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Abstract. This paper proposes the Semantic Hypermedia Design Method, 
SHDM. By extending OOHDM with primitives taken from Semantic Web 
languages such as DAML+OIL, we show how a larger, easier to evolve, set of 
applications can be specified. Such applications also allow tapping the richness 
of resource descriptions that are becoming available with the Semantic Web. 

1   Introduction 

The Semantic Web is currently an active topic of research and industry efforts, as it is 
regarded as the next evolutionary step of the current Web. The main goal of this 
future Web is to have a large amount of data available with its metadata, to help 
machines and humans find and process useful resources as well as reuse data across 
various applications [21]. 

The major emphasis so far has been in the search for useful resources, and many 
interesting proposals for organizing and searching Web data based on the Semantic 
Web are being put forward. For most people, though, the Web is important because of 
the functionality provided by Web applications, through which they can not only 
access, but also process the information stored in the Web itself. Therefore, much of 
the Semantic Web’s promise can only be delivered if Web applications are able to 
fully take advantage of its added (meta) information. Therefore, in addition to 
metadata about Web resources, we must also provide metadata about applications. 

We have been investigating Web application design models for several years in the 
context of Object Oriented Hypermedia Design Method (OOHDM) [9, 8]. Being a 
model-driven approach, it stands as a logical candidate to be integrated with the 
Semantic Web approach, since its models can be used as metadata describing the 
application. Our goal is to provide authoring methods that help designing applications 
that can tap on the Semantic Web. In particular, the purpose of this paper is to show 
that we can express this information building SHDM - Semantic Hypermedia Design 
Method, a new version of the original method. A complementary goal is to evolve 
more traditional design methods such as OOHDM by enriching the languages used to 
specify its various models with Semantic Web languages such as RDF [16], RDF 
Schema (RDFS) [17], DAML+OIL [19], and OWL[22], while keeping the basic 
underlying fundamental abstractions. 
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In addition to these general languages, we also enrich navigation modeling by 
providing primitives to specify Faceted Navigations, where we can express 
abstractions for faceted access structures and faceted contexts in a concise model. 
This allows the design of richer access structures, providing the user with more 
flexible ways to reach the set of objects that are relevant to task at hand. We also offer 
primitives that allow the Web application designer to describe concisely hierarchical 
faceted metadata. 

This paper is organized as follows. In Section 2, we describe the main concepts of 
the SHDM method, its main design steps, showing how one can take advantage of 
more expressive modeling primitives extending the original OOHDM, both for data 
and navigational models. In this section, we use an Art Ontology as an example to 
show a summarized example of the method. In Section 3 we conclude and make brief 
comments about our future work. 

2   The SHDM Method 

One of the cornerstones of OOHDM is that it explicitly separates conceptual from 
navigation design, since they address different concerns in Web applications. 
Whereas conceptual modeling and design must reflect objects and behaviors in the 
application domain, navigation design is aimed at organizing the hyperspace taking 
into account users’ profiles and tasks. Navigational design is a key activity in the 
implementation of Web applications and we advocate that it must be explicitly 
separated from conceptual modeling [8]. 

The foundations mentioned above are maintained in this new version of the method 
called SHDM, enriched with several new mechanisms inspired by the languages 
being proposed for the Semantic Web. The first step is treating “information items” 
described in described in the Conceptual Model, and in the Navigation Class Model 
of OOHDM as resources manipulated in Semantic Web languages, such as the W3C 
Resource Description Framework (RDF), which is used to describe resources and 
their properties. By generalizing the concept of "Web resource", RDF can be used to 
represent information about anything that can be identified on the Web. The 
characterization of resources in SHDM is done using ontology definition languages 
such as RDF Schema, DAML+OIL and the recent “work in progress” W3C Web 
Ontology Language (OWL), expressing more advanced features such as constraints 
(restrictions), enumeration and datatypes according to XML Schema1.  

We would like to stress that, even though we know that the Semantic Web 
underlying framework (RDF) is not object-oriented (OO), we still find it useful to use 
some of the OO modeling principles, mainly because it decreases the level of 
granularity, suppressing details by allowing grouping of descriptions.  

                                                           
1  In our examples we used DAML+OIL only because OWL in still at “W3C Working Draft” 

status, i.e., not completely specified as a Recommendation. Since OWL is derived from the 
DAML+OIL we plan to make any adaptations easily as soon as it reaches a more mature 
status. 
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In this paper we focus more on the main SHDM novelties; more details can be 
found in [4]. In the following subsections we will specify two of the activities, namely 
Conceptual Design and Navigational Design. 

2.1   The Conceptual Design  

During the SHDM Conceptual Design step we build a model (the Conceptual Model) 
showing classes and their relationships specifically related to a domain. Classes are 
described as in object-oriented (OO) UML models [6] with three distinguished details 
on attributes: they can be multi-typed (representing different perspectives of the same 
real-world entity), they are described with multiplicity (referring to the number of 
times the attribute may occur in instances) and they can have explicit enumerations 
(defining the possible values for that attribute in instances). Relations are described 
also as in OO UML models, with one additional detail: relations can be specialized 
creating subrelation hierarchies. 

The conceptual model obtained using the UML class diagram can be mapped to a 
RDF/XML serialization format according to heuristic rules [4] summarized next. In 
the following subsections we present the notations of the new Conceptual Model 
primitives, their general semantics and their mapping to one of the Semantic Web 
languages, DAML+OIL. 

When comparing the object-oriented model (OO) with the RDF model it is 
possible to state that the concepts of classes and subclasses (specialization and 
generalization relations) can be modeled equivalently. However there is a significant 
difference in modeling OO attributes and OO association relations in the RDF model. 
These two OO abstractions are modeled through RDF properties indistinctly, i.e., in 
RDF models there is no distinction between a property that describes a class 
(attribute) and a property that describes an association relation with another class. In 
addition, RDF properties can be specialized through subsumption relation, allowing 
the creation of subproperties. Our Conceptual Schema takes advantage of these 
characteristics as shown below; for reasons of space, only the main ones are detailed. 

Every class is mapped to a DAML+OIL Class, modeling attributes and 
relationships as properties. We use DAML+OIL extensions defined as Datatype and 
ObjectType Properties to represent attributes and relationships, respectively. Attribute 
multiplicity is mapped to minCardinality and maxCardinality on specific properties. 
Attribute enumerations are mapped to the constructor one of, providing a means to 
define a class by direct enumeration of its members, in such a way that no other 
individuals can be declared as belonging to the class. Datatypes are defined as in 
XML Schema. 

In addition to defining classes and instances declaratively, DAML+OIL and other 
Description-Logics languages let us create intensional class definitions using Boolean 
expressions and specify necessary, or necessary and sufficient, conditions for class 
membership. These languages rely on inference engines (classifiers) to compute a 
class hierarchy and to determine class membership of instances based on the 
properties of classes and instances [5]. SHDM incorporates these Semantic Web 
languages approaches using Inferred Classes, represented graphically as UML 
stereotypes (see Fig. 1). 



420         F. Lima and D. Schwabe 

 

 
 <<inferred>> 

Cubist 
 

< daml:Class rdf:ID="Cubist"> 

      <daml:intersectionOf rdf:parseType="daml:collection"> 

         <rdfs:Class rdf:about="#Painter"/> 

         <daml:Restriction rdf:about="#Cubism-Restriction"/> 

      </daml:intersectionOf> 

</daml:Class> 

<daml:Restriction rdf:ID="Cubism-Restriction"> 

      <daml:onProperty rdf:resource="#style"/> 

      <daml:hasValue rdf:resource="#Cubism"/> 

</daml:Restriction> 

<daml:Class rdf:about="Cubist"> 

 <daml:Restriction> 

  <daml:onProperty rdf:resourc e="#style"/> 

  <daml:hasValue rdf:resource="#Cubism"/> 

 </daml:Restriction> 

</daml:Class> 

<daml:Class rdf:about="#Cubist"> 

    <rdfs:subClassOf rdf:resource="#Painter"/> 

</daml:Class> 

 

Fig. 1. Inferred Class, with two alternative DAML+OIL equivalent definitions 

This simple example states that a “painter” belongs to the “cubist” class if the 
property value of his/her style is “cubist” or that the “painter” subclass cubist is the 
intersection of classes “painter” and the set of resources whose “style” property 
satisfies the condition of having its value equal to “cubist”. Since this language relies 
on inference engines to compute a class hierarchy, we could validate our model using 
any DAML+OIL inference engine. Other than the inferred classes, we defined in our 
metamodel another stereotype to represent class hierarchies with arbitrary depth, 
called “arbitraryClassHierarchy”, but due to space restrictions we will not detail it in 
this article. 

2.2   The Navigational Design   

During the Navigation Design step we produce a Navigational Model over a 
conceptual domain, according to user profiles and the tasks that will be supported.  As 
stated in [9, 8], during Navigation Design we are interested in specifying which 
objects will be reached by the user (the nodes) and the relations between these nodes 
(the links). We also specify the sets of objects within which the user will navigate 
(called contexts) and in which way s/he will access these contexts (the access 
structures). We are also able to specify different contents for the nodes according to 
the contexts within which they are reached (inContext classes). The basic SHDM 
navigation primitives are defined at this point, as in OOHDM. 

For SHDM, we have identified the need to model some new access structure 
primitives in order to take advantage of the increased availability in the WWW of 
taxonomies, which we have named Faceted Access Structures, inspired by the facet 
concept initially proposed in library and information sciences [7]. Simply put, a facet 
can be considered as a category. In [12] Taylor defines facets as “clearly defined, 
mutually exclusive, and collectively exhaustive aspects, properties, or characteristics 
of a class or specific subject”.  

In a faceted classification scheme, the facets may be considered to be dimensions 
in a Cartesian classification space, and the value of a facet is the position of the 
artifact in that dimension. Within each facet, subfacets or more specific topics are 
listed. The breakdown continues into subfacets within subfacets. The items in each 
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subfacet, in general, are ordered from more general to more specific, complex or 
concrete. 

We define facet hierarchies based on our navigational attribute types- which are in 
fact metadata about our Web application. Each hierarchy is defined independently, in 
order to organize content along a particular dimension. This will be exemplified later 
on. 

Navigational Contexts remains a very important navigational primitive in our 
approach, since it allows us to describe sets of navigational objects relevant to the 
user during a task. The novelty lies in the fact that the language used to define 
contexts is more expressive than the previous one.  
Next we show the notations of the new Navigational Model primitives, together with 
their mapping to a Semantic Web language such as DAML+OIL. 

The Navigation Design activity generates two schemas, the Navigational Class 
schema and the Navigational Context schema. The first defines all navigable objects 
as views over the application domain. The navigable relations are links between nodes 
and also the new subrelations that allow a new type of navigation based on 
subsumption relations between links. The second schema defines navigational 
contexts (the main structuring primitive for the navigational space), access structures 
used to reach these contexts and links that connect them.  
The representation of navigational classes is graphically identical to OOHDM, using 
the same innovations introduced for conceptual attribute notations. Navigational 
classes represent views of conceptual classes, including directly mapped conceptual 
attributes, derived attributes and also attributes from other conceptual classes. The 
mappings are specified using an RQL [3] query, exemplified below. 

 RQL mapping: 

RQL query Description 
select y from { Artist } firstName { y } retrieves the firstName of Artists  
select y from {x} creates { y } 
   where x= “parameterA”  

retrieves all Artifacts of a specific  
Artist 

 

As in the conceptual schema, SHDM also allows sub-relations in the navigational 
class schema. 

In addition to using sub-relations defined in the conceptual model, it is possible to 
use sub-relations in the mapping of the conceptual model into the navigational class 
model. For example, it is possible to define navigational sub-relations of “creates” by 
restricting its subclasses, for instance, only those whose counter-domain is a subclass 
of Painting. In Fig. 2 we illustrate a combination of DAML+OIL and RQL to specify 
the mapping from the conceptual to the navigational model (identified with 
namespace shdm). 

A context groups objects related to each other by some aspect (e.g., common 
attributes or being related to a common object) and organizes these objects as sets of 
nodes, defining in which way they may be accessed (e.g., sequentially). 
Navigation contexts may be further specified as groups of contexts, since it is possible 
to sometimes parameterize their defining property. For example, “Sculpture by 
Material” is actually a set of sets; each set is a context, determined by one value of the 
“material” attribute.  
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<daml:ObjectProperty rdf:ID="etches"> 

 <daml:subPropertyOf rdf:resource="#creates"> 

 <shdm:rql query:value =”select y  from { x } creates { y : cult:Watercolor” }  

 <!-- retrieves all instances according to the description in the text above --> 

 <daml:range rdf:resource="#Painter"/> 

 <daml:domain rdf:resource="#Watercolor"/> 

</daml: ObjectProperty > 

 

Fig. 2. Navigational Class attribute mapping using sub-relations 

There is an analogous definition for contexts whose property is based on 1-to-n 
relations, such as “Sculpture by Sculptor”. 

Access structures are indexes (collections of links) that allow the user to reach 
navigation objects (within some context). SHDM allows defining both Access 
Structures and Navigational Contexts using meta-data properties. The 
<<subClassOf>> stereotype indicates that the corresponding element (access structure 
of navigational context) is a set of elements, one for each sub-class.  

 

Artists 

 

Artifact 

<<subClassOf>> 

By Artist 

<<BySubClassOf: Artist>> 

RQL mapping: 

RQL query Description 
http://www.icom.com/schema.rdf#Artist retrieves the IDs of Artist instances 
select y   

from { x }creates { y } where x= “parameterA” 
retrieves the IDs of Arti facts that were 
created by a chosen Artist (the 
parameter). This query includes the 
subrelations paints and sculpts 

select y   
from { x }paints { y } 
    where x= “parameterA” and $y=Paintings 

retrieves the IDs of Painting that were 
created by a chosen Artist/Painter 
(the parameter) 

 
 

Fig. 3. Access Structures and Navigational Contexts defined based on meta-model properties 

In Fig. 3 we show the graphical notation, and the RQL statements for an example. 
In The Artist access structure represents a list of links to all artists (the order is 
specified in the corresponding card). The inner dashed box represents sub-sets of 
Artist defined according to its subclass, for example Painter and Sculptor. The context 
Artifact by Artist that is composed of all artifacts created by a specific artist. This 
context can be access by choosing an artist as a parameter of selection. The innermost 
box signifies that the user can also choose any subclass of Artist to group the artifacts. 

Faceted Access Structures and Faceted Navigational Contexts are defined using the 
<<faceted>> and <<ByValidFacetComb>> stereotypes. In Fig. 4 the outside dashed 
box denotes the valid combinations of facets to reach the Artifact navigational class 
and three inside dashed boxes that indicate the possibility of choosing just one of the 
facets. The context Artifact by ValidFacetCombination exemplifies the possibility of 
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accessing Artifacts by any combination of Region or Style. Similarly, Artifact by 
Style – Faceted stands for all sets of artifacts grouped by Style and by its subclasses. 

Faceted elements are detailed in the corresponding specification cards, illustrated 
in Fig. 5. The designer can use a graphical notation to annotate in the facet hierarchies 
numbers that represent the invalid combinations. When the designer describes the 
combinations, he/she does not have to make it extensively; it is enough to only 
annotate the nodes that are superclasses of the invalid combinations, at any level of 
the trees. The enumerated combinations can be generated by an algorithm such as 
proposed by Tzitzikas in [13]. 

 
 
 

Artifact <<Faceted>> 

Style 

Region 

By Style <<faceted>> 

By Region <<faceted>> 

<<By ValidFacetComb>> 
 

Fig. 4. Faceted Access Structures and Faceted Navigational Contexts 

  
Faceted Access Structure:  

The Facets are:  
                   Facet #1                                         Facet #2                                            Facet #3 
 

 
 
 
 
 

Style 

�Renaissance �Barroque 

�Region 

�Africa Europe 

Spain France Zimbabwe 

Time Period 

21st century �14th century 15th cent 

 
The non-graphical notation for facet combination is: 
� FacetName1 + FacetName2+FacetName3 +… 

� FacetName1 + FacetName2+FacetName3 +… 
 

Valid facet combinations are: 
Renaissaince>TimePeriod>Europe (ie, all combinations of TimePeriod values and Region>Europe values) 
Barroque>15th  century>Region  
Barroque>21st century>Region 
 
Example of the concise declarations of invalid 

facet combinations are: 
� Renaissance+ Africa 
� Barroque+14th century 

 

Explicitly the invalid facet combinations are: 
Barroque>14th century>Region 
Barroque>14th century>Africa  
Barroque>14th century>Europe 
Barroque>14th century>Africa>Zimbabwe 
Barroque>14th century>Europe>Spain 
Barroque>14th century>Europe>France 
Renaissance>Africa 

Renaissance>Africa>Zimbabwe 
  

Fig. 5. Navigational Faceted Access Structures Specification Card 

We developed an example inspired by a Museum example [2] that we briefly 
outline, focusing on illustrating the novelties in the navigation schemas. 

Fig. 6 presents the Conceptual Model for the example. The superclass Artist has an 
association relation (“creates”) with the superclass Artifact, specialized by: “paints” 
and “sculpts”, meaning that whenever somebody paints something, he/she is also 
creating it. It also means that a query for the instances of this model to ask for domain 
and range of the “creates” relation will also retrieve the union of the subrelations. 
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Fig. 7 shows the Navigational Class schema. Notice that node Artifact includes 
attributes that did not belong to the original Conceptual Class, such as style. 

 
 
 
 
 
 
 
 

{overlapping,  
incomplete} 

0..* 1..* 
createdIn 

Cubist 
 

Flemish 
 

Sculptor 
 

1..* 1 
creates 

sculpts 

paints 

Artist 
firstName: xsd:string 
lastName: xsd:string  
email[0..*]: xsd:string 

Artifact 
name: xsd:string 
creationDate: xsd:gyear 
 

Sculpture 
weight: xsd:long 

Painting 
technique: xsd:string 

Painter 
/styles[0..*]: Style 

Style 
name: xsd:string 
description: xsd:string 

1..* 1..* 
hasStyle 

Region 
name: xsd:string 
description: xsd:string 

1..* 

1 
exhibitedIn 

Museum 
name: xsd:string 
description: xsd:string 

{overlapping,  
incomplete} 

Artifact  
                                             {from ac: Artifact } 
name: xsd:string 
creationDate: xsd: date 
museumName: m:Museum, m.name where ac exhibitedIn m 
artistName: anchor (Ctx Artist Alpha (a:Artist where a creates ac)) 
styleName: anchor (Ctx Style Alpha (s:Style where ac hasStyle s))  
creationRegion: anchor (Ctx Region (r: where ac createdIn r)) 

1..* 1..* 
createdIn 

Sculptor 
sculptures: Idx 

Sculptures By 
Sculptor (self) 

1..* 1 
creates 

sculpts 

paints 

Artist  
                              {from a: Artist} 

firstName: xsd:string 
lastName: xsd:string 
email[0..*]: xsd:string 
artifacts: Idx Artifacts By Artist(self) 

Sculpture 
weight: xsd:long 

Painting 
technique: xsd:string 

Painter 
/styles[0..*]: Style 
paintings: Idx Paintings 

By Painter (self) 

Cubist 
 

Flemish 
 

Region 
            {from r: Region } 

name: xsd:string 
description: xsd:string 
artifacts: Idx Artifacts By Region(self) 

Style 
            {from s: Style } 

name: xsd:string 
description: xsd:string 
artifacts: Idx Artifacts By Style(self) 

1..* 1..* 
hasStyle 

hasSubRegion subRegionOf 

 

Fig. 6. Art Conceptual and Navigation Class Schema 

In Figure 19 we present some novelties in the Navigational Context schema.  
 
 
 
 
 
 
 
 

Main 
Menu  

Alphabetic Artifacts 
 

 

<<BySubClassOf: Artist>> 
Alphabetic 

Artist 

<<subClassOf>> 

Artists 
 

<<subClassOf>> 

By Artist 

<<BySubClassOf: Artist>> 

<<Faceted>> 

Styles 

Regions 

Artifact 

 
Museums 

 

Alphabetic 

<<BySubClassOf: Artifact>> 
By Museum 

By Style <<faceted>> 

By Region <<faceted>> 

<<By ValidFacetComb>> 

 

Fig. 7. Art Navigational Context Schema 
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The abstraction power of the notation proposed is exemplified in several places. 
The use of compact facet specifications avoids explicit enumeration of all possible 
combinations, including those not know at design time. The same is true for the use of 
the <<subclassOf>> stereotype, since it allows definitions of access structures and 
contexts for an arbitrary class hierarchy. Since we have used RQL, we are able to 
query both data and metadata. For instance, we can now define a context “Artifact by 
Style”, without knowing ahead of time all possible values (or subclasses) of “Style”. 
If the user later adds a new subclass to “Style”, and its corresponding instances, the 
same application specification still applies. In this sense, SHDM specifications could 
be regarded as specifying frameworks (as in [10]). Although not shown in here, 
similar reasoning can be applied to inferred classes. 

3   Conclusions 

In this paper we have argued that Web application design methods can benefit from 
modeling language primitives being proposed for the Semantic Web, such as RDF, 
RDFS, and DAML+OIL. Some approaches, such as HERA [1] propose directly using 
RDF and RDFS, or slight extensions, as the basic ontology modeling language, 
equivalent to our conceptual modeling. Others, such as OntoWebber [2], add 
additional ontologies on top of them, to cover other aspects of application design, 
such as site structure. In contrast, we have kept the traditional UML-like object 
model, extending it with a few primitives such as sub-relations, from RDF, and 
anonymous classes defined through restrictions, from DAML+OIL. 

We have followed the original OOHDM approach of defining the Navigational 
Class model as a mapping of the Conceptual Model, but using RQL as the mapping 
specification language, which is able to query DAML+OIL models. Another benefit 
brought by SHDM is the ability to concisely specify faceted navigation structures. It 
was shown how facet specification is equivalent to very large enumerations of 
possible navigations paths. With the increasing availability of domain taxonomies, 
this will allow such taxonomies as part of the navigation structure of applications 
designed using SHDM. In addition, the resulting applications are able cater to varying 
user profiles by providing alternative navigation paths better suited to each particular 
case. 

We are now investigating how SHDM can be extended to personalized and 
adaptable web applications. Additional topics being pursued include integration of 
interface and interaction models, of application functionalities. In [4] an 
implementation architecture is outlined, based on the Sesame [11] environment. 
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