
Real-Time Tracking of Video Sequences
in a Panoramic View

for Object-Based Video Coding

Matthijs Douze1 and Vincent Charvillat1

1IRIT/ENSEEIHT,
2 rue Camichel,

31071 Toulouse cedex 7, France
{douze, charvi}@enseeiht.fr

Abstract. We present a real-time tracking system that uses a panoramic
view of the scene as a reference. This view is captured with a special-
ized camera we developed. The tracking is robust, as it is not fooled by
small objects that move differently from the background. Therefore, we
can segment those objects, and code the different video object planes
separately.

Introduction

In this article, we present a tracking technique for video frames with respect to
a panorama captured by a specific camera. Within very favourable experimental
conditions, we can solve in real time the tricky problems of the new geometric
approaches of video coding, such as those considered in the MPEG-4 norm (dom-
inant motion compensation, spatiotemporal object segmentation, object-based
coding of video).

To do this, we implemented a sparse tracking method based on homographies.
Firstly, we present the way the data is captured, and the corresponding ge-

ometric model. Then we present our tracking method. Finally, we describe the
video coding application of the method.

1 Shooting a Panorama

Realizing a panorama from a range of views has several drawbacks:

– the images are captured at different moments, so they are sensitive to envi-
ronmental variations (especially illumination);

– the elementary images must be centred carefully;
– geometric aberrations are difficult to compensate.

Our panoramic camera partially addresses these drawbacks.
A continuous scan provides in one pass a panorama without any join. Joining

the two sides of the panorama is not a geometric issue. The only geometric

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 1022−1029, 2003.
 Springer-Verlag Berlin Heidelberg 2003



(a) (b) (c)

Fig. 1. Panorama (b) as seen by our camera (a), and one of the four remapped views
(c).

aberrations are in the vertical direction: all non-vertical lines in the scene appear
curved. This curvature is regular and continuous, it can be corrected easily on
partial views.

A linear three-band CCD is mounted vertically and turns around a vertical
axis, that crosses at right angles to the optical axis. The horizontal stroke covers
380◦, and the optics provide a vertical view angle of 60◦. The vertical resolution
of the picture is that of the CCD, 2500 pixels. The horizontal resolution depends
on the rotation speed. Typically, a 3500 pixel wide picture takes 70 seconds to
capture.

The image produced by the panoramic camera is a cylindrical projection.
However, we need a classical perspective projection to do homography-based
matching. Therefore, the panorama has to be rectified to simulate this type
of projection. We convert the panorama to four usable pictures, each of them
covering 90◦ of the horizontal track (figure 1).

2 The tracking algorithm

After this, we shoot the scene with a classical video camera and we want to
remap the image sequence with respect to the panorama. This is possible if the
scene is motionless (this condition is relaxed in section 3.3) and if the optical
centre coincides with the optical centre of the panoramic camera (in other words,
the camera may only turn and zoom in and out).

2.1 Description of the problem

We can remap the transformed panorama I with a frame It of the video sequence
using a homography. There exists µ = [h1 · · · h8]� such that, for any 3D
point which has projection (x, y) on I and (x′, y′) on It:[

x′

y′

]
= h

(
µ,

[
x
y

])
=

[
h1x+h2y+h3
h7x+h8y+1
h4x+h5y+h6
h7x+h8y+1

]
The parameter vector µ must be estimated for each frame of the video se-

quence. To solve this problem, we first investigate a classical tracking problem.
Then, we will adapt the solution to our panoramic case.

1023Real-Time Tracking of Video Sequences in a Panoramic View



I

It

µt

x

h(µt, x)

Fig. 2. Remapping of panorama I with frame It of the video sequence.

2.2 Point-based tracking with a homography model

The data of the problem are an image sequence (It)t∈N and an interest region,
J0, on I0. This region, quadrilateral-shaped, is inside the image of the object
that has to be located in the following frames.

Modeling We suppose that the movement of the object’s image can be de-
scribed by a homography. That is, at frame t, the homography with parameters
µt maps from J0 to It. This model is correct, in particular, when the object is
planar.

We assume that the image of a 3D point does not change colors (graylevels
in our case). Then, we can say:

∀x ∈ J0, It(h(µt, x)) = I0(x)

where I(x) is the graylevel of point x on image I. h(µ0, x) = x.
We assume also that, between the shots, the motions of the object and the

camera are small. This induces that the difference ∆µt = µt − µt−1 is small,
so that we can use µt−1 as a close initial estimate of µt. We are going to do
sparse tracking: we use only a subset of J0, K0 = (x1, ..., xn) (called reference
points). Thus, tracking consists in finding the series (µt)t∈N that mimimizes the
quadratic differences

Ot(µ) =
∑

x∈K0

(It(h(µ, x))− I0(x))2 µt = argmin
µ
Ot(µ)

Resolution We implement three methods to solve the problem: a non-linear
method [4], the method found by Hager and Belhumeur [1], and that by Jurie
and Dhome [2].

It is convenient to break down each method in two stages:

1. Learning stage: uses only I0. The algorithm chooses the reference points K0.
It records their graylevels G0 = (I0(x))x∈K0 .

2. Tracking stage: using graylevels Gt = (It(h(µt−1, x)))x∈K0 , the algorithm
attempts to find ∆µt that minimizes Ot(µt−1 + ∆µt). This stage executes
in real time.

1024 M. Douze and V. Charvillat



Fig. 3. Frame of a video sequence and its reference points. The quadrilateral represents
J0. The interest points are in black, the regular ones are in grey.

How to chose the reference points We need tens of points to get a reliable
estimate of the homography. We use a melt of Harris’ interest points [5] and
arbitrarily spread regular points (figure 3).

Estimating ∆µ The non-linear (NL) method [4] directly minimizes the cri-
terion Ot(µ). This is a non-linear least squares problem, thus it can be solved
with an iterative Levenberg-Marcquart algorithm [6].

Basically, the Hager and Belhumeur [1] method (HB) consists in doing (only)
one Gauss-Newton optimization step (as used in the Levenberg-Marcquart algo-
rithm). However, they compute the derivative of the objective function on It−1

instead of It. This simplifies the computations, as µt−1 can be used to boil down
to I0.

The performance of both algorithms in terms of robustness and precision
depend largely on how the image and its gradient are sampled. For the NL
method, we are using a precise implementation, which is based on a bilinear
interpolation. In this case, the algorithm is very accurate (sub-pixel), but it
needs a close estimate of the solution to converge. For the HB method, we use
gaussian-filtered samples.

In the Jurie and Dhome [2] method (JD), we begin with a costly learning
stage. During this stage, we simulate experiments that consist in applying a
disruption on the points of K0 by random homographies µ′ = µ0 + ∆µ, and
measuring the resulting graylevel variation vector at the reference points ∆G =
(I0(h(µ′, x))x∈K0 − G0. When the disruption is not too big, ∆µ and ∆G are
related linearly:

∆µ ≈ A∆G
by carrying out N (� n) such experiments, we can estimate matrix A in the
least squares sense.

During the tracking stage, we measure ∆Gt = Gt−G0, and compute ∆µ′ =
A∆Gt, which is a disruption of µ0. By a composition of homographies similar

1025Real-Time Tracking of Video Sequences in a Panoramic View



to a coordinate change, we can compute the corresponding µt:

µt = µt−1 ∗ inv(µ0 +∆µ′)

where “∗” and “inv” denote homography composition and inversion, respectively.
Depending on the standard deviation σ of the random disruptions during the

learning stage, we can adjust the robustness-precision tradeoff: if σ is big, the
tracking is less prone to “loose” its target, but it shakes more, and vice versa.

Synthesis One of our contributions has been to combine the three methods. We
apply the more robust methods first, then the more precise ones, as described in
figure 4. The (Ai)i=1..e matrices are obtained during the learning stage by ap-
plying disruptions with decreasing standard deviations: σ1 > σ2 > · · · > σe. The
function sample samples the graylevels at the reference points; HB tracking and
NL tracking respectively implement the HB and NL (three iterations) methods,
using µ as an inital estimate. At each stage, we make sure that the new estimate
lowers the criterion.

We carefully tuned the parameters of the algorithms to get the best robustness-
precision compromise (section 3.1). If the number of iterations is reasonable, this
technique can be carried out easily in real time.

2.3 Adapting to the panoramic case

In our panoramic case, I corresponds to I0. An ad hoc method provides the
position of the first frame. The problem is: what will the interest region J0 be?
the same object is not guaranteed to be seen on the whole image sequence.

The tiles Therefore, we use various interest regions (tiles) that cover the whole
panoramic image. The tiles are not necessarily disjoint. We choose tiles small
enough so there is at least one seen on each video frame, but big enough for the
estimation to remain relevant. For each tile, we choose a set of interest points,
and we do a learning stage (figure 5(b)).

During the tracking stage, we use µt−1 to calculate which tiles are wholy
seen on image It−1. We compute a µt for each of these tiles.

Combining the results The corners of each tile provide 4 points. Thus, if we
use r tiles, we have 4r point correspondences, and 8r equations in the components
of µt. This problem could be soved using least squares, but a more robust method
is described in section 3.3.

3 Experiments and applications

3.1 Finding optimal parameters

We tested the method on a synthetic image (of 1024× 1024 pixels) that rotates
faster and faster (from 2◦ to 20◦ between two frames). We know the ground

1026 M. Douze and V. Charvillat



Tracking stage
input: µt−1, It.
from learning stage: K0, G0, (Ai)i=1..e.

µ←− µt−1 -- current estimate of µt

G←−sample(It,K0, µ)
ε←− ‖G−G0‖2 -- the criterion for the current µ
For i from 1 to e+ 2 do

If i ≤ e then -- e Jurie and Dhome computations
µ′ ←− µ ∗ inv(µ0 +Ai(G−G0))

elsif i = e+ 1 then -- one Hager and Belhumeur computation
µ′ ←−HB tracking(It,K0, µ)

else -- some non-linear iterations
µ′ ←−NL tracking(It,K0, µ)

endif
G′ ←−sample(It,K0, µ

′)
ε′ ←− ‖G′ −G0‖2
If ε′ < ε then -- retain the new µ if it lowers the criterion

µ←− µ′
ε←− ε′; G←− G′

endif
endfor
µt ←− µ

Fig. 4. Tracking stage of our algorithm.

truth in this case, so we can define a more reliable validation criterion than Ot,
which is:

εt =
4∑

i=1

‖ wi − h(inv(µt), h(µ̂t, wi)) ‖2

where (w1, w2, w3, w4) are the coordinates of the corners of J0, µt and µ̂t are
respectively the ground truth and the estimated parameters. When εt grows
above an arbitrary threshold (s = 400, corresponding to an error of 10 pixels per
corner) we consider the target is “lost” and stop tracking. The time t∗ before
the target is lost indicates the robusteness of an algorithm. The average value ε̄
of (εt)t<t∗ indicates its precision.

We found the best combination of regular and interest points, and N , the
number of experiments of the JD learning stage. Then we tested different se-
quences of tracking methods (table 1). The sequence offering the best robustness-
precision compromise is: (σ1, σ2, σ3, σ4) = (12.5, 10, 5, 2.5).

3.2 Implementation

To handle real images, we made a program that processes a digital video stream
on a 866 MHz PowerPC. The decompression of the 25 fps DV stream leaves
about 20 ms per frame to carry out the tracking computations.

1027Real-Time Tracking of Video Sequences in a Panoramic View



methods applied t∗ ε̄

NL 9 50.41
HB 59 74.55
JD 5 103 80.42
HB, NL 42 48.79
JD 5, NL 105 61.35
JD 5, HB 163 33.00
JD 5, HB, NL 154 33.52
JD 5, JD 2.5, HB, NL 332 43.81
JD 10, JD 5, JD 2.5, HB, NL 305 10.30
JD 12.5, JD 10, JD 5, JD 2.5, HB, NL 451 11.03
JD 15, JD 10, JD 5, JD 2.5, HB, NL 453 12.44
JD 20, JD 10, JD 5, JD 2.5, HB, NL 175 10.58

Table 1. t∗ and ε̄ for different method sequences. JD σ=JD method with standard
deviation σ during the learning stage.

We optimized the most costly computations with vector instructions, so that
we need about 2 ms per tile. There are usually 6 to 12 tiles per frame, so we can
handle the stream without dropping frames too often (dropping frames makes
tracking more difficult). The display is asynchronous. To take into account the
difference of CCD responses, we apply a chromatic correction calibrated during
the learning stage.

3.3 Outlier detection

We want our tracking technique to be robust with respect to moving objects
that hide part of the scene. We do this during the tile merging stage. We use an
adapted LTS [7] technique to find the tiles yielding results that are incoherent
with the majority of the tiles. This works when the objects are not too big, i.e.
few tiles are contaminated.

3.4 Video coding

We want to use this method to stream the video sequence. To do this, we first
send the background panorama. Then, in a separate stream, we send the moving
objects video, with the homography parameters used to combine the two. This
a VOP method described in MPEG-4 [3].

To isolate the changing objects between two images, we use a thesholded
pixel-to-pixel difference between the panorama and the frames. We also remove
the regions that are too small to be considered objects with a morphological
opening (figure 5(f)).

Conclusion

The contributions of our tracking method are:

1028 M. Douze and V. Charvillat



(a) (b) (c)

(d) (e) (f)

Fig. 5. Panorama (a), some of its tiles (b); frame of a video sequence (d), remapped
to the panorama (c); thresholded difference (e), and extracted “object” (f).

– it uses a panorama as a reference image,
– it improves existing tracking techniques while remaining in real time,
– it is the beginning of a real time foreground/background MPEG-4 encoder.

We need to improve the tuning of the parameters and the speed of the robust
estimation. We want to map the first frame with the panorama automatically
during the learning stage.

References

1. Gregory D. Hager and Peter N. Belhumeur, Efficient Region Tracking With Para-
metric Models of Geometry and Illumination, IEEE PAMI, Vol. 20, oct 1999, p.
1025-1039

2. F. Jurie and M. Dhome. Hyperplane approximation for template matching. IEEE
PAMI, 24(7), pages 996-1000, 2002.

3. ISO, Overview of the MPEG-4 Standard, Melbourne, October 1999.
4. M. Black and A. Jepson, Eigentracking: Robust matching and tracking of articulated

objects using a view-based represesentation, IEEE PAMI, 20(10):1025-1039, 1998.
5. C. Schmid and R. Mohr and C. Bauckhage, Evaluation of Interest Point Detectors,

IJCV, 37(2):151–172,2000.
6. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimiza-

tion and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ, 1983.
7. P. J. Rousseeuw, and K. Van Driessen, Computing LTS Regression for Large Data

Sets, Technical Report, University of Antwerp, 1999.

1029Real-Time Tracking of Video Sequences in a Panoramic View


	Introduction
	1 Shooting a Panorama
	2 The tracking algorithm
	2.1 Description of the problem
	2.2 Point-based tracking with a homography model

	3 Experiments and applications
	3.1 Finding optimal parameters
	3.2 Implementation
	3.3 Outlier detection
	3.4 Video coding

	Conclusion

