for the operations with a memory layer. Now we introduce color cells storing
local color information. Given a (possibly multi-channeled) image I we define
a color feature as the mean of the image pixel values contained in a square of
dimension [centered at x:

frean(x:0) = > I(x+dx) (8)

dxedf?

where df? = {dx | |dx| < l}. Note that a color feature will have the same
dimensionality as the image pixel values. We are currently working with RGB
color images and use the Euclidean norm to measure the distance between mean
color features.

2.3 System Properties

Consider the images shown in fig. 1. In this section we will learn and recall these
images using a memory layer of color cells demonstrating the usage and some
properties of the system. Cells resulting from learning a whole image area using
eq. 3 are shown in fig. 2.

Content-Based Auto-Associative Memory. Once an image area has
been learned, the system knows about position and mean color for every cell.
A great amount of information reduction has taken place and sensible details
seem lost, as fig. 2 illustrates. The original image used for learning cannot be
reconstructed using only this information. But if we use eq. 2 to recall the same
scene taken some seconds later (shown in fig. 1 below) we can make out even
small differences between both images (as shown in fig. 3 above). Having a
precise notion of information that is not arbitrarily retrievable is an essential
characteristic of content-based memories.

User and Data Driven Ressource Usage. The user-defined parameters
€,0 define the accuracy of the feature value and locus representation, respectively,
thus giving the user control over the vigilance level of the content-based memory.
The dual control over the accuracy of the feature representation results in an
uneven cell density depending on the complexity of local features in a scene as
it is readily observed in fig. 2. When learning an image sequence, several cells
bearing diffferent feature values may accumulate even at a single position if there
is a periodically changing image texture, as e.g. specularities in the water.

Algorithm Complexity. Recalling or learning any image position needs to
verify the matching condition given by eq. 1 iteratively for a whole set of cells C.
Using simple caching and a hashing technique for two-dimensional planes called
spiral nearest neighbor described by Bentley and Weide [4] we could reduce the
computations required for recalling or learning an image position to a single
feature extraction and the comparison of in average 2-5 cell features. When
searching for novelties in an image area we can greatly reduce computation to a
small fraction of the image positions contained in the area by sampling the area
and employing the seed growing strategy presented in Algorithm 1.

Temporal Dynamical Interactions between Multiple Layers 227

3 Event Detection in Video Sequences using Multiple
Memory Layers

Until now we have been using a single memory layer. In this section we will use
multiple memory layers and suitable temporal dynamics between their cells in
order to do motion segmentation in video sequences. In the first video showing
a traffic scene [1] we segment foreground objects from background information
making the background include automatically halted objects and expell them
when they start moving again. In the second video showing people in front of a
shopping window [2] we discriminate the persons looking into the window.

3.1 Dynamic Background Suppression

In this section we define an algorithm for the segmentation of moving objects
using a dynamically updated background memory layer. The updates occur in a
twofold way: color features representing the background are adapted in a slow,
linear manner; and halted objects are included in the background using a locally
precise learning procedure induced by foreground features that remain active
during a long time. Background cells are expelled once their features become
obsolete.

First we define a dual learning procedure for two layers Cpg, Cy, bearing
background and foreground cells, respectively:

L(X,I, Cfg) ifR(XJIJCbg) = @

Ly(x,1I,Chy,Cyy) = { nothing otherwise ©

This procedure allows the creation of foreground cells guaranteeing that they
represent local features that are not present in the background layer.

The algorithm initializes a background memory layer of color cells by learn-
ing all positions from an initial frame. In subsequent frames we first apply the
seed growing strategy using (9). Then we apply the recall-cell function to all
background cells and adapt its score and feature according to the delta rules
given in (5) and (6). If the score of a background cell drops below a thresh-
old, the cell gets removed. This cleans our memory from obsolete features, as
e.g. removed background objects. We also apply the recall-cell function to all
foreground cells and update their score accordingly. After the lifetime of a fore-
ground cell exceeds a certain number of frames it is removed. If one of them has
a particularly high score, it induces learning in the foreground. This implements
the idea that a foreground cell scoring for a large number of frames belongs to
a halted object and should be represented in the background. The pseudo-code
for dynamic background suppression is given in Algorithm 2.

In fig. 3 we show how these cell dynamics influence the segmentation results.
The most important difference is the absorbtion of static objects by the back-
ground; we see the streetcar ghost has disappeared as well as the person standing
at the lower left street corner. Uniform little recall failures are eliminated by the
slow adaptation of the background cell features. In fig. 4 we show how the num-
ber of cells in each memory layer evolves in time. The events on the video are

228 D. Kottow, M. Koppen, and J. Ruiz-del-Solar

reflected in these plots. In general, moving objects that enter the scene induce an
increase in the number of foreground cells and vice-versa. The fluctuation in the
number of background cells, which captures a red-light-event given by a queue
of halted cars, is a direct consequence of the storing properties of memory layers
as described in section 2.3 and reflects the fact that cars are more complex in
term of color features than an empty street.

3.2 Discrimination of Moving Foreground Objects

The PETS 2002 workshop provided some video sequences showing people walk-
ing and standing in front of a shopping window and asked participants to im-
plement algorithms counting the persons passing by and discriminating those
looking at the shopping window. In the following we present an algorithm which
only processes and counts persons standing in front of the window. It does not
track or segment people; it rather discriminates halted foreground blobs from
moving ones (see fig. 5) and integrates their areas in order to estimate the num-
ber of people in front of the window. The algorithm uses three memory layers
for this purpose, a background layer, a layer for moving objects and another for
the halted ones.

We define a triple learning procedure for three layers { = {Cjg, Cso, Cao }
bearing background, halted (static) object and moving (dynamic) object cells,
respectively:

L(x,I,Cq) if R(x,I,Cyy) NR(x,I,Cs,) =10

nothing otherwise (10)

L3(x,I,C)={

This procedure allows the creation of cells for moving objects guaranteeing that
they are neither present in the background layer nor in the layer for halted
objects.

This algorithm (Algorithm 3) is very similar to dynamic background sup-
pression being the main difference the inclusion of the third layer for halted
objects. C,, takes on the role of Cpy in the Algorithm 2, while in this case the
background is not updated at all. Another major difference is the inclusion of
an additional criterion for removing cells from the halted objects layer; if a cell
has only a few neighboring cells it is supposed to belong to a difference in the
background image values due to varying lighting conditions rather than a halted
person and is consequently removed. This condition is checked only after the cell
has reached some maturity, which allows gradual growing of static areas.

We now describe how to estimate the number of halted persons in a frame
given the cells in Cy,. First we compute the number of static object cells ne(x)
contained in a rectangle of width w, centered at the horizontal coordinate x and
extending over the vertical coordinate y up to a height h:

ne(z) = Z Z Z 0(x + dx — z:)0(y — ye) (11)

c€Cso y<h |dz|<w

where §(z) is a discrete (kronecker) delta function. To obtain the number of
halted persons in each frame, we threshold nc(z) and count the number of

Temporal Dynamical Interactions between Multiple Layers 229

nonzero values which are sufficiently far apart in order to belong to different
persons. Once nc(z) is computed for the whole sequence, smoothing along the
time axis is done using a median filter. The results are shown in fig. 6. They
compare very favorable to a subjective ground truth, being the number of esti-
mated people standing in front of the window correct in “95% of the video. Since
the inclusion and the removal of cells is subject to time constants, static cells
survive if they are temporarily occluded by a moving object passing in front of
them, which enhances the robustness of the results. Errors occur when people
stand with their back to the shopping window or slowly walk away along the
y-axis.

4 Conclusions

This work has touched upon two aspects concerning the processing of video
sequences. We introduced a novel way of storing local image features, called
memory layers, and defined operations for recalling and acquiring local image
features. We show that memory layers have some interesting properties when
compared to the storage of local features in a fixed coordinate system: non-
uniform spatial feature density depending on the complexity of the scene, user-
defined parameters for value and position accuracy of the feature representation
and content-memory like behaviour.

In the second part of this work we defined algorithms using multiple memory
layers for event detection in video processing. We focused on events which may be
detected using motion information only, no shape analysis or object tracking is
performed. A significant advantage of such an approach is the ability to directly
focus on global properties that are easy to compute and avoid an exponential
increase in complexity due to many objects in the scene. Naturally, such an
approach restricts the class of events that can be detected with such systems.
We are also working on algorithms using memory layers that allow multiple
objects to be tracked using edge-based local image features instead of color.

References

1. Institut fiir Algorithmen und Kognitive Systeme Kognitive Systeme - Image Se-
quence Server. http://i21wuw.ira.uka.de/image_sequences.

2. Third IEEE International Workshop on Performance Evaluation of Tracking and
Surveillance. http://pets2002.visualsurveillance.org.

3. S. Richetto J.H. Piater and J.L. Crowley. Event-based activity analysis in live
video using a generic object tracker. In Third IEEE Int. Workshop on Performance
Evaluation of Tracking and Surveillance, 2002.

4. B.W. Weide J.L. Bentley and A.C. Yao. Optimal expected-time algorithms for
closest point problems. ACM Transactions on Mathematical Software, 6(4):563—
580, 1980.

230 D. Kottow, M. Koppen, and J. Ruiz-del-Solar

Appendix 1: Figures

Figure 1: Frames 0000 (above) and 0400
(below) from one of the traffic videos avail-
able at [1]. All frames are gray-scale images
of size 768x400.

Figure 2: Color cells of size 3x3 represent-
ing a cutout of frame 0000 shown in fig. 1.

Figure 3: The upper image shows a re-
call of frame 0400 using background cells
learned from frame 0000. The lower image is
the resulting motion segmentation at frame
0400 achieved with the Algorithm 2.

| EARR RN N

Figure 4: The time evolution of the num-
ber of cells in the foreground (left) and
background (right) layer for the traffic
scene video [1].

Figure 5: Frame 0569 from the third
testing video sequence of the PETS2002
dataset [2] (above). Below its representa-
tion using cells computed by Algorithm 3.
Light grey is used for cells from the back-
ground layer, darker grey for the dynamic
and black for the static object layer.

1300,

1200

[~ ?
1100 -
1000,
900 @ (ﬁ
800

0 100 200 300 400 500 600

x—axis

#0f people
®

i [|

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

o

Figure 6: Contour plot of nc(z) (above)
and estimated number of people standing
in front of the shopping window (below).

Temporal Dynamical Interactions between Multiple Layers

Appendix 2: Algorithms

Algorithm 1: Learning by Seed Grow-
ing
LearnBySeedGrowing(S) :
while S # 0:
X < PopItem(S)
if NotProcessed(x):
L(x,1,C)
if NewCell((C):
foreach x, € N(x):

PushItem(S,x,)
endLearnBySeedGrowing
S = {x:} is an ordered set of positions.

PopItem removes and returns the first po-
sition in S. PushItem adds a position to
the end of S. NotProcessed returns false
for any position already processed. NewCell
returns true if the last learning procedure
added a cell to C. N(x) returns the 4-
connected neighbors of x.

Algorithm 2: Dynamic Background
Suppresion.

Initialize(lp,A):

L(A, Io, Chy)

endInitialize

ProcessFrame(/,A):
S < SampleSeeds (A)
Learn2BySeedGrowing(S,Chg ,Cfy)
foreach ¢ € Lyy:
RC(c,I,Cyq); US(c;N); UF(c;A)
if s¢ < Smin:
RemoveCell(c,Chy)
foreach c € Cyy:
RC(c,I,Cfq); US(c;A); ac + ac+1
if ac > aki:
RemoveCell(c,Cyg4)
if S¢ > Shigh:
foreach x € df2(x.,r):
L(X, I7 Cbg)
endProcessFrame
Smin is the minimal score for background
cells to stay alive. a. is the number of
frames a foreground cell has been in alive;
when it reaches ag;;; the cell is removed. If
a cell’s score reaches spigp it induces learn-
ing in the background layer. df2(xo,r) is a
function returning all positions that satisfy
|x — %o < 7.

231

SampleSeeds is a function that evenly sam-
ples the area A. Learn2BySeedGrowing is
the Algorithm 1 using eq. 9 as the growing
criterion. RemoveCell removes a cell from
its memory layer. All other variables are de-
fined in the text.

Algorithm 3: Discrimination of Static
Foreground Objects
Initialize(lp,A):

L(A, Ip, Chg)
endInitialize

ProcessFrame(/,A):
S < SampleSeeds (A)
Learn3BySeedGrowing (S, Chg ,Cso,Cao)
foreach ¢ € Lgy:
RC(c,I,Cs0); US(c;A); ac « ac+1
if (8¢ < Smin)V
(ac > amin A|dR2(c,r,C)| < Nmin):
RemoveCell(c,Cso)
foreach ¢ € Cy,:
RC(c,I,Cq0); US(c; A5 ac + ac+1
if ac > agiu:
RemoveCell(c,Cyo)
if 8¢ > Shigh:
foreach x € df2(x.,7):
L(x,1I,Cso)
CountHaltedPeople (Cs,)
endProcessFrame
Learn3BySeedGrowing is the Algorithm 1
using eq. 10 as the growing criterion.
df2(c,r,C) returns all nearby cells {¢;} in
C whose positions satisfy |x; — xc| < r. if a
cell has less than nn,i, nearby cells and its
age is greater than amsn the cell is removed.
CountHaltedPeople estimates the number
of people standing in front of the window
and is described in the text. All other vari-
ables and procedures are the same as in Al-
gorithm 2.

	1 Introduction
	2 Content-based Memory Layers
	2.1 Basic Definitions
	2.2 Further Definitions
	2.3 System Properties

	3 Event Detection in Video Sequences Usinf Multiple Memory Layers
	3.1 Dynamic Background Suppression
	3.2 Descrimination of Moving Foreground Objects

	4 Conclusions

