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Abstract. We tackle the problem of 3D surface reconstruction by a
single static camera, extracting the maximum amount of information
from gray level changes caused by object motion under illumination by
a fixed set of light sources. We basically search for the depth at each
point on the surface of the object while exploiting the recently proposed
Geotensity constraint [11] that accurately governs the relationship bet-
ween four or more images of a moving object in spite of the illumination
variance due to object motion. The thrust of this paper is then to ex-
tend the availability of the Geotensity constraint to the case of multiple
point light sources instead of a single light source. We first show that it
is mathematically possible to identify multiple illumination subspaces for
an arbitrary unknown number of light sources. We then propose a new
technique to effectively carry out the separation of the subspaces by intro-
ducing the surface interaction matrix. Finally, we construct a framework
for surface recovery, taking the multiple illumination subspaces into ac-
count. The theoretical propositions are investigated through experiments
and shown to be practically useful.

1 Introduction

3D surface reconstruction of an object has been among the subjects of major
interests in computer vision. Given a set of images, in each of which the object
is viewed from a different direction, the fundamental issue in extracting 3D in-
formation out of 2D images is to match corresponding points in those images
so that these points are the projections of an identical point on the surface of
the object. For the point correspondence, typically exploited is the constraint
that the corresponding parts of the images have equivalent image intensities,
regarding the variation in illumination as noise. It has been successfully applied
to stereo (see for example [4,5]) where two images are taken simultaneously as
the lighting of the object is identical in each image. However, when, as a natural
progression, we consider replacing the stereo camera with a single camera obser-
ving an object in motion, unfortunately the constraint is nearly always invalid
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as non-uniform lighting causes the intensity at a specific location on the surface
of an object to change as the object moves. Among the few efforts for this is-
sue, whereas photometric motion [13] treated the illumination variance due to
object motion in terms of optical flow, recently Geotensity constraint1 [11] has
been derived to overcome the problem with respect to camera geometry, and to
replace the constant intensity constraint. Based on the notion of linear intensity
subspaces [14], the Geotensity constraint governs the relationship between four
or more images of a moving object, and it can be computed and applied au-
tomatically to the task of 3D surface reconstruction. The algorithm for surface
reconstruction using Geotensity constraint proceeds basically in two stages. The
first stage is to derive the parameters of the Geotensity constraint by analyzing
coordinates and image intensities of some sample points on the object in motion.
That is, computing structure from motion obtains the geometric parameters of
the situation, whereas computing the linear image subspace obtains the lighting
parameters of the situation. By combining both sets of parameters we arrive at
the Geotensity constraint. Using the same set of images, the second stage is to
take each pixel in an arbitrary reference image in turn and search for the depth
along the ray from the optical center of the camera passing through the pixel.
The depth is evaluated by measuring the agreement of the entire set of projected
intensities of a point on the object surface with the Geotensity constraint.

Although the availability of the constraint was limited in principle to the
case of a single point light source, the thrust of this paper is to propose a new
framework that enables the constraint to be applied to a more general case of
multiple point light sources. When multiple light sources exist, computing the
lighting parameters in the first stage is not a simple task as was the case with
a single light source since most points on the surface are illuminated only by
a subset of the light sources and this subset is different for different points.
The question is whether we can identify the lighting parameters for different
illumination subspace arising from different subset of light sources. Knowing the
lighting parameters, we further need to choose appropriate lighting parameters
to search for the depth at each point on the object surface.

In this paper, we propose a new method to solve for different illumination
subspaces and then to recover the surface of the object. In order to solve for the
lighting parameters, in the first stage, we develop a technique to automatically
sort the sample points into different clusters according to the illuminating set of
light sources. This has been made possible by introducing a matrix representation
of property of object surface, which we call the surface interaction matrix. The
entries of this matrix are computable only from the intensities of the sample
points, and transforming it into the canonical form results in segmenting sample
points. Once the segmentation is carried out, we simply solve for the lighting
parameters individually for each cluster. In the second stage, our mechanism to
search for the depth at each point on the surface of the object is to exploit the
Geotensity constraint by taking all the possible lighting parameters into account.
In principle the proposed constraint is that the correct depth with correct lighting

1 Geotensity stands for “geometrically corresponding pixel intensity.”
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parameters should best satisfy the Geotensity constraint whereas the agreement
with the constraint is measured in the values of pixel intensities in the images
themselves. This is important since we employ the Geotensity constraint so that
the estimation for surface depth will be optimal in the sense of finding the least
square error with respect to image noise (which is generally well understood and
well behaved).

Although we will show that our theory is quite general, we will make a
number of assumptions in order to present some early results. In particular we
will assume that the object has Lambertian surface properties and convex shape
(therefore no self-shadowing). Despite such assumptions the key advance is that
our formulation allows our results to be obtained fully automatically and for a
wide range of well researched stereo algorithms to be applied directly.

2 The Geotensity Constraint

The Geotensity constraint for 3D surface reconstruction was first proposed in
[11], applying the notion of linear image basis [14] to object in motion under a
single point light source. Here we give a brief summary of the constraint while
introducing an additional scheme [10] to explicitly solve for the illuminant di-
rection.

2.1 Issues Respecting Geometry and Intensity

We first consider some issues respecting geometry and intensity that form the
basis of the Geotensity constraint. What we initially need is to find some num-
ber of corresponding sample points by an independent mechanism. One way to
robustly sample proper points between frames is to employ a scheme to extract
corners and correlate them automatically while eliminating outliers as seen for
example in [1]. For consecutive images sampled at a sufficiently high time fre-
quency we can also use the tracking method of Wiles et al. [17]. Given point
correspondence for some sample points, we can derive a constraint on geometry
by the coordinates, and also a photometric constraint by observing the intensi-
ties on these points.

Solving for Geometry
In this paper, for simplicity, we will concern ourselves with the affine and scaled-
orthographic camera models [12] for projection. Consider the ith world point
Xi = (Xi, Yi, Zi)> on the surface of an object projected to image point xi(j) =
(xi(j), yi(j))> in the jth frame. The affine camera model defines this projection
to be

xi(j) = M(j)Xi + t(j) ,

where M(j), an arbitrary 2×3 matrix, and t(j), an arbitrary 2 vector, encode
the motion parameters of the object. The solution to the structure from mo-
tion problem using singular value decomposition is well known for this case;
given at least four point trajectories xi(j) observed through at least two frames
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the set M(j), Xi and t(j) can be uniquely recovered up to an arbitrary affine
ambiguity [15]. The result is affine structure.

Given the solution to structure from motion using the affine camera model,
the Euclidean structure and motion parameters fitting the weak perspective
camera model can be recovered [16]. A result of choosing the first frame to be
canonical is that the structure vectors have the form, Xi = (x>

i (1), Z)>, and we
can derive the relationship,

xi(j) = M(j)
(

xi(1)
Z

)
+ t(j) . (1)

This relationship effectively describes the epipolar constraint between two ima-
ges.

Solving for Image Intensity
Assuming a static camera and light source, we consider the intensity Ii(j) of the
ith point on the surface of a moving object projected into the jth image. For
Lambertian surface we can then express Ii(j) in terms of the image formation
equation process so that

Ii(j) = max(bi
>s(j), 0) (2)

where the maximum operator zeroes negative component [7]. The 3 vector bi

is the product of the albedo with the inward facing unit normal for the point
and the 3 vector s(j) is the product of the strength of the light source with
the unit vector for its direction. The negative components correspond to the
shadowed surface points and are sometimes called attached shadows [14]. To
have no attached shadows, images must be taken with the light source in the
bright cell (the cell of light source directions that illuminate all points on the
object [2]). Note that

s(j) = R(j)>s(1) (3)

where the 3×3 matrix, R(j), is the rotation of the object from the first canoni-
cal frame to the jth frame. Multiplication of R(j)> represents virtually inverse
rotation of the light source. The rotation matrix is directly computed from the
2×3 matrix M(j) that is given above by solving for the structure from motion
problem.

Given the correspondence for a small number of ni pixels through all of nj

images, we record the corresponding pixel intensities, Ii(j), in I, which we call
illumination matrix. Then, we can form the matrix equation

I = BS (4)

where I is a ni × nj matrix containing the elements Ii(j), B is a ni × 3 matrix
containing the rows b>

i , and S is a 3 × nj matrix containing the columns s(j).
Equation 4 is then in the familiar form for solution by singular value decompo-
sition to obtain a rank 3 approximation to the matrix I such that

I = B̆S̆ . (5)
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In practice we employ RANSAC, a robust random sampling and consensus tech-
nique, to ensure that artifacts that are caused by an object not fulfilling the
assumed conditions (e.g. specularities and self-shadowing) do not distort the
correct solution.

As is well known, the solution is unique up to an arbitrary invertible 3×3
transformation A and equation 5 is equivalent to

I = B̆S̆ = (B̆A−1)(AS̆) . (6)

Therefore, S̆ by arbitrary decomposition contains the information of the light
source up to an arbitrary transformation A. Although the matrix S̆ will suf-
fice for surface reconstruction with a single light sources, the parameterization
using the lighting vectors is useful in an environment with multiple light sources.

Estimating the Light Source Direction
The problem of estimating the light source direction is attributed to that of
solving for matrix A which transforms S̆ into S by

S = AS̆ , (7)

or for each column s̆(j) into s(j) by

s(j) = As̆(j) (8)

where s̆(j) denotes columns of S̆. Substituting equation 8 into equation 3, we
have the relation,

As̆(j) = R(j)>As̆(1) , (9)

which provides a homogeneous system; three equations for each reference image.
In order to solve for the nine elements of A as a well-posed problem, it is neces-
sary to have reference information so that the resulting light source direction fits
to the first canonical input frame. Observing bi at an arbitrary sample point i
for which the light source is in the bright cell throughout the input images, and
substituting equation 8 to equation 2 for this point, we have

Ii(j) = b>
i As̆(j) . (10)

Since s̆(j) is obtained by the singular value decomposition of matrix I and the set
of intensities, Ii(j), is also known, equation 10 provides an additional constraint
to matrix A for each reference image. With the constraints of equation 9 and
equation 10 matrix A can be solved using a minimum of three input images.
Once matrix A is solved, by multiplying A with S̆ we obtain the explicit light
source matrix S containing the columns s(j).
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Fig. 1. Geotensity constraint. The intensity of world point Xi projected into the first
image, Ii(1), is represented by a unique linear combination of the intensities of the
same point projected in the other three images, Ii(2) · · · Ii(4) for all points i.

2.2 Depth by the Geotensity Constraint

The term Geotensity constraint accounts for a constraint between four or more
images of an object from different views under static lighting conditions. This
concept is schematically depicted in Figure 1 by replacing object motion with a
coherent motion of the camera and the light source.

The conditions for applying the Geotensity constraint to depth reconstruc-
tion are as follows: (i) The scene consists of a single moving object. (ii) The object
has Lambertian surface properties and is convex (therefore no self-shadowing)
while the surface may or may not be textured. (iii) There is a single distant light
source. However, the condition (iii) will be relaxed in Section 3 and 4.

Evaluating the Set of Intensities
At each pixel, x, in the first image, to search for the depth Z we can recall
equation 1 for the geometric constraint imposed on a sequence of images so that

I(j;x, Z) = I[x(j)] = I[M(j)
(

x(1)
Z

)
+ t(j)] . (11)

I(j;x, Z) indicates the set of image intensities in the jth frame at the coordinates
determined by x in the first image, guess of depth Z, and the motion parameters
M(j) and t(j). The task is now to evaluate the set of intensities I(j;x, Z). When
full Euclidean lighting conditions have been recovered in advance so that s(j) is
known, with four images we define b̂> as

b̂> = [I(1) I(2) I(3) I(4)]S>(SS>)−1 (12)

where S is a 3×4 matrix containing the columns s(j)(j = 1, 2, 3, 4). For a single
light source with all images taken with the light source in the bright cell, the
estimated values of the intensities are then

Î(j;x, Z) = b̂>s(j) . (13)
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It should be noted that exactly the same estimation of Î(j;x, Z) is available
also in the case that the light source direction is determined only up to the
ambiguity. This is easily confirmed by substituting equation 7 to equation 12
and then equation 8 to 13, where matrix A turns out to be canceled. Estimating
Î(j;x, Z) by equation 13, we can define the error function to evaluate the set of
intensities I(j;x, Z) as

E(x, Z) =
∑

j

(I(j;x, Z) − Î(j;x, Z))2 . (14)

Computing the Depth
At each pixel, x, in the first image we measure the error, E, in the Geotensity
constraint at regular small intervals of depth, Z. When the depth is correct we
expect the error to approach zero and when it is incorrect we expect the error
to be large. The Geotensity constraint can be stated simply as

E(x, Z) = 0 . (15)

It is clear that as the depth parameter is varied the location of the corresponding
points in each image will trace out the corresponding epipolar line in each image.
We then choose such depth Z that minimizes the error E(x, Z) as the depth
estimate.

3 Estimation of Multiple Light Sources

Our discussion in the previous section has been limited largely to the case of
a single light source. In this section, we extend this by describing a scheme to
compute surface depth using the Geotensity constraint for the case of multiple
light sources. If all the light sources illuminated all the points on the surface of
the object then we could treat the combined light sources as an equivalent single
light source and carry out computation of this vector from measurements as
before. Unfortunately, most (if not all) points on the surface will be illuminated
by a subset of the light sources and this subset will be different for different
points. Therefore, the illumination matrix I will contain intensities derived from
different subsets of light sources.

The basic idea we propose for the case with multiple light sources is to
first sort the rows of the illumination matrix I into submatrices, each of which
contains intensities derived from an identical subset of light sources. We call each
such submatrix an illumination submatrix. Once the segmentation is carried out,
we estimate the direction of combined light sources for each subset, applying the
technique described in Section 2.1 individually to each illumination submatrix.

3.1 Illumination Submatrix

Although we describe the algorithm mainly for the case of two point light sour-
ces for simplicity, the proposed algorithm will turn out to be applicable to the
general case of an arbitrary unknown number of light sources. For illustration
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Fig. 2. Synthetic sphere (128 × 128). Left: The first point light source is at infinity in
the same direction to the viewing point. Middle: The second in the top-left direction
(0.37, - 0.92, -0.18). Right: The sphere is illuminated by both of the point light sources.

we use the synthetic sphere shown in Figure 2. The first point light source illu-
minating the entire semi-sphere is placed at infinity in the same direction to the
viewing point, whereas the second is also at infinity but in the top-left direction
causing an attached shadow. For convenience we call the lighting vectors l1 and
l2, respectively, and the combined lighting vector l0. I.e, l0 = l1 + l2. Thus l0
illuminates the top-left area while the rest of the area is illuminated by l1 only.
In this example there is no area that is illuminated only by l2 and we ignore it
without loss of generality.

Suppose that n0 points out of ni samples stay illuminated by l0 throughout
the image sequence and n1 points only by l1. And given that somehow we know
the classification of sample points (the method for the classification is described
in Section 3.2), we could permute the rows of illumination matrix I in such a way
that each illumination submatrix Il(l = 0, 1) respectively contains nl(l = 0, 1)
sample points due to each lighting vector. Analogous to equation 4 in the case of
a single point light source, each illumination submatrix could then be rewritten
as

Il ' BlSl (l = 0, 1) (16)

and the illumination matrix can be represented in its canonical form Ī:

Ī =
(
I0
I1

)
'

(
B0

B1

) (
S0
S1

)
= B̄S̄, (17)

where nl×3 matrices Bl are submatrices of B containing the rows corresponding
to sample points illuminated by ll. For convenience we use the notations of

B̄ =
(
B0

B1

)
, S̄ =

(
S0
S1

)
. (18)

In the following we discuss the acquisition of the above representation Ī, which
essentially requires the knowledge about the classification of the sample points
so that each row of Il(l = 0, 1) contains image intensities generated by a com-
mon subset of light sources. Now equations 16 and 17 are not strictly defined as
equations because each sample point does not necessarily stay illuminated by a
unique subset of light sources throughout the input frames. However, assuming
that a majority of the sample points will do, we first include those points il-
luminated by different sets of light sources in different frames in either of the
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illumination submatrices, and then exclude them as outliers by RANSAC prior
to the process of factorization in equation 16.

3.2 Segmentation of Illumination Subspace

As is obvious in equation 17, I0 and I1 are at most rank 3 and thus full rank
of Ī or unsorted I is in total 6. In order to consider the non-degenerate case,
we assume nj ≥ 6, i.e. we utilize a minimum of 6 frames. When we consider
an arbitrary row of I, p>

α , corresponding to an arbitrary sample point, α, and
regard it as representing an nj dimensional vector whose elements are the pixel
intensities of point α observed throughout nj frames, vector p>

α represents a
point in nj dimensional illumination space Rnj . Therefore, if pα belongs to I0,
we have

p>
α = b>

α S0 (19)

where p>
α represents a point in 3-D illumination subspace L0 spanned by the

three row vectors of S0 with the surface vector bα as coefficients. Analogously,
each row of I0 represents a point in a 3-D subspace L0, and each row of I1 a
point in another 3-D subspace L1. Therefore, the classification problem of ni

sample points is attributed to segmenting a group of ni points in Rnj into two
different 3-D subspaces. In the following, we first show that the segmentation is
mathematically possible on the basis of a theorem, and then propose a technique
to practically carry out the segmentation by introducing the surface interaction
matrix.

Mathematical Background
In the illumination space Rnj under two point light sources we define an ni ×ni

metric matrix G = (Gαβ) as2

G = I I>, Gαβ = (pα,pβ) (20)

where α and β are indices of two arbitrary sample points, and pα and pβ are
corresponding rows of I. By definition this is a rank 6 positive semi-definite
symmetric matrix [8]. We denote the eigenvalues of G as λ1 ≥, ...,≥ λni (only
the first six values are non-zero) and an orthonormal system3 of corresponding
eigenvectors as {v1, ...,vni

}. Let us define an ni ×ni function matrix H = (Hαβ)
with the first six eigenvectors as

H =
6∑

i=1

viv>
i . (21)

Then, according to the general theorem for subspace segmentation (see Ap-
pendix) we have the following theorem as a special case where the number of
subspaces is two (m = 2);
2 We write the inner product of vectors a and b as (a,b).
3 By orthonormal we mean that vi ·vj = 0 (i 6= j) and vi ·vj = 1 (i = j) for arbitrary

set of i and j.
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Theorem 1 If pα ∈ I0 and pβ ∈ I1, then Hαβ = 0.

Theorem 1 implies the possibility of the classification, i.e. for each pair of sample
points, α and β, we can judge if they are illuminated by an identical subset of
light sources by computing Hαβ . If the value is non-zero, they belong to the
same subset of light sources, and if they do not belong to the same subset of
light sources, the value is zero.

Surface Interaction Matrix
Based on Theorem 1 we propose to carry out the task of classification systema-
tically for the entire set of sample points. Applying singular value decomposition
directly to the unsorted illumination matrix, I, we obtain the familiar form of
approximation as I = UΣV>. Matrix Σ is a diagonal matrix consisting of the
six greatest singular values whereas U and V are the left and right singular ma-
trices, respectively, such that U>U = V>V = E6×6 (the identity matrix). Since
U contains eigenvectors of I I>, we can compute the ni × ni function matrix H
using its first six columns,

H = UU>, (22)

and we call it the ”surface interaction matrix”4 as it preserves the interactive
property of object surface with the light source direction. This matrix H is by
definition computable uniquely from the illumination matrix I. Also, permuting
rows of I does not change the set of values Hαβ that appear in H though their
arrangement in H does; swapping rows α and β of I results in swapping corre-
sponding rows α and β of U. Therefore, it results in simultaneously swapping
rows α and β and columns α and β in H, but not their entry value.

Since the set of values does not change, to reveal the relevance of Theorem 1,
we investigate the character of H̄, the surface interaction matrix for the canonical
illumination matrix Ī. Factorizing each illumination submatrix Il(l = 0, 1) of Ī
in equation 17 by singular value decomposition in a similar way to above, we
have

Il = UlΣlV>
l = (UlΣ

1/2
l Al)(A−1

l Σ1/2
l V>

l ), (l = 0, 1) (23)

where Al represents an arbitrary invertible 3 × 3 matrix. Denoting also

Ū =
(
U0

U1

)
, Σ̄ =

(
Σ0

Σ1

)
, V̄ =

(
V>

0
V>

1

)
, Ā =

(
A0

A1

)
,

we have another factorized form of Ī as

Ī = (ŪΣ̄1/2Ā)(Ā−1Σ̄1/2V̄>) . (24)

Comparing the first term of equation 24 to that of equation 17 we obtain

B̄ = ŪΣ̄1/2Ā . (25)
4 The definition has been inspired by the work of Costeira and Kanade [3] that has

proposed the ”shape interaction matrix” and applied it successfully to the multi-
body structure-from-motion problem.
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Substituting the relation in equation 25 to 22,

H̄ = ŪŪ>

= B̄Ā−1Σ̄−1Ā−>B̄>

= B̄(Ā>Σ̄Ā)−1B̄>

= B̄(B̄>B̄)−1B̄>. (26)

Further, substituting equation 18 to 26,

H̄ =
(
B0

B1

) (
(B>

0 B0)−1

(B>
1 B1)−1

) (
B>

0
B>

1

)

=
(
B0(B>

0 B0)−1B>
0

B1(B>
1 B1)−1B>

1

)
. (27)

This means that the canonical H̄ matrix to the sorted Ī has a very defined
block-diagonal structure as can be expected by Theorem 1. Thus, each block of
H̄ provides important information; sample points illuminated by a common set
of light sources belong to an identical block in H̄.

Segmentation in Practice
The problem of segmenting the sample points under different subsets of light
sources now has been reduced to sorting the entries of matrix H into H̄ by
swapping pairs of rows and columns until it becomes block diagonal. Once the
sorting is achieved, the corresponding permutation of rows of I will transform
it to its canonical form, Ī, where sample points under common subset of light
sources are grouped into contiguous rows. We can then derive the light source
matrix S0 and S1 from each submatrix of Ī independently by the same technique
used in the case of a single light source.

In practical segmentation, with presence of points illuminated by different
sets of light sources in different frames, perfect diagonalization may not be pos-
sible. As stated earlier, however, it is not crucial either since those points will
anyway be excluded by RANSAC in computation of lighting parameters. It is
important that the borders between the blocks are roughly found so that each
block contains a sufficient number of sample points to compute the lighting para-
meters. With noisy measurements, a pair of sample points under different subsets
of light sources may exhibit a small non-zero entry in H. We can regard H2

αβ as
representing the energy of the surface interaction, and the block diagonalization
of H can be achieved by minimizing the total energy of all possible off-diagonal
blocks over all sets of permutations of rows and columns of H. A simple iterative
minimization procedure suffices for our purpose, but more efficient approaches
such as using the hill-climbing method can be employed as proposed in [3] for
sorting the shape interaction matrix. When the search over the set of permu-
tations is explosive, an approach based on genetic algorithm can be efficiently
adapted.
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3.3 Generalized Segmentation of Illumination Subspace

The discussion for the two points light sources applies to the case with an ar-
bitrary number of light sources (see Appendix). In the general case where m
subsets of the light sources exist, basically a minimum of 3m frames will be
necessary. Although the number of the blocks, namely the number of illumina-
tion subspaces, m, that reside on the surface of the object will be required prior
to the segmentation, it can also be identified by computing the rank r of the
illumination matrix I since r = 3m.

Regarding the condition to have non-degenerate I, the sample points in each
lighting classification should have surface normals that span 3D. Also, the rota-
tion axis with respect to the object motion should not coincide with the light
source direction, nor be coplanar throughout the input frames.

4 Surface Reconstruction

In this section we describe our algorithm for dense surface recovery under mul-
tiple light sources. With the light source matrix S0 and S1 acquired using the
technique discussed in the previous section, we can exploit equations 12, 13 and
14. Although S0 and S1 are valid as they are insofar as the surface stays illumi-
nated by an identical set of light sources throughout the image sequence, it is
not the case in general. The fundamental difficulty is in dealing with the subset
of light sources that is not constant throughout the frames, different for each
surface point, and unavailable in advance. For each surface point, i, neverthe-
less, a specific light source matrix must exist and be formed by an appropriate
combination of S0 and S1. We denote such a matrix Si. Each column of Si is
either from S0 or S1 depending on which subset of light sources illuminates point
i in each frame. Hence, the number of possible candidates for Si is mnj where m
is the number of the possible subsets of the light sources. In order to search for
the depth Z, correct error in the Geotensity constraint defined by equation 14
should be measured with the light source matrix Si. Since multiple candidates
exist for Si, we measure the error using all the possible candidates at each image
point, x. As in the case of a single light source, we expect the error to approach
zero when the depth is correct and the error to be large when the depth is in-
correct. We also expect the error to be large when an incorrect candidate of Si

is used. Because we compute the error for all the candidates of Si at regular
small intervals of depth, we regard the smallest error as E(x, Z) and choose as
the depth estimate such depth Z that minimizes the error E(x, Z). Including
the steps to compute the light source matrices, the algorithm for estimating the
depth can be summarized as:

1◦ Decompose the illumination matrix I using SVD and yield I = UΣV>

and compute the rank r = 3m .
2◦ Using the first r columns of U, compute the surface interaction matrix

H = UU> and block-diagonalize it.
3◦ For each of m blocks in H, permute matrix I into submatrices, Il(l =

1, ..., m), and compute Sl accordingly.
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4◦ At point x, measure I(j;x, Z) using equation 11 for a particular guess
of depth Z.

5◦ Estimate b̂> with I(j;x, Z) by equation 12 considering all the com-
binations of Sl for S, and then Î(j;x, Z) by equation 13.

6◦ Computing the error E(x, Z) by equation 14, choose such depth Z
that minimizes E(x, Z) as the depth estimate.

5 Experiments

In order to investigate the performance of the proposed algorithms, we first
utilize the synthetic sphere shown in Figure 2 as an example of an input object
that satisfies the required assumptions. The synthetic sphere is illuminated by
two point light sources at infinity. The upper-left part is illuminated by both
of the light sources whereas the rest of the surface is illuminated only by one
of them. Since the appearance of the sphere would not change as it rotates, we
acquire several identical input images. As we need some point correspondence
to solve for the parameters of imaging geometry as well as the lighting, in the
simulation we give some preliminary sample points arbitrarily on the sphere as
shown in Figure 3 and map the coordinates from one frame to the other while
giving some rotation to the sphere.

Fig. 3. Synthetic sphere (128 × 128) illuminated by two point light sources at infinity.
Corresponding coordinates are marked by the cross. 4 images are shown out of 8 used.

Figure 4 shows the surface interaction matrix H computed for the 46 sample
points on the sphere surface and its diagonalised form H̄. It is observed in the
diagonalized form that the sample points can be divided roughly into two clu-
sters. It is also observed that the result involves non-zero off-diagonal elements
due to some sample points which do not exactly belong to either of the clusters
while illuminated by different sets of light sources in different frames. However,
those points are excluded as outliers by RANSAC. In this example, a total of
17 points are excluded whereas the entire set of points are divided into 21 and
25 points in each cluster. From each cluster we then compute the light source
direction illuminating the corresponding area of the sphere surface.

The surface structure of the sphere was computed by measuring the depth at
every pixel in the first image. For illustration a vertical scan line in the middle
of the sphere (x = 64) is first examined in detail. We compute the error E(Z) by
equation 14 at each assumed depth Z for each pixel on the scan line to generate
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Fig. 4. Left: The surface interaction matrix H before sorting. Right: Diagonalized
surface interaction matrix H̄. The lighter the gray scale, the greater is the value.

(a) (b) (c) (d) (e)
Fig. 5. The error map by the Geotensity constraint. The vertical axis corresponds to
that in the input image and the horizontal axis to the assumed depth Z. The darker
the gray scale is, the smaller is the error E(Z). The gray scale is histogram-equalized.
(a) Computed only using s0. (b) Computed only using S1. (c) Computed using both S0

and S1. (d) Computed taking all the combination of columns in S0 and S1 into account.
(e) The surface depth map. The lighter, the closer. The estimate in the extreme-right
part should be ignored since due to the rotation that part of the sphere is invisible in
most of the input image sequence.

an error map for the line. Figure 5 shows the resulting error map where S0 and
S1 are utilized interchangeably in order to clarify their relevance. The darker
the image intensity, the smaller is the error E(Z). The gray scale is histogram-
equalized so that regions with smaller error can be studied more easily. It should
be noted that E(Z) has been computed without using a template and only by
referring to a pixel intensity in each frame. By searching for the depth Z along
the horizontal axis to find the point where the error E(Z) approaches zero and
then tracing this Z through each vertical coordinate, a curve that reflects a
continuous estimation of depth should be generated.

Figure 5 (a) and (b) shows maps of E(Z) computed using only S0 or S1,
respectively. Correct shape of the surface is estimated only for the upper part of
the scan line in Figure 5 (a), and in (b) only for the lower part. This is expected
since S0 and S1 are valid as they are only where the surface stays illuminated by
the corresponding set of light sources. Figure 5 (c) shows another map obtained
using both S0 and S1 and choosing the smaller E(Z). A reasonable result is
obtained for the upper and lower part of the scan line where either S0 or S1 is
valid. However, the result for the part in between those two parts is not as desired
since the correct set of light sources for this part should be some combination
of S0 and S1. Finally, Figure 5 (d) shows the map obtained by considering all
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Fig. 6. Statue of Julius Caesar. (a) Illuminated by a point light source in the viewing
direction. (b) Illuminated by another point light source placed at the right-hand side.
(c) Illuminated by both of the point light sources. (d) Illuminated by both of them but
in a different pose.

(a) (b) (c) (d)
Fig. 7. 3-D reconstruction of Julius Caesar. (a) The depth map by the Geotensity
constraint. The lighter, the closer. (b) The depth map by correlation. (c) The recovered
surface by the Geotensity constraint shown with mesh. (d) The recovered surface as in
(c) but the surface is texture-mapped.

the combinations of S0 and S1 as the candidates of the light source matrix S.
Although the error map appears to be more noisy since different combinations
of S0 and S1 are taken into account, the error is minimized at correct depth
for the entire vertical coordinates. Figure 5 (e) shows the result obtained by
performing the procedure for the entire surface. In the extreme-right part of
the sphere the estimation is not properly obtained since that part of the sphere
does not stay visible throughout the input images due to its rotation. Also, some
noise appears where an incorrect combination of S0 and S1 happens to minimize
the error E(Z) at incorrect depth. As a whole, however, it is observed that the
sphere surface is effectively recovered by investigating the Geotensity constraint
under multiple light sources.

We have applied the scheme also to a statue of Julius Caesar shown in Fi-
gure 6. The images of Julius Caesar were taken under two point light sources
placed in different directions, one in the viewing direction and the other at the
right-hand side, both about two meters away. Figure 6 (a) and (b) illustrate the
image radiance due to each point light source whereas Figure 6 (c) shows that
produced by both of the light sources. Seven other images of the statue, each
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obtained in a different pose, were used, and thus, a total of eight images were
used in the experiment. Figure 6 (d) shows one of them. As can be observed, one
of the light sources only illuminates part of the statue and the part varies due
to the motion of Julius Caesar. For instance the central part of the forehead is
illuminated by both of the light sources in Figure 6 (c) but by only one of them
in Figure 6 (d). In this way the appearance of the statue changes dramatically,
making the correspondence problem very difficult for conventional methods such
as using a constant intensity constraint.

The resulting depth map computed with the Geotensity constraint is shown
in Figure 7 (a). For the purpose of comparison, a depth map computed in the
same framework but using cross-correlation is shown in Figure 7 (b). In both
cases we used a 15×15 template for the search to suppress the error arising
from the image noise. Obviously, less error is involved in the estimation by the
Geotensity constraint, especially in the area where the surface has little texture
such as around the forehead and cheek. It implies the advantage of the Geotensity
constraint that basically works regardless of the surface albedo. Figures 7 (c)
shows recovered surface with mesh to assess the depth accuracy. The recovered
surface is smoothed using Gaussian operator (with standard deviation σ = 1.0).
Figures 7 (d) shows the surface with texture. The result demonstrates the validity
of the proposed scheme for a real object.

6 Summary and Discussion

For the problem of 3D object surface reconstruction by a single static camera,
we have considered to extend the Geotensity constraint to the case of multiple
light sources. We have first shown that it is mathematically possible to sort the
sample points into different clusters according to the subset of relevant light
sources. Introducing the surface interaction matrix as a technique to carry out
the task of practical segmentation, we have proposed that the object surface be
computed by solving for the combined light source direction from each cluster
and taking the combinations of different sets of light sources into account. Alt-
hough the demonstration has been limited to the case of two point light sources,
the algorithm is in principle applicable to the general case of an arbitrary un-
known number of light sources. When a large number of subsets of light sources
is involved in the presence of noise, a practical mechanism would be required in
order to estimate the clustering of sample points and also reduce the search for
the combination of light sources. Future work will be directed at developing such
a mechanism, e.g. by employing a statistical approach for the grouping of points
as proposed in [6], and also at extending the algorithm to treat more general
lighting conditions, including shadowing or inter-reflection.

A Appendix: Subspace Segmentation
Consider N points pα in n-dimensional space Rn (α = 1, ..., N) and decompose the
group of indices I = {1, ..., N} into m subgroups as:

I1 ∪ · · · ∪ Im = I, I1 ∩ · · · ∩ Im = ∅.
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Define a rank rk subspace Lk spanned by the k-th group pα(α ∈ Ik). When m subspa-
ces Lk(k = 1, ..., m) are linearly independent, L1⊕···⊕Lm represents an r-dimensional
subspace of Rn so that r =

∑m

k=1 rk. Assuming N ≥ r, let us define an N × N metric
matrix G = (Gαβ) as

Gαβ = (pα,pβ) , (28)

where (β = 1, ..., N) is an index to another sample point pβ in Rn. By definition this
is a rank r positive semidefinite symmetric matrix [8]. We denote the eigenvalues as
λ1 ≥, ..., ≥ λN (only the first r values are non-zero) and an orthonormal system of
corresponding eigenvectors as {v1, ...,vN}. Let us define an N × N function matrix
Q = (Qαβ) as

Q =
r∑

i=1

viv>
i .

Theorem 2 If α ∈ Ik and β /∈ Ik, then Qαβ = 0. (See Kanatani [9] for the proof.)
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