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Abstract. This study introduces a new approach based on Bidimen-

sional Empirical Mode Decomposition (BEMD) to extract texture fea-

tures at multiple scales or spatial frequencies. Moreover, it can resolve 

the intrawave frequency modulation provided the frequency modula-

tion. This decomposition, obtained by the bidimensional sifting proc-

ess, plays an important role in the characterization of regions in tex-

tured images. The sifting process is realized using morphological op-

erators to analyze the spatial frequencies and thanks to radial basis 

functions (RBF) for surface interpolation. We modified the original 

sifting algorithm to permit a pseudo bandpass decomposition of images 

by inserting scale criterion. Its effectiveness is demonstrated on syn-

thetic and natural textures. In particular, we show that many different 

elements in textures can be extracted through the bidimensional empiri-

cal mode decomposition, which is fully unsupervised.  

1   Introduction 

Four major texture analysis categories may be identified [1] :  statistical [2],  geo-

metrical [3], model based [4] [5] and multiresolution methods. The multiresolution 

filtering decompositions, which are widely used in computer vision, are inspired by 

visual texture perception. The most commonly multiscale methods used are morpho-

logical decomposition [6], spectrogram [7], AM-FM analysis [8], Wigner-Ville Dis-

tributions [9], Gabor functions [10] and wavelets transforms [11]. These multiresolu-

tion techniques intend to transform images into a representation in which both space 

and spatial frequency information are present. 

Several authors made a comparison of the performance of various operators and 

features for texture segmentation, but they have different points of sights on the most 

suitable method [12]. Moreover, no single approach did perform best or very close to 

the best for all images.  

We present a pseudo bandpass decomposition of texture images, based on Bidi-

mensional Empirical Mode Decomposition (BEMD), firstly introduced in [21]. This 

multiresolution procedure, proposed by Hang in 1D [13],  is such that each spatial 

frequency band of the image is obtained by EMD, according to a predefined criterion 

(neighboring distance). This scale criterion corresponds to spatial frequency bands of 
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the original texture. We also show the adaptability of the bandwidth decomposition, 

by applying it to a variety of textures. 

The paper is organized as follow: in section II, we present a first version of the 

BEMD. A modified BEMD, which integrate a neighboring distance criterion, is given 

in section III. In section IV, texture analysis is described and properties of their re-

sults are examined. In section V, we summarize the results of the study and draw 

conclusions. 

2   Texture analysis based on the BEMD 

The EMD approach has been recently introduced in signal processing by Huang in 

[13]. This decomposition technique is adaptive and appears to be a suitable for non 

linear, non-stationary data analysis. We applied the EMD on image analysis. The 

Bidimensional EMD, introduced in [21, 22] permits to extract zero-mean 2D AM-FM 

components called Intrinsic Mode Functions (IMF). 

2.1   The Bidimensional Empirical Mode Decomposition 

This decomposition, derived from image data, is developed from the simple assump-

tion that any data consist of different simple intrinsic modes of oscillations. Its princi-

ple is to decompose adaptively a given signal into AM-FM components or IMF. Each 

IMF has the same number of zero crossings and extrema (minus one) and each IMF is 

symmetric with respect to the a zero mean. For each mode, the algorithm, which ex-

tracts locally the highest frequency oscillations out of original signal, is called “sifting 

process”. 

2.1.1   Bidimensional sifting process 

Bidimensional sifting process is defined as follow [21]:  

- Detect the extrema (both maxima and minima) of the image I by morpho-

logical reconstruction (hmin/hmax); 

- Compute the 2-D upper and lower envelope by connecting extrema points 

with radial basis functions; 

- Determine the mean m of upper and lower envelopes; 

- Subtract out the mean from the image:  I - m = h 

- Repeat until h is an IMF. 

The EMD repeats bidimensional sifting process, after subtracting of original image by 

precedent IMF, until there is no more IMF, i.e. not enough extrema. It only remains 

the image residue. Components superposition reconstructs the data:  
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To stop the IMF extraction, we used the standard deviation (SD), computed from the 

two consecutive sifting results as: 
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In practice, we have used SD between 0.02 and 0.3 and this stop criteria gives satisfy-

ing results. 
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2.1.2   Regional Extrema detection 

The morphological reconstruction is applied to find all extrema (minima and maxima) 

during the sifting process. Vincent et al [15] [16] proposed geodesic operators 

(hmin/hmax), which permit to extract “domes” or “valleys” of a definite size. For 

more details of this step see [22]. 

2.1.3   Surface interpolation by radial basis functions 

In [13], Huang proposed to use cubic spline interpolation on non-equidistant sampled 

data. We have choice to use the radial basis function (RBF) rather than the bicubic 

spline for different reasons developed in [17], as regularization properties. RBF con-

stitutes a powerful tool for working with 2D data non-uniformly sampled [18]. 

2.2   The modified BEMD 

In 1D, the sifting process may run into difficulties when the data contains intermit-

tency, which will cause mode mixing. Although, these mixed modes can have very 

different frequencies, it causes intermittency occurring in part of the 1D signal. To 

overcome the mode mixing, Huang [19] proposed a criterion based on the period 

length.  

For image analysis, we also propose to introduce a distance or a scale criterion. 

This discrimination enables to obtain modes comprising of the areas having texture 

elements according to a well defined distance between extrema. 

 

2.2.1   Algorithm of Modified BEMD 

The modified sifting algorithm for 2 2  v l , where v  is the original image, 

reads as follows: 

1) Initialise: r  (the residual) and 
0   v 1j  (index number of IMF), 

2) Extract the thj  IMF: 

a. Initialise h r . 
0 1   ,  1j i

b. Extract regional extrema (minima/maxima) of 
1ih . 

c. Search the minimal spatial frequency from extrema. 

i. Compute the distance images from extrema.  

ii. Compute the watershed of distance images 

iii. Select the extrema which have neighbours having neighbour-

ing lower than k times the minimal neighbouring surface, 

where k is a frequency scale factor.  

d. Compute upper envelope and lower envelope functions 
1ix  and  

by interpolating respectively local minima and local maxima of , 

those which check the criterion of the minimal distance. 

1iy

1ih

e. Compute 
1 1 1   /  2i i iym x . 

f. In region surrounding where distance criteria don’t be verified, place 

the original image values in mean envelope. 
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g. Update hi := hj-1 - mi-1, and i := i + 1. 

h. Compute stopping criterion SD (Standard Deviation). 

i. Repeat step (b) to (g) until 
iSD  and put then th

j i j IMFv h . 

3) Update residual rij = rj-1 - j, 

4) Repeat step 1-3 with j := j + 1  until the number of extrema in rj is less than 

two. 

 

We compute the Euclidean distance transform of the binary extrema image figure 

1(b). For each pixel in extrema image, the distance image assigns a number that is the 

distance between this pixel and the nearest nonzero pixel of extrema image. To calcu-

late the lines peaks of the distance image, we use the watershed morphological opera-

tor. 

 

     
(a): original image (b): minima (c): distance image (d): watershed (e): mask image 

Fig. 1. We present a synthetic image, regional minima, the distance images between 

extrema., the watershed computed from distance images and a mask image obtained 

from scale criteria.  

 

The mask image enables to compute the mean of the upper and lower envelopes. On 

the extrema that check the criterion, we apply the sifting process. On the others ex-

trema, we assign to the average image the values of the residual image. This distance 

criterion makes possible the detection of areas corresponding to a definite frequential 

band. Thus, our decomposition introduce a stage of segmentation. 

2.2.2   The choice of scale factor 

In 1D, the period length is introduced to separate the waves of different periods 

into different modes. For image analysis, we propose to introduce a distance or a 

scale criterion. Initially, the value of k can be given in an empirical way. From the 

image of the extrema, we build the histogram of the points distributions in frequency 

bandwidth. By statistical measurements, a scale factor is estimated in each mode. 

3   Results and discussion 

We chose the EMD, as their good discrimination properties of scale and spatial fre-

quencies are well-known in 1D. We applied BEMD at textured images. Our approach 

gives a simultaneous representation of an image in space and spatial frequency repre-

sentation. It is an unsupervised texture decomposition.  
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3.1   Texture extraction 

Since sifting process extracts firstly the highest frequency, the first modes correspond 

generally to the noise. Conversely, the image tendency is contained in the latest 

mode. The tendency can be represented by a polynomial of order relatively low (0, 1, 

2, 3). 

 

  
(a): original image    (b): mode 1    (c): mode 2    (d): mode 3       (e): residue image 

Fig. 2. Brodatz image is decomposed by BEMD in 3 modes and a residue image. 

    Figure 2(a) shows the D11 brodatz texture [20]. The BEMD is shown in figure 2(b, 

c, d and e) and is clearly useful for discriminating the texture features: broad band 

vertical and fine oblique bands. 

 

    
      (a): original image      (b): mode 1  (c): mode 2          (d):  residue image 

Fig. 3. Synthetic image is decomposed by BEMD in 2 modes and a residue image. 

Figure 3(a) shows a synthetic image with a juxtaposition of textured regions, 

which have different spatial frequencies and orientations. The results of BEMD are 

shown in figure 3(b, c and d). We chose a scale criteria k equal to 10.The first IMF 

corresponds to the areas of image where the local frequency is included in the band-

width of minimal frequency and 10 times minimal frequency. 

 

    
    (a): original image  (b): mode 1         (c): mode 2          (d):  residue image 

Fig. 4. Experimental results of Lena image is decomposed by BEMD in 2 modes and 

a residue image. 

We apply modified BEMD on Lena image Figure 4(a) decomposed in 2 modes and 

the residue Figure 4(b, c, d). k is equal to 80. This decomposition allows a unsuper-

vised texture segmentation. The edges are extracted in the first modes. 
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3.2   Discussion 

A benefit of bidimensional Empirical Mode Decomposition is their high conjoint 

resolution, which means that their response (mode) is highly localized in both space 

and spatial frequency and is adaptive with respect to the global information . In 1D, 

Huang proposed a pseudo bandpass to extract intermittencies. Scale criterion can be 

computed automatically and rather than given in an empirical way. During the sifting 

process, we statistically study the size of the areas of neighboring defined by water-

shed lines of distance images.The modified EMD are also suitable for texture seg-

mentation. We estimate a criterion of scale but we can also estimate a shape criterion 

corresponding to the areas of neighboring. The shape criterion could be geometrical 

characteristics as compactness, eccentricity, direction, …  

4   Conclusion 

We developed an algorithm based on BEMD, introuduced in [21] for texture ex-

traction, and demonstrate its effectiveness on synthetic and natural textures. It pro-

vides a powerful characterization of the local texture structure. We have modified the 

bidimensional sifting process to permit a pseudo-bandpass decomposition by insert-

ing a scale criteria. By combining EMD with scale criteria, we extract texture fea-

tures. This could be computed during the sifting process from the neighbouring dis-

tance and shape between extrema. This texture analysis method is fully unsupervised 

and includes a segmentation process. 
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