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Abstract. This paper addresses the problem of the local scale parame-
ter selection for recognition techniques based on Gaussian derivatives.
Patterns are described in a feature space of which each dimension is
a scale and orientation normalized receptive field (a unit composed of
normalized Gaussian-based filters).
Scale invariance is obtained by automatic selection of an appropriate lo-
cal scale [Lin98b] and followed by normalisation of the receptive field to
the appropriate scale. Orientation invariance is obtained by the deter-
mination of the dominant local orientation and by steering the receptive
fields to this orientation.
Data is represented structurally in a feature space that is designed for
the recognition of static object configurations. In this space an image is
modeled by the vectorial representation of the receptive field responses at
each pixel, forming a surface in the feature space. Recognition is achieved
by measuring the distance between the vector of normalized receptive
fields responses of an observed neighborhood and the surface point of
the image model.
The power of a scale equivariant feature space is validated by experimen-
tal results for point correspondences in images of different scales and the
recognition of objects under different view points.

1 Introduction

Object indexing is the problem of determining the identity of a physical object
from an arbitrary viewpoint under arbitrary lighting conditions. Changes in the
appearance of the object under variations in lighting and viewpoint make this a
difficult problem in computer vision. The classic approach is based on the idea
that the underlying 3D structure is invariant to viewpoint and lighting. Thus
recovery of the 3D structure should permit the use of techniques such as back-
projection and features matching [Fau93] to match the observed structure to a
data base of objects.

An alternative to 3D reconstruction is to remain in the 2-D image space
and to consider measurements of the object appearance. Sirovitch and Kirby
[SK87] showed that in the case of face recognition, Principal Components Ana-
lysis (PCA) can be used to generate a low dimensional orthogonal sub space.
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The distance of two points in this space is determined by inner product, whose
computation cost depends on the dimensionality of the space. Turk and Pentland
[TP91] refined and popularized this approach, greatly enhancing the acceptance
of principal components analysis as a vision technique. Murase and Nayar [MN95]
extended this idea by expressing the set of appearances of objects as a trajectory
in a PCA space. Black and Jepson [BJ96] demonstrated that the appearance of
a hand making a gesture could also be expressed and matched as a trajectory in
a PCA space.

All of the above techniques are sensitive to partial occlusions and scale nor-
malization. The position of a projected image in the PCA space is coupled with
the appearance of the image. Object translations within the image, variable
background, differences in the image intensity or illumination color alter the
position of the image in PCA space. Thus, PCA techniques require object detec-
tion, segmentation and precise normalisation in intensity, size and position. Such
segmentation and normalization is very difficult, and there exists no approach
that solves this problem in the general case.

Segmentation and normalization problems can be avoided by using local ap-
pearance based methods [Sch97,CC98a,RB95] that describe the appearance of
neighborhoods by receptive fields. The effects of background and partial occlu-
sion are minimized by considering small neighborhoods. The problem of object
position within the image is solved by mapping the locally connected structures
into surfaces or multi-dimensional histograms in a space of local appearances.
Robustness to changes in illumination intensity are obtained by energy norma-
lization during the projection from image to the appearance space. The resulting
technique produces object hypotheses from a large data base of objects when
presented with a very small number of local neighborhoods from a newly acqui-
red image.

In this paper the local appearance technique proposed Colin de Verdière
[CC98a] is extended to a local description technique which is scale and orien-
tation invariant. A description of the local visual information is obtained using
a set of Gaussian derivatives. The Gaussian derivatives responses to different
images result in a family of surfaces. Such a surface is another representation
of the model image. Recognition is achieved by projecting neighborhoods from
newly acquired images into the local appearance space and associating them to
nearby surfaces. This technique leads to the problem of the Gaussian derivatives
parameterization in scale and orientation.

Lindeberg defines a set of Gaussian derivatives operators to select scale for
edge, ridge, corner, and blob features, thus for feature detection [Lin98a]. We
adopt this approach and apply it to all image points. Local appropriate scales
are detected at every point allowing the parameterization and normalization
of the Gaussian derivatives. This leads to a scale equivariant description. Also,
detecting the dominant orientation of neighborhoods allows to normalize the
receptive fields by orientation [FA91]. An orientation equivariant description
is found. The scale parameter is important also for orientation normalization,
because a scale that is not well adapted to the local structure makes orientation
detection instable.
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In this article we investigate local scale selection for appearance based re-
cognition techniques. As demonstrated below the appropriate local scale is an
important factor. We focus on the local scale selection according to the fea-
ture type. Experiments show that local scale selection with consideration of the
feature type improves object recognition.

In the next section the pattern description and representation is explained.
The proposed approach can be applied to patterns in spatial or frequency do-
main. Then the scale and orientation equivariance property is described accor-
ding to the main publications in this area. As a result we explain our contribution
to the local scale selection considering the feature type. Experiments in scale and
orientation validate the proposed approach.

2 Pattern Description and Representation

The appearance of an object is the composition of all images of the object obser-
ved under different viewing conditions, illuminations, and object deformations.
Adelson and Bergen [AB91] define the appearance space of images for a given
scene as a 7 dimensional local function, I (x, y, λ, t, Vx, Vy, Vz), whose dimensions
are viewing position, (Vx, Vy, Vz), time instant, (t), position, (x, y), and wave-
length, (λ). They call this function the “plenoptic function” from the Latin roots
plenus, full, and opticus, to see. The use of description techniques and the use of
representation models of descriptors responses allow the analysis of the plenoptic
function for recognition problems.

Adelson and Bergen propose to detect local changes along one or two ple-
noptic dimensions. The detector responses, that code the visual information,
are represented by a table in which they are compared pairwise. Adelson and
Bergen use low order derivative operators as 2-D receptive fields to analyse the
plenoptic function. However, their technique is restricted to derivatives of order
one and two. No analysis of three or more dimensions of the plenoptic function
is investigated and little experimental work is published on this approach.

Nevertheless the plenoptic function provides a powerful basis for recognition
systems. This paper deals with such framework where patterns are characte-
rized by describing their local visual information and modeling the descriptor
responses. The result is a recognition software based on local properties.

Consider the plenoptic function, I (x, y, Vx, Vy, Vz), constrained to a single
frame and a gray channel. I () is analyzed by a set of receptive fields. An or-
thogonal basis of receptive field responses can be found that span the space of
all receptive field responses. The goal is to decrease the dimensionality of this
space by determining those receptive fields which allow an optimal description
of the appearance. This basis can vary according to the nature of the recognition
problem. The next section discusses the construction of receptive fields accor-
ding to different signal decomposition techniques. Then two methods of pattern
representation in the feature space are discussed. The first is a statistical repre-
sentation where objects are characterized as the joint statistics of the receptive
field responses and, the second is a structural approach where connected struc-
tures in the images are mapped as surfaces in the feature space.
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2.1 Signal Decomposition

Classically the description of a signal is obtained by its projection onto a set of
basis functions. Two widely used approaches for signal decomposition are the
Taylor expansion (equation 1) and the Fourier transform (equation 2), corre-
sponding respectively to the projection of the signal onto basis functions with
modulated amplitude and to the projection of the signal onto a function base
which is frequency modulated:

f (t) =
∞∑

n=0

1
n!

f (n) (t0) · (t − t0)n (1)

f (t) =
∞∑

n=−∞
f̂ (n) · ei·n·t (2)

Note that there exist other local decomposition bases. The nature of the pro-
blem motivates the choice of the decomposition base. For example a frequency-
based analysis is more suitable for texture analysis, and a fractal-based descrip-
tion for natural scene analysis. But independently from the basis choice, the
receptive fields responses are estimated over a neighborhood which size is rela-
tive to the locality of the analysis.

The derivative operator of the Taylor expansion and the spectral operator of
the Fourier transform can be formulated as generic operators. The concept of li-
near neighborhood operators was redefined by Koenderink and van Doorn [Kv92]
as generic neighborhood operators. Typically operators are required at different
scales corresponding to different sizes of estimation support. Koenderink and
van Doorn have motivated their method by rewriting neighborhood operators as
the product of an aperture function, A (p, σ), and a scale equivariant function,
φ (p/σ):

G (p) = A (p, σ) φ (p/σ) (3)

The aperture function takes a local estimation at location p of the plenoptic
function which is a weighted average over a support proportional to its scale pa-
rameter, σ. The Gaussian kernel satisfies the diffusion equation and can therefore
serve as aperture function:

A (p, σ) =
e

− 1
2

p·p
σ2(√

2πσD
) (4)

The function φ (p/σ) is a specific point operator relative to the decomposition
basis. In the case of the Taylor expansion φ (p/σ) is the nth Hermite polynomials
[MS65]:

φ (p/σ) = (−1)n Hen (p/σ) (5)

In the case of the Fourier series φ (p/σ) are the complex frequency modulation
functions tuned to selected frequencies, ν:

φ (p/σ) = e2πjν·p/σ (6)

Within the context of spatial, or spectral, signal decomposition the generic
neighborhood operators are scale normalized Gaussian derivatives [Lin98b], and
respectively scale normalized Gabor filters.
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2.2 Pattern Representation in Feature Space

The computation of a vector of descriptors can be formally modeled as a pro-
jection from the image pixel space to a new space more suitable for indexing.
This descriptor space is composed of N receptive fields corresponding to a set of
Gaussian derivatives or Gabor filters for example. An image neighborhood which
is a vector in a M dimensional space can be represented in the descriptor space
by a N dimensional vector with N � M . The distance between two points in
the descriptor space is a measure for the similarity of these neighborhoods and
is used for recognition.

An object signature is obtained by representing or modelizing the receptive
fields responses in the feature space, either statistically or structurally. Schiele
[SC96] has shown that the local appearance of static objects can be represented
statistically using multi-dimensional histograms of Gaussian derivative respon-
ses. Histograms of object classes are compared and the conditional probability is
returned that the observed vector is part of the trained classes. Colin de Verdière
[CC98a] has used a structural representation by sampling the local appearance
of static objects. Such discrete sampling permits recognition from small neigh-
borhoods by a process which is equivalent to table lookup.

Statistical representation: The output from the set of receptive fields provides a
measurement vector at each pixel. The joint statistics of these vectors allow the
probabilistic recognition of objects. A multi-dimensional histogram is computed
from the output of the filter bank. These histograms can be considered as object
signature and provide an estimate of the probability density function that can be
used with Bayes rule. Schiele [SC96] uses this methods for object recognition and
Chomat [CC99a] extends the approach to the recognition of activity patterns.

Structural approach: At each pixel a measurement vector of the output from
the set of receptive fields is stored in association with an identifier of the model
image and its position within the model image. The storage of vectors associated
to all model image points enables a simultaneous identity and pose recognition
of object by matching of measurement vectors. This matching is performed effi-
ciently by using a hierarchical data structure. Competitive evaluation of multiple
vectors of an image provide a highly discriminant recognition of the learned ob-
ject. As a result, this recognition scheme returns one (or multiple) object poses
associated with a confidence factor based on the number of points detected on
this pose [CC98a,CC99b]

In this paper a structural representation of data in a feature space is used for
the recognition of static object configurations. In the structural approach the
vectors with the shortest distance are searched. The class of the observed vector
is the class of the vector with the shortest distance. The classification is based
on searching all vectors that are within a sphere centered on the observed vec-
tor. For an efficient performance of the classification task, the storage structure
is very important. Colin de Verdière [CC98a] proposes an indexation storage
tree, in which each vectorial dimension is decomposed into 4 parts successively.



122 O. Chomat et al.

During the training phase new vectors can be added easily to the tree. The ad-
vantage of this structure is that all vectors within the search sphere centered on
the observed vector can be computed efficiently.

Note that the addressed problem in this paper is not a critical study of in-
dexing techniques, but the local scale parameter selection for Gaussian based
descriptors in the context of object recognition. So, the choice of a structural
full description of the appearance is very suitable to this study, but other reco-
gnition schemes can take profit of this automatic scale selection as for example :
a statistical representation by histograms [CC99a,Sch97] or an interest points
based approach like Schmidt [SM97] who selects a priori interesting points and
modelizes only these points in her system.

2.3 Conclusion

The quality of recognition techniques depends on their ability to recognize ob-
jects in a scene under a minimum of assumptions. Generally the required pro-
perties are their robustness or invariance to illumination and view point variati-
ons.

The robustness to illumination variations and point of view changes is ob-
tained by sampling the appearance of the object by including images with these
changes into the training base. It is possible to view the set of different appea-
rances of one object, that result in a trajectory in the appearance space [MN95,
CC98b] parameterized by illumination and view point. For example, scale ro-
bustness is achieved by learning the object at several different scales and mat-
ching a new image of the object to each of the trained scales. Another approach
to achieve robustness is to model the object at a fixed scale and then match the
images of a pyramid of a new observed image of the object.

As shown in this section Gaussian based techniques are well suited for a scale
equivariant description since the scale parameter of the aperture function and of
the point operator is explicit. A scale invariant Gaussian based description can
be obtained by an appropriate scale parameter selection. The problem of the
detection of orientation is solved using the property of steerability of Gaussian
derivatives. Freeman and Adelson [FA91] use Gaussian derivatives, to compute
the nth derivative under arbitrary orientation by a linear combination of a finite
number of derivatives.
The approach we propose is to use the properties of scale and orientation para-
meterisation of Gaussian based local descriptors to design receptive fields that
are equivariant to scale and orientation. The use of Gaussian derivatives as local
descriptors provides an explicit specification of scale and orientation. Scale is
specified by the σ parameter providing a scale invariant feature. Using steerable
filters [FA91], it is possible to compute the nth derivative under arbitrary ori-
entation by a linear combination of a finite number of nth order derivatives. In
this paper a set of normalized Gaussian derivatives up to Order three is used
to describe the plenoptic function. A scale detector and an orientation detector
are used to normalize and steer Gaussian derivatives. The local description is
equivariant to scale and orientation and allows recognition which is invariant to
scale and orientation. Note that Gaussian derivatives can be efficiently computed
by using a recursive implementation (see [YV95]).
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3 Scale Invariance

Theoretically there exist specific features that are scale invariant such as corners
and edges. Practically this is not the case because edges resemble more to a ramp
over scales. However these features can be described using scale equivariant de-
scriptors. The first paragraph of this section demonstrates the scale equivariance
property of Gaussian derivatives by normalizing them according to the scale pa-
rameter. The next paragraph deals with two scale invariant representations. One
is based on a multi-scale data representation (or pyramidal representation), and
another one is based on local scale parameter selection.

Scale equivariant receptive fields A scale equivariant feature space is designed
using normalized Gaussian derivatives taking into account their scaling property.

∂xng (s · x, s · σ) =
1

sn+1 ∂xnG (x, σ) (7)

Consider the Gaussian filter, G (x, σ), and the one dimensional signal, f (x). Let
L (x, σ) be the response of the Gaussian filter:

L (x, σ) = f (x) ∗ G (x, σ) (8)

The normalization of the Gaussian derivatives responses according to a selected
scale parameter, σ, is:

∂ξnL (ξ, σ) =
∂nL (x, σ)

∂xn
· σn with ξ =

x

σ
(9)

This scale normalization leads to a descriptor which is scale equivariant

∂ξ
′ nL

(
ξ

′
, σ

′)
= ∂ξnL (ξ, σ) with x

′
= s · x and σ

′
= s · σ (10)

A local scale equivariant feature space can be built using such scale normali-
zed descriptors but the a priori knowledge of the local feature scale is necessary.

Scale invariant modelization Traditionally, the scale parameter of the filters is
defined intuitively, according to the size of the features to be recognized and
a multi-scale strategy is adopted to overcome the problem of scale variations.
Models of objects are built at several scales and matching is done by comparison
within the different trained scales. Currently a similar strategy is adopted to
be robust to changes in orientation by learning several orientations. The goal of
such strategies is to become robust to scale changes. This robustness lays on the
structure for data representation or modelization. The main problem still in the
parameterization of receptive fields, and generally the scale parameter is fixed
but not appropriate to the local information.

The approach we propose is to locally estimate the required scale at each point
and to normalise the Gaussian derivative filters to the local scale. With such
a method there exists no data representation at several scales (which is redun-
dant), but only one single scale invariant data representation. Several maps of
selected scales are used depending on the features to be analysed.
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4 Detection of Orientation

Structured neighborhoods can have a dominant orientation. The dominant di-
rection of a neighborhood can be found by determining the filter direction that
gives the strongest response.

There are two ways to determine this filter. First, a set of filters can be
generated that are rotated by a small angle. Then each filter of this set is applied
to the neighborhood. If a precise orientation is required the number of generated
filters is very high and also the computation cost of the operation.

A second possibility is to use only a small number of appropriate filters
and interpolate between the responses. With an appropriate filter set and the
correct interpolation rule the response of the neighborhood to a filter with an
arbitrary orientation can be determined without explicitly applying this filter to
the neighborhood. Freeman [FA91] uses the term steerable filter for such a filter
class.

Steerable Filters Let Gn be the nth order derivative of the Gaussian function.
Let ()θ be the rotation operator so that a function f(x, y)θ is the function f(x, y)
rotated by θ. The synthesized filter of direction, θ, can be obtained by a linear
combination of G0◦

1 and G90◦
1 [FA91]

Gθ
1 = cos(θ)G0◦

1 + sin(θ)G90◦
1 (11)

Equivariance of Orientation Let I be an image. In I let w be the neighborhood
around p with the dominant orientation θ. Let Iω be I rotated by ω. The to
w corresponding neighborhood w′ in Iω has then the dominant direction θ + ω.
(G0◦

1 )ω and (G90◦
1 )ω are the basis functions G0◦

1 and G90◦
1 rotated by ω and can

be written as

(G0◦
1 )ω = cos(ω)G0◦

1 + sin(ω)G90◦
1 = G0◦+ω

1 (12)

(G90◦
1 )ω = − sin(ω)G0◦

1 + cos(ω)G90◦
1 = G90◦+ω

1 (13)

The equivariance results from

(Gθ
1)

ω = cos(θ)(G0◦
1 )ω + sin(θ)(G90◦

1 )ω (14)

= cos(θ + ω)G0◦
1 + sin(θ + ω)G90◦

1 = Gθ+ω
1

Orientation Invariance Taking into account the values of the gradient G1 in x
and y direction the dominant direction of a neighborhood can be determined by

θ = atan2(
δ

δx
L(x, y; σ),

δ

δy
L(x, y; σ)) (15)

For each neighborhood in the image the dominant direction can be determined,
which allows to normalise each neighborhood in orientation. Using the equivari-
ance property two corresponding neighborhoods wθ and wω will be normalized
to the same neighborhood wnormal.
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5 Local Scale Selection

Features in a scene appear in different ways depending upon the scale of observa-
tion. Traditionally, when scale is considered, image structures are represented in
a multi-scale pyramid and processing is applied to a set of scales. Such techniques
are sensitive to the fact that some features may disappear at too coarse scales
or too fine scales. It is therefore necessary to determine an appropriate scale for
each observed feature. Targeting this appropriate scale for the projection in the
feature scale in association with scale invariant features computation enables a
scale independent representation.

Lindeberg [Lin98b] proposes a framework for generating hypotheses about
scale levels based on the assumption that local extrema over scales of normali-
zed derivatives correspond to interesting structures. This approach gives rise to
analytically derived results which correspond to intuition for scale selection for
detecting image features.

This section provides experiments based on Lindeberg proposal for features
scale selection. We are interested in receptive fields which are scale invariant and
orientation invariant. Scale invariance is obtained by selecting a scale relative
to the feature shape. Such scale selection is available using a Laplacian based
operators. The detection of orientation is done at an appropriate scale where the
gradient is stable.

5.1 Blob Features Scale Selection

The proposed general scale detector of equation (16) is expressed as a polyno-
mial combination of normalized Gaussian derivatives, where the normalization
controls the scale invariance.

Lap (x, y, σs) =
(
σ2

s

)
(∂xxg (x, y, σs) + ∂yyg (x, y, σs)) (16)

The function Lap (x, y, σs) is computed for a large set of scales, σs, corresponding
to the scale-space feature signature. The maximum of the normalized derivatives,
Lapmax (x, y, σs = σ0), along scales leads to the feature scale σ0.

The equivariance property of blob feature scale, that enables blob feature re-
cognition at different scales, is demonstrated in the following experiment. A set
of images representing a scene at several scales is taken (two of them are shown
in figure 1). A target is tracked along scales and its scale signature is shown in
the central figure. The over-lined feature has a signature which translates with
scale. These curves present a maximum over scale. The σ parameter, which is
characteristic to the local feature, is selected according to the observed maxi-
mum. Thus, the local scale can be used to parameterize the normalized Gaussian
derivatives described in the previous section. Maps of the selected scale para-
meter σ of two images of the chocos object are shown in figure 2. These maps
show that the scale parameter distribution is preserved over the scanned scale
range. Figure 3 shows the first normalized derivative along the x axis computed
on three “chocos” images. For all images the derivatives up to order three are
computed. Each local feature is described by a nine dimensional receptive field,
which corresponds to a point in a nine dimensional descriptor space. This vector



126 O. Chomat et al.

2.5 5.0

Scale Ratio 2.0

0

100

200

300

400

500

600

700

800

0.5 1 2 4 8 16

Chocos 13
Chocos 8

N
o
rm

a
li
z
e
d

L
a
p
la

c
ia

n
V
a
lu

e

Laplacian Scale (σ parameter)

Fig. 1. Automatic scale selection of a local feature for corresponde nce between two
images. The curves present the evolution of normalized Laplacian with σ. Circles indi-
cate a radius of 2σ (twice the selected scales parameter value). The ratio between the
selected σ gives the scale ratio between the local features and therefore in this example,
an approximate scale ratio of 2 between the images.

Fig. 2. Images of the selected scale parameter σ of two images of the chocos object.

is scale invariant and provides a means to obtain point correspondences between
images at different scales. In the first image, four points have been selected which
corresponds to four features vectors. In the next images, their correspondents
are successively detected by searching the most similar feature vectors.

5.2 Edge Features Scale Selection

In order to design a receptive field that is invariant to orientation the dominant
direction of an image neighborhood needs to be determined. An important pa-
rameter for a reliable orientation normalization is the selected scale parameter.
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Fig. 3. Points correspondences obtained by projecting the points on a nine dimensional
feature space and matching similar vectors between the images. The gray values in the
images correspond to the intensity of the first derivative.

If this parameter is not appropriate the gradient information becomes instable.
This results in an orientation error which makes classification difficult.

The neighborhoods size is chosen such that the gradient in at least one di-
rection is stable. An appropriate measure is the gradient norm. It is isotropic
and returns a maximum energy when a stable gradient is present. If none of
the gradient filters are stable within a maximum filter size, the neighborhood
contains very low energy edge data. An orientation normalisation is unstable,
but because of the lack of edge data, this does not perturb the recognition.

In a previous experiment one single scale based on the Laplacian was selected
for all derivatives. This scale is appropriate for blob features. Figure 4 compares
the σ detected by the normalized gradient norm and the σ detected by the
normalized Laplacian. The graphics show that different σ are detected by the
gradient norm and the scale normalized Laplacian.

The graphic below the image shows an interesting case in figure 4. If the σ
selected by the normalize Laplacian would b e applied for orientation detection,
orientation errors can not be avoided. The scale where the normalize Laplacian
has maximum energy, shows a normalized gradient norm with very weak energy.
The σ detected by the normalized Laplacian is appropriate for the purple blob
between the two white lines, which is an uniform region. For a stable orientation
detection a much bigger size must be selected to obtain enough edge information.
This is an extreme case. More often the normalize Laplacian selects a size where
there is some gradient energy (see graphics left and right of the image in figure
4). However a higher gradient energy is found at a different scale.

5.3 Scale and Orientation Invariant Description

Lindeberg uses normalized derivatives for adaptively choosing the scales for blob,
corners, edges or ridges scale detection. The selected scale is also a good cue
for tuning the parameters of Gaussian derivatives for appearance description.
Tuning Gaussian derivatives with the map of selected scales leads to a scale
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-- Laplacian
-- Gradient norm

Fig. 4. Comparison of σ detection between using normalized gradient norm or norma-
lize Laplacian.

invariant description. And steering the filters to the dominant orientation leads
to an orientation invariant description.

The choice of the appropriate scale is an important parameter, and therefore
must be chosen very carefully. The scales detected by the Laplacian adapt very
well to blob features, where as the scale detected by the gradient norm designes a
neighborhood such that a stable gradient can be found within this neighborhood.
Both features are important for a reliable recognition and essential for scale and
orientation invariant description.

Figure 4 displays the energy differences of gradient norm energy and Lapla-
cian energy over different scales. It can be observed that the two filter methods
detect in all cases different scales. This is due to the fact that the filter methods
adapt to either blob features or edge features. The presence of a blob feature and
an edge feature of the same scale in the same neighborhood is a contradiction.
As a consequence we investigate in the following experiments the impact of using
both scales selected by the two methods in order to improve the stability in scale
and orientation normalisation.

Figure 5 displays this enhancement on an example. The orientation displayed
in the angle image in figure 5(d) obtained from the gradient norm scales is much
more stable than the angle image in figure 5(c) obtained from the scales selected
by the Laplacian. Many discontinuities can be observed in figure 5(c) that are
not present in figure 5(d). This improvement in the orientation detection is due
to the fact that the scale is based on derivatives of order one.

To obtain a description which is both scale and orientation invariant two
scales maps are used. The map of selected scales obtained with the gradient
norm is used to parameterize odd derivatives and the map of selected scales
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Fig. 5. (a) sigma image obtained from Laplacian (b) sigma image obtained from gra-
dient norm (c) angle image resulting from sigma selected by Laplacian (d) angle image
resulting from sigma selected by gradient norm.

obtained with the Laplacian is used to parameterize even derivatives. The next
section provides recognition results using such a scale and orientation invariant
description.

6 Application to Indexation

6.1 Experiments on Scale and Orientation Detection

For validation of the presented approach, automatic scale selection is applied
to indexation. Two experiments are compared to show the stabilization of the
orientation normalisation using gradient norm for scale selection. In the first
experiment the scale is selected by the Laplacian. In the second experiment two
scales are selected, one based on the gradient norm for the first derivatives, a
second based on the Laplacian for the 2nd derivatives.

A set of 13 images are taken of one single object. The object is rotated by
15 degrees in-between two frames. One image is used for training. The other 12
images are used for testing.

The training is performed according to [CC98a] using local appearance de-
scription by Gaussian derivatives, recursive filtering, automatic scale selection
and orientation normalisation by steerable filters. At each point of the training
image the most appropriate scale is detected using the two different strategies
in the two experiments. Then the neighborhoods are normalized by orientation
and a 8 dimensional filter response to the steered Gaussian derivatives is com-
puted, which is stored in an indexation storage tree. The filter response serves
to identify the neighborhood and its similar samples in the test images.
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Overlapping neighborhoods are sampled of the test images with a step size
of 3 pixels. At each point the orientation normalized filter response in the ap-
propriate scale is computed. To evaluate the experiment only the training vector
with the smallest distance is considered. In general the approach returns all vec-
tors from the indexation tree that are within a sphere centered on the newly
observed vector. It is a restriction to look only at the closest vector. The re-
cognition rates are naturally lower than in a system which takes into account
the entire list of hypotheses. Two values are computed. Firstly, the percentage
that the closest vector is correct, is measured. This means, the answer obtained
from the indexation tree indicates the correct neighborhood. Secondly, the aver-
age error in the orientation normalisation is measured. This value indicates the
precision of the orientation normalisation.
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Fig. 6. left: Percentage of correct first answers. The image at 0 degrees is the training
image. right: average orientation error observed during indexation process.

Figure 6 shows the results of the two experiments. The solid curve corre-
sponds to the experiment in which only one scale was selected. The dashed
curve corresponds to the experiment in which different scales were selected for
first and second derivatives. The graphics show that the second technique pro-
duces a higher percentage in correct first answers and a higher precision in the
orientation normalisation. These two values illustrate the gain that is obtained
by using the gradient norm for the scale selection of the first derivative.

6.2 Object Recognition under Scale Variations

This object recognition experiment is evaluated on a basis of 28 objects (figure
7). One single image is learned. The results are shown on examples for objects
“Chocos” and “Robot”, that are highlighted in figure 7. Figures 8 and 9 show the
recognition rates based on the receptive field responses. The first column displays
the results for object “Chocos” and the second column shows the results for
object “Robot”. For each object two graphs are presented. The first one shows
recognition rates with a fixed scale parameter, and the second one represents
the recognition rate with automatic scale selection. The algorithm returns a list
of hypothesis ordered with increasing distance to the observed receptive field
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Fig. 7. Set of images of objects seen at different scales.

response. The three curves in the graphs are computed taking into account this
hypothesis list and corresponds to three recognition cases:

– [a] The object corresponding to the answer with the smallest distance is
correct.

– [b] The correct object is among the list of hypothesis, but other objects have
a smaller distance.

– [c] Percentage of accepted neighborhoods. The description vector is rejected
due to missing discrimination. The list of hypothesis is either empty or too
large to be processed.

The percentage of accepted neighborhoods is very low for recognition in the
case of a fixed scale parameter. Some neighborhoods have a quasi constant grey
level, which leads to a very long list of hypothesis. These neighborhoods are am-
biguous and not suitable for recognition. The automatic scale selection increases
the percentage of accepted neighborhoods, because the scale is adapted to the
feature. The figure 8 shows that recognition rate is unsatisfactory for scale va-
riations above 20% whereas in figure 8 the recognition rate remains above 50%.
Recognition is possible using a voting or a prediction-verification algorithm.

7 Conclusion

The appearance of features depends upon the scale of observation. In order to
capture a maximum number of features, the scale of observation needs to be
variable. This paper has shown very promising results of recognition under va-
riable scale. Lindeberg proposes automatic scale selection for the determination
of the appropriate feature scale. He assumes that maxima over scales of norma-
lized derivatives reflect the scale of patterns. The selected scale corresponds to
the Gaussian scale parameter at which the inner product of the derivative ope-
rator and the local image signal gives the strongest response. The application
of this approach to all image neighborhoods allows the recognition of objects at
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Fig. 8. Recognition rate of object seen at different scales. The graphs abscissa is the
scale ratio between the analysed image and the model image. Left graphs deals with the
object “Chocos” and the right ones deals with the “Robot” object. Recognition is done
with a fixed scale parameter.
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Fig. 9. Recognition rate of object seen at different scales. The graphs abscissa is the
scale ratio between the analysed image and the model image. Left graphs deals with the
object “Chocos” and the right ones deals with the “Robot” object. Recognition is done
with automatic scale selection.

different scales. A map of appropriate scales is obtained that can be used to nor-
malize the receptive fields. With steerable filters the dominant orientation of a
neighborhood can be detected, which results in orientation invariance. Scale and
orientation invariance are achieved by normalizing local descriptors. A remarka-
ble gain in recognition and in the precision of the orientation normalization is
achieved compared to the approach in which the feature type is ignored.

These results demonstrate that the approach is promising for real-world ap-
plications. The precise performances of the approach still requires a theoretical
and quantitative evaluation, taking into account that the scale selection fails in
some cases. There rest problems with point correspondences between images,
in which the objects undergo important scale variations (factor 5 and more).
Recognition requires that local patterns remain in a valid scale range between
images. This range has to be evaluated and then the scale invariant recognition
scheme must be applied on a set of images featuring high scale variations (larger
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than three). The proposed approach has been tested with good results for image
pairs with scale factor up to three.

Another interesting case is the detection of several characteristic scales for
one feature. In this case several local extrema in the normalized Laplacian curves
are present in function of the parameter σ. Considering all detected scales of a
feature leads to a description that preserves a higher amount of information,
which can result in a superior recognition system.
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