

J.M. Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp. 417–426, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Modeling Applications for the Semantic Web

Fernanda Lima and Daniel Schwabe

Depto de Informática, PUC-RIO, R. Marquês de São Vicente, 225, Gávea,
Rio de Janeiro – RJ – 22453-900 – Brasil

{ferlima, schwabe}@inf.puc-rio.br
http://www-di.inf.puc-rio.br/~schwabe

Abstract. This paper proposes the Semantic Hypermedia Design Method,
SHDM. By extending OOHDM with primitives taken from Semantic Web
languages such as DAML+OIL, we show how a larger, easier to evolve, set of
applications can be specified. Such applications also allow tapping the richness
of resource descriptions that are becoming available with the Semantic Web.

1 Introduction

The Semantic Web is currently an active topic of research and industry efforts, as it is
regarded as the next evolutionary step of the current Web. The main goal of this
future Web is to have a large amount of data available with its metadata, to help
machines and humans find and process useful resources as well as reuse data across
various applications [21].

The major emphasis so far has been in the search for useful resources, and many
interesting proposals for organizing and searching Web data based on the Semantic
Web are being put forward. For most people, though, the Web is important because of
the functionality provided by Web applications, through which they can not only
access, but also process the information stored in the Web itself. Therefore, much of
the Semantic Web’s promise can only be delivered if Web applications are able to
fully take advantage of its added (meta) information. Therefore, in addition to
metadata about Web resources, we must also provide metadata about applications.

We have been investigating Web application design models for several years in the
context of Object Oriented Hypermedia Design Method (OOHDM) [9, 8]. Being a
model-driven approach, it stands as a logical candidate to be integrated with the
Semantic Web approach, since its models can be used as metadata describing the
application. Our goal is to provide authoring methods that help designing applications
that can tap on the Semantic Web. In particular, the purpose of this paper is to show
that we can express this information building SHDM - Semantic Hypermedia Design
Method, a new version of the original method. A complementary goal is to evolve
more traditional design methods such as OOHDM by enriching the languages used to
specify its various models with Semantic Web languages such as RDF [16], RDF
Schema (RDFS) [17], DAML+OIL [19], and OWL[22], while keeping the basic
underlying fundamental abstractions.

418 F. Lima and D. Schwabe

In addition to these general languages, we also enrich navigation modeling by
providing primitives to specify Faceted Navigations, where we can express
abstractions for faceted access structures and faceted contexts in a concise model.
This allows the design of richer access structures, providing the user with more
flexible ways to reach the set of objects that are relevant to task at hand. We also offer
primitives that allow the Web application designer to describe concisely hierarchical
faceted metadata.

This paper is organized as follows. In Section 2, we describe the main concepts of
the SHDM method, its main design steps, showing how one can take advantage of
more expressive modeling primitives extending the original OOHDM, both for data
and navigational models. In this section, we use an Art Ontology as an example to
show a summarized example of the method. In Section 3 we conclude and make brief
comments about our future work.

2 The SHDM Method

One of the cornerstones of OOHDM is that it explicitly separates conceptual from
navigation design, since they address different concerns in Web applications.
Whereas conceptual modeling and design must reflect objects and behaviors in the
application domain, navigation design is aimed at organizing the hyperspace taking
into account users’ profiles and tasks. Navigational design is a key activity in the
implementation of Web applications and we advocate that it must be explicitly
separated from conceptual modeling [8].

The foundations mentioned above are maintained in this new version of the method
called SHDM, enriched with several new mechanisms inspired by the languages
being proposed for the Semantic Web. The first step is treating “information items”
described in described in the Conceptual Model, and in the Navigation Class Model
of OOHDM as resources manipulated in Semantic Web languages, such as the W3C
Resource Description Framework (RDF), which is used to describe resources and
their properties. By generalizing the concept of "Web resource", RDF can be used to
represent information about anything that can be identified on the Web. The
characterization of resources in SHDM is done using ontology definition languages
such as RDF Schema, DAML+OIL and the recent “work in progress” W3C Web
Ontology Language (OWL), expressing more advanced features such as constraints
(restrictions), enumeration and datatypes according to XML Schema1.

We would like to stress that, even though we know that the Semantic Web
underlying framework (RDF) is not object-oriented (OO), we still find it useful to use
some of the OO modeling principles, mainly because it decreases the level of
granularity, suppressing details by allowing grouping of descriptions.

1 In our examples we used DAML+OIL only because OWL in still at “W3C Working Draft”

status, i.e., not completely specified as a Recommendation. Since OWL is derived from the
DAML+OIL we plan to make any adaptations easily as soon as it reaches a more mature
status.

Modeling Applications for the Semantic Web 419

In this paper we focus more on the main SHDM novelties; more details can be
found in [4]. In the following subsections we will specify two of the activities, namely
Conceptual Design and Navigational Design.

2.1 The Conceptual Design

During the SHDM Conceptual Design step we build a model (the Conceptual Model)
showing classes and their relationships specifically related to a domain. Classes are
described as in object-oriented (OO) UML models [6] with three distinguished details
on attributes: they can be multi-typed (representing different perspectives of the same
real-world entity), they are described with multiplicity (referring to the number of
times the attribute may occur in instances) and they can have explicit enumerations
(defining the possible values for that attribute in instances). Relations are described
also as in OO UML models, with one additional detail: relations can be specialized
creating subrelation hierarchies.

The conceptual model obtained using the UML class diagram can be mapped to a
RDF/XML serialization format according to heuristic rules [4] summarized next. In
the following subsections we present the notations of the new Conceptual Model
primitives, their general semantics and their mapping to one of the Semantic Web
languages, DAML+OIL.

When comparing the object-oriented model (OO) with the RDF model it is
possible to state that the concepts of classes and subclasses (specialization and
generalization relations) can be modeled equivalently. However there is a significant
difference in modeling OO attributes and OO association relations in the RDF model.
These two OO abstractions are modeled through RDF properties indistinctly, i.e., in
RDF models there is no distinction between a property that describes a class
(attribute) and a property that describes an association relation with another class. In
addition, RDF properties can be specialized through subsumption relation, allowing
the creation of subproperties. Our Conceptual Schema takes advantage of these
characteristics as shown below; for reasons of space, only the main ones are detailed.

Every class is mapped to a DAML+OIL Class, modeling attributes and
relationships as properties. We use DAML+OIL extensions defined as Datatype and
ObjectType Properties to represent attributes and relationships, respectively. Attribute
multiplicity is mapped to minCardinality and maxCardinality on specific properties.
Attribute enumerations are mapped to the constructor one of, providing a means to
define a class by direct enumeration of its members, in such a way that no other
individuals can be declared as belonging to the class. Datatypes are defined as in
XML Schema.

In addition to defining classes and instances declaratively, DAML+OIL and other
Description-Logics languages let us create intensional class definitions using Boolean
expressions and specify necessary, or necessary and sufficient, conditions for class
membership. These languages rely on inference engines (classifiers) to compute a
class hierarchy and to determine class membership of instances based on the
properties of classes and instances [5]. SHDM incorporates these Semantic Web
languages approaches using Inferred Classes, represented graphically as UML
stereotypes (see Fig. 1).

420 F. Lima and D. Schwabe

 <<inferred>>

Cubist

< daml:Class rdf:ID="Cubist">

 <daml:intersectionOf rdf:parseType="daml:collection">

 <rdfs:Class rdf:about="#Painter"/>

 <daml:Restriction rdf:about="#Cubism-Restriction"/>

 </daml:intersectionOf>

</daml:Class>

<daml:Restriction rdf:ID="Cubism-Restriction">

 <daml:onProperty rdf:resource="#style"/>

 <daml:hasValue rdf:resource="#Cubism"/>

</daml:Restriction>

<daml:Class rdf:about="Cubist">

 <daml:Restriction>

 <daml:onProperty rdf:resourc e="#style"/>

 <daml:hasValue rdf:resource="#Cubism"/>

 </daml:Restriction>

</daml:Class>

<daml:Class rdf:about="#Cubist">

 <rdfs:subClassOf rdf:resource="#Painter"/>

</daml:Class>

Fig. 1. Inferred Class, with two alternative DAML+OIL equivalent definitions

This simple example states that a “painter” belongs to the “cubist” class if the
property value of his/her style is “cubist” or that the “painter” subclass cubist is the
intersection of classes “painter” and the set of resources whose “style” property
satisfies the condition of having its value equal to “cubist”. Since this language relies
on inference engines to compute a class hierarchy, we could validate our model using
any DAML+OIL inference engine. Other than the inferred classes, we defined in our
metamodel another stereotype to represent class hierarchies with arbitrary depth,
called “arbitraryClassHierarchy”, but due to space restrictions we will not detail it in
this article.

2.2 The Navigational Design

During the Navigation Design step we produce a Navigational Model over a
conceptual domain, according to user profiles and the tasks that will be supported. As
stated in [9, 8], during Navigation Design we are interested in specifying which
objects will be reached by the user (the nodes) and the relations between these nodes
(the links). We also specify the sets of objects within which the user will navigate
(called contexts) and in which way s/he will access these contexts (the access
structures). We are also able to specify different contents for the nodes according to
the contexts within which they are reached (inContext classes). The basic SHDM
navigation primitives are defined at this point, as in OOHDM.

For SHDM, we have identified the need to model some new access structure
primitives in order to take advantage of the increased availability in the WWW of
taxonomies, which we have named Faceted Access Structures, inspired by the facet
concept initially proposed in library and information sciences [7]. Simply put, a facet
can be considered as a category. In [12] Taylor defines facets as “clearly defined,
mutually exclusive, and collectively exhaustive aspects, properties, or characteristics
of a class or specific subject”.

In a faceted classification scheme, the facets may be considered to be dimensions
in a Cartesian classification space, and the value of a facet is the position of the
artifact in that dimension. Within each facet, subfacets or more specific topics are
listed. The breakdown continues into subfacets within subfacets. The items in each

Modeling Applications for the Semantic Web 421

subfacet, in general, are ordered from more general to more specific, complex or
concrete.

We define facet hierarchies based on our navigational attribute types- which are in
fact metadata about our Web application. Each hierarchy is defined independently, in
order to organize content along a particular dimension. This will be exemplified later
on.

Navigational Contexts remains a very important navigational primitive in our
approach, since it allows us to describe sets of navigational objects relevant to the
user during a task. The novelty lies in the fact that the language used to define
contexts is more expressive than the previous one.
Next we show the notations of the new Navigational Model primitives, together with
their mapping to a Semantic Web language such as DAML+OIL.

The Navigation Design activity generates two schemas, the Navigational Class
schema and the Navigational Context schema. The first defines all navigable objects
as views over the application domain. The navigable relations are links between nodes
and also the new subrelations that allow a new type of navigation based on
subsumption relations between links. The second schema defines navigational
contexts (the main structuring primitive for the navigational space), access structures
used to reach these contexts and links that connect them.
The representation of navigational classes is graphically identical to OOHDM, using
the same innovations introduced for conceptual attribute notations. Navigational
classes represent views of conceptual classes, including directly mapped conceptual
attributes, derived attributes and also attributes from other conceptual classes. The
mappings are specified using an RQL [3] query, exemplified below.

 RQL mapping:

RQL query Description
select y from { Artist } firstName { y } retrieves the firstName of Artists
select y from {x} creates { y }
 where x= “parameterA”

retrieves all Artifacts of a specific
Artist

As in the conceptual schema, SHDM also allows sub-relations in the navigational
class schema.

In addition to using sub-relations defined in the conceptual model, it is possible to
use sub-relations in the mapping of the conceptual model into the navigational class
model. For example, it is possible to define navigational sub-relations of “creates” by
restricting its subclasses, for instance, only those whose counter-domain is a subclass
of Painting. In Fig. 2 we illustrate a combination of DAML+OIL and RQL to specify
the mapping from the conceptual to the navigational model (identified with
namespace shdm).

A context groups objects related to each other by some aspect (e.g., common
attributes or being related to a common object) and organizes these objects as sets of
nodes, defining in which way they may be accessed (e.g., sequentially).
Navigation contexts may be further specified as groups of contexts, since it is possible
to sometimes parameterize their defining property. For example, “Sculpture by
Material” is actually a set of sets; each set is a context, determined by one value of the
“material” attribute.

422 F. Lima and D. Schwabe

<daml:ObjectProperty rdf:ID="etches">

 <daml:subPropertyOf rdf:resource="#creates">

 <shdm:rql query:value =”select y from { x } creates { y : cult:Watercolor” }

 <!-- retrieves all instances according to the description in the text above -->

 <daml:range rdf:resource="#Painter"/>

 <daml:domain rdf:resource="#Watercolor"/>

</daml: ObjectProperty >

Fig. 2. Navigational Class attribute mapping using sub-relations

There is an analogous definition for contexts whose property is based on 1-to-n
relations, such as “Sculpture by Sculptor”.

Access structures are indexes (collections of links) that allow the user to reach
navigation objects (within some context). SHDM allows defining both Access
Structures and Navigational Contexts using meta-data properties. The
<<subClassOf>> stereotype indicates that the corresponding element (access structure
of navigational context) is a set of elements, one for each sub-class.

Artists

Artifact

<<subClassOf>>

By Artist

<<BySubClassOf: Artist>>

RQL mapping:

RQL query Description
http://www.icom.com/schema.rdf#Artist retrieves the IDs of Artist instances
select y

from { x }creates { y } where x= “parameterA”
retrieves the IDs of Arti facts that were
created by a chosen Artist (the
parameter). This query includes the
subrelations paints and sculpts

select y
from { x }paints { y }
 where x= “parameterA” and $y=Paintings

retrieves the IDs of Painting that were
created by a chosen Artist/Painter
(the parameter)

Fig. 3. Access Structures and Navigational Contexts defined based on meta-model properties

In Fig. 3 we show the graphical notation, and the RQL statements for an example.
In The Artist access structure represents a list of links to all artists (the order is
specified in the corresponding card). The inner dashed box represents sub-sets of
Artist defined according to its subclass, for example Painter and Sculptor. The context
Artifact by Artist that is composed of all artifacts created by a specific artist. This
context can be access by choosing an artist as a parameter of selection. The innermost
box signifies that the user can also choose any subclass of Artist to group the artifacts.

Faceted Access Structures and Faceted Navigational Contexts are defined using the
<<faceted>> and <<ByValidFacetComb>> stereotypes. In Fig. 4 the outside dashed
box denotes the valid combinations of facets to reach the Artifact navigational class
and three inside dashed boxes that indicate the possibility of choosing just one of the
facets. The context Artifact by ValidFacetCombination exemplifies the possibility of

Modeling Applications for the Semantic Web 423

accessing Artifacts by any combination of Region or Style. Similarly, Artifact by
Style – Faceted stands for all sets of artifacts grouped by Style and by its subclasses.

Faceted elements are detailed in the corresponding specification cards, illustrated
in Fig. 5. The designer can use a graphical notation to annotate in the facet hierarchies
numbers that represent the invalid combinations. When the designer describes the
combinations, he/she does not have to make it extensively; it is enough to only
annotate the nodes that are superclasses of the invalid combinations, at any level of
the trees. The enumerated combinations can be generated by an algorithm such as
proposed by Tzitzikas in [13].

Artifact <<Faceted>>

Style

Region

By Style <<faceted>>

By Region <<faceted>>

<<By ValidFacetComb>>

Fig. 4. Faceted Access Structures and Faceted Navigational Contexts

Faceted Access Structure:

The Facets are:
 Facet #1 Facet #2 Facet #3

Style

�Renaissance �Barroque

�Region

�Africa Europe

Spain France Zimbabwe

Time Period

21st century �14th century 15th cent

The non-graphical notation for facet combination is:
� FacetName1 + FacetName2+FacetName3 +…

� FacetName1 + FacetName2+FacetName3 +…

Valid facet combinations are:
Renaissaince>TimePeriod>Europe (ie, all combinations of TimePeriod values and Region>Europe values)
Barroque>15th century>Region
Barroque>21st century>Region

Example of the concise declarations of invalid

facet combinations are:
� Renaissance+ Africa
� Barroque+14th century

Explicitly the invalid facet combinations are:
Barroque>14th century>Region
Barroque>14th century>Africa
Barroque>14th century>Europe
Barroque>14th century>Africa>Zimbabwe
Barroque>14th century>Europe>Spain
Barroque>14th century>Europe>France
Renaissance>Africa

Renaissance>Africa>Zimbabwe

Fig. 5. Navigational Faceted Access Structures Specification Card

We developed an example inspired by a Museum example [2] that we briefly
outline, focusing on illustrating the novelties in the navigation schemas.

Fig. 6 presents the Conceptual Model for the example. The superclass Artist has an
association relation (“creates”) with the superclass Artifact, specialized by: “paints”
and “sculpts”, meaning that whenever somebody paints something, he/she is also
creating it. It also means that a query for the instances of this model to ask for domain
and range of the “creates” relation will also retrieve the union of the subrelations.

424 F. Lima and D. Schwabe

Fig. 7 shows the Navigational Class schema. Notice that node Artifact includes
attributes that did not belong to the original Conceptual Class, such as style.

{overlapping,
incomplete}

0..* 1..*
createdIn

Cubist

Flemish

Sculptor

1..* 1
creates

sculpts

paints

Artist
firstName: xsd:string
lastName: xsd:string
email[0..*]: xsd:string

Artifact
name: xsd:string
creationDate: xsd:gyear

Sculpture
weight: xsd:long

Painting
technique: xsd:string

Painter
/styles[0..*]: Style

Style
name: xsd:string
description: xsd:string

1..* 1..*
hasStyle

Region
name: xsd:string
description: xsd:string

1..*

1
exhibitedIn

Museum
name: xsd:string
description: xsd:string

{overlapping,
incomplete}

Artifact
 {from ac: Artifact }
name: xsd:string
creationDate: xsd: date
museumName: m:Museum, m.name where ac exhibitedIn m
artistName: anchor (Ctx Artist Alpha (a:Artist where a creates ac))
styleName: anchor (Ctx Style Alpha (s:Style where ac hasStyle s))
creationRegion: anchor (Ctx Region (r: where ac createdIn r))

1..* 1..*
createdIn

Sculptor
sculptures: Idx

Sculptures By
Sculptor (self)

1..* 1
creates

sculpts

paints

Artist
 {from a: Artist}

firstName: xsd:string
lastName: xsd:string
email[0..*]: xsd:string
artifacts: Idx Artifacts By Artist(self)

Sculpture
weight: xsd:long

Painting
technique: xsd:string

Painter
/styles[0..*]: Style
paintings: Idx Paintings

By Painter (self)

Cubist

Flemish

Region
 {from r: Region }

name: xsd:string
description: xsd:string
artifacts: Idx Artifacts By Region(self)

Style
 {from s: Style }

name: xsd:string
description: xsd:string
artifacts: Idx Artifacts By Style(self)

1..* 1..*
hasStyle

hasSubRegion subRegionOf

Fig. 6. Art Conceptual and Navigation Class Schema

In Figure 19 we present some novelties in the Navigational Context schema.

Main
Menu

Alphabetic Artifacts

<<BySubClassOf: Artist>>
Alphabetic

Artist

<<subClassOf>>

Artists

<<subClassOf>>

By Artist

<<BySubClassOf: Artist>>

<<Faceted>>

Styles

Regions

Artifact

Museums

Alphabetic

<<BySubClassOf: Artifact>>
By Museum

By Style <<faceted>>

By Region <<faceted>>

<<By ValidFacetComb>>

Fig. 7. Art Navigational Context Schema

Modeling Applications for the Semantic Web 425

The abstraction power of the notation proposed is exemplified in several places.
The use of compact facet specifications avoids explicit enumeration of all possible
combinations, including those not know at design time. The same is true for the use of
the <<subclassOf>> stereotype, since it allows definitions of access structures and
contexts for an arbitrary class hierarchy. Since we have used RQL, we are able to
query both data and metadata. For instance, we can now define a context “Artifact by
Style”, without knowing ahead of time all possible values (or subclasses) of “Style”.
If the user later adds a new subclass to “Style”, and its corresponding instances, the
same application specification still applies. In this sense, SHDM specifications could
be regarded as specifying frameworks (as in [10]). Although not shown in here,
similar reasoning can be applied to inferred classes.

3 Conclusions

In this paper we have argued that Web application design methods can benefit from
modeling language primitives being proposed for the Semantic Web, such as RDF,
RDFS, and DAML+OIL. Some approaches, such as HERA [1] propose directly using
RDF and RDFS, or slight extensions, as the basic ontology modeling language,
equivalent to our conceptual modeling. Others, such as OntoWebber [2], add
additional ontologies on top of them, to cover other aspects of application design,
such as site structure. In contrast, we have kept the traditional UML-like object
model, extending it with a few primitives such as sub-relations, from RDF, and
anonymous classes defined through restrictions, from DAML+OIL.

We have followed the original OOHDM approach of defining the Navigational
Class model as a mapping of the Conceptual Model, but using RQL as the mapping
specification language, which is able to query DAML+OIL models. Another benefit
brought by SHDM is the ability to concisely specify faceted navigation structures. It
was shown how facet specification is equivalent to very large enumerations of
possible navigations paths. With the increasing availability of domain taxonomies,
this will allow such taxonomies as part of the navigation structure of applications
designed using SHDM. In addition, the resulting applications are able cater to varying
user profiles by providing alternative navigation paths better suited to each particular
case.

We are now investigating how SHDM can be extended to personalized and
adaptable web applications. Additional topics being pursued include integration of
interface and interaction models, of application functionalities. In [4] an
implementation architecture is outlined, based on the Sesame [11] environment.

References

1. Frasincar, F., Houben, G-J., Vdovjak, R.: “Specification Framework for Engineering
Adaptive Web Applications”, In Proceedings of the WWW2002, Honolulu, USA, 2002.

2. Jin, Y., Decker, S., Wiederhold, G.: “OntoWebber: Building Web Sites Using Semantic
Web Technologies”, http://www-db.stanford.edu/~yhjin/docs/owedbt.pdf

426 F. Lima and D. Schwabe

3. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D. and Scholl, M.: "RQL:
A Declarative Query Language for RDF", In Proceedings of the 11th International World
Wide Web Conference (WWW2002), Honolulu, Hawaii, USA, May 2002,
http://139.91.183.30:9090/RDF/RQL/index.html

4. Lima, F.: “Modeling applications for the Semantic Web”, PhD Thesis (in preparation),
Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brasil, 2003.

5. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R., Musen, M.A.: “Creating
Semantic Web Contents with Protégé-2000”, IEEE Intelligent Systems, Vol. 16, No. 2,
March/April 2001, special issue on Semantic Web, 60–71.

6. OMG: "Unified Modeling Language Specification version 1.3 (UML 1.3)", June 1999.
7. Ranganathan, S.: “Colon Classification, Basic Classification”, 6th ed., New York: Asia

Publishing House, 1963.
8. Rossi, G., Schwabe, D. and Lyardet, F.: "Web Application Models Are More than

Conceptual Models" In Proceedings of the ER'99, Paris, France, November 1999,
Springer, 239–252.

9. Schwabe, D. and Rossi, G.: "An object-oriented approach to Web-based application
design" Theory and Practice of Object Systems (TAPOS), October 1998, 207–225.

10. Schwabe, D., Rossi, G., Esmeraldo, L. and Lyardet, F.: "Engineering Web Applications
for reuse", IEEE Multimedia 8(1) – Special Issue on Web Engineering, Jan-Mar 2001, 20–
31.

11. Sesame.aidministrator bv.: "Sesame: A Generic Architecture for Storing and Querying
RDF and RDF-Schema", Technical Report, http://sesame.aidministrator.nl/, 2001.

12. Taylor, A. G.: “Introduction to Cataloging and Classification”, 8th ed. Englewood,
Colorado: Libraries Unlimited, 1992.

13. Tzitzikas, Y., Spyratos, N., Constantopoulos, P. and Analyti, A.: "Extended Faceted
Taxonomies for Web Catalogs", Third International Conference on Web Information
Systems Engineering, WISE 2002, Singapore, December, 2002.

14. van Harmelen, F., Horrocks, I. and Patel-Schneider, P.: "Reference Description of the
DAML+OIL (March 2001) Ontology Markup Language",
http://www.daml.org/2001/03/reference.html

15. W3C1998: "A Discussion of the Relationship Between RDF-Schema and UML",
http://www.w3.org/TR/NOTE-rdf-uml/, 1998.

16. W3C1999: "Resource Description Framework (RDF) Model and Syntax Specification",
W3C Recommendation 22 February 1999, http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/

17. W3C2000: "Resource Description Framework (RDF) Schema Specification 1.0", W3C,
Candidate Recommendation 27 March 2000,
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

18. W3C2001a: "XML Schema Part 2: Datatypes", W3C Recommendation 02 May 2001,
http://www.w3.org/TR/xmlschema-2/

19. W3C2001a: “DAML+OIL (March 2001) Reference Description”, W3C Note 18
December 2001, http://www.w3.org/TR/daml+oil-reference

20. W3C2002a: "Requirements for a Web Ontology Language", W3C Working Draft 07
March 2002, http://www.w3.org/TR/webont-req/

21. W3C2002c: “Semantic Web Activity Statement”, http://www.w3.org/2001/sw/Activity/,
retrieved 2002/11/03.

22. W3C2002c: “Web Ontology Language (OWL) Guide Version 1.0”, W3C Working Draft
4 November 2002, http://www.w3.org/TR/2002/WD-owl-guide-20021104/

	Introduction
	The SHDM Method
	The Conceptual Design
	The Navigational Design

	Conclusions
	References

