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Abstract. This paper focuses on matching 1D structures by variational
methods. We provide rigorous rules for the construction of the cost func-
tion, on the basis of an analysis of properties which should be satisfied by
the optimal matching. A new, exact, dynamic programming algorithm
is then designed for the minimization. We conclude with experimental
results on shape comparison.

1 Introduction

In signal processing, or image analysis, situations arise when objects of inter-
est are functions θ defined on an interval I ⊂ IR, and taking values in IRd.
The interval I may be a time interval (with applications to speech recognition,
or to on-line handwritten character recognition), a depth interval (for example
to analyze 1D geological data), or arc-length (with direct application to shape
recognition, 2D or 3D curve identification and comparison, etc. . . )

Comparing these “functional objects” is an important issue, for identification,
for retrieval in a database. Most of the time, the problem is intricately coupled
with the issue of matching the functions. The matching problem can be described
as “finding similar structures appearing at similar places (or similar times)”:
given two “objects”, θ and θ′, expressed as functions defined on the same interval
I, the issue is to find, for each x ∈ I, some x′ ∈ I such that x � x′ and
θ(x) � θ′(x′). If every point in one curve is uniquely matched to some point in
the other curve, the matching is a bijection φ : I → I, and the problem can
be formulated as finding such a φ such that φ � id (where id is the identity
function x �→ x) and θ � θ′ ◦ φ.

Since both constraints may drag the solution to opposite directions, a com-
mon approach is to balance them by minimizing some functional Lθ,θ′(φ). One
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simple example is (letting φ̇ = dφ
dx )

Lθ,θ′(φ) =
∫

I

φ̇2dx+ µ

∫
I

(θ(x) − θ′ ◦ φ(x))2dx . (1)

Many functionals which are used in the literature fall into this category, with
some variations (see, for example [2]), in spite of the fact that this formulation
has the drawback of not being symmetrical with respect to θ and θ′ (matching
θ to θ′ or θ′ to θ are distinct operations).

As an example of symmetric matching functional, let us quote [1], with
(among other proposals)

Lθ,θ′(φ) =
∫

I

|φ̇(x) − 1|dx+ µ

∫
I

|θ(x) − φ̇(x)θ′ ◦ φ(x)|dx (2)

or [13], with

Lθ,θ′(φ) = length(I) −
∫

I

√
φ̇(x)

∣∣∣∣cos
(
θ(x) − θ′ ◦ φ(x)

2

)∣∣∣∣ dx . (3)

The last two examples provide, after minimization over φ, a distance d(θ, θ′)
between the functions θ and θ′.

In this paper, all the matching functionals are associated to a function F
defined on ]0,+∞[×IRd × IRd, letting

Lθ,θ′(φ) =
∫

I

F (φ̇(x), θ(x), θ′ ◦ φ(x))dx

and the optimal matching corresponds to a minimum of L. To fix the ideas, we
also let I = [0, 1].

Our first goal is to list some essential properties which must be satisfied
by the matching functionals, and see how these properties can constrain their
design.

2 Designing Matching Functionals

Let a function F be defined on ]0,+∞[×IRd × IRd. We specify the problem
of optimal matching between two functions θ and θ′ , defined on [0, 1], and with
values in IRd as the search of the minimum, among all increasing diffeomorphisms
of [0, 1], of the functional,

Lθ,θ′(φ) =
∫ 1

0

F (φ̇(x), θ(x), θ′ ◦ φ(x))dx

Note that the functional Lθ,θ′ is only altered by the addition of a constant λ+µ
if F is replaced by F + λξ + µ, for some real numbers λ and µ. Since this does
not affect the variational problem, all the conditions which are given below on
F are implicitly assumed to be true up to such a transform.
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2.1 Convexity

The first property we introduce can be seen as technical but is nonetheless
essential for the variational problem. It states that F must be a convex function
of φ̇. From a theoretical point of view, this is almost a minimal condition for the
well-posedness of the optimization. It is indeed proved in [4] that this condition
is equivalent to the fact that the functional Lθ,θ′ is lower semi-continuous as a
function of φ (in suitable functional spaces): lower-semi continuity must indeed
be considered as a weak constraint for minimization. Of course, this assumption
does not imply that Lθ,θ′ is convex in φ. We state the convexity condition for
future reference:

[Convex] for all u, v ∈ IRd, ξ �→ F (ξ, u, v) is convex on ]0,+∞[.

We shall see later that this assumption also has interesting numerical conse-
quences, in particular when the functions θ and θ′ are piecewise constant.

2.2 Symmetry

The next property we introduce is symmetry. In most of the applications, there
are no reasons to privilege one object rather than the other, which implies that
the optimal matching should not depend upon the order in which the functions
θ and θ′ are considered. We thus aim at the property that, for any functions θ
and θ′ ,

φ = argminLθ,θ′ ⇔ φ−1 = argminLθ′,θ

Since

Lθ′,θ(φ−1) =
∫ 1

0

φ̇(x)F
(

1
φ̇(x)

, θ′ ◦ φ(x), θ(x)
)
dx

A sufficient condition for symmetry is

[Symmetry] For all (ξ, u, v) ∈]0,+∞[×IRd × IRd, one has F (ξ, u, v) =
ξF (1/ξ, v, u).

It is very important to check that this condition is compatible with the first
one. This fact is a consequence of the next lemma

Lemma 1. A mapping f :]0,+∞[→ IR is convex if and only if f ∗ : ξ �→ ξf(1/ξ)
is convex

Proof. We know that a function is convex if and only if it can be expressed as the
supremum of some family of affine functions: f(x) = supi{fi(x)} where each fi is
affine, fi(x) = αix+βi. Then, for all x > 0, f ∗(x) := xf(1/x) = supi{αi +βix},
which proves that f ∗ is convex.

In the general case, we let F ∗(ξ, u, v) = ξF (1/ξ, v, u), so that the symmetry
condition becomes F = F ∗ . We let F s be the symmetrized version of F , F s =
F + F ∗ . Lemma 1 implies that F s satisfies [Convex] as soon as F satisfies it.
Returning to example (1), for which

F (ξ, u, v) = ξ2 + µ(u− v)2
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we have
F s(ξ, u, v) = ξ2 +

1
ξ

+ µ(1 + ξ)(u − v)2

and the symmetrized matching functional is

Lθ,θ′(φ) =
∫ 1

0

(
φ̇(x)2 +

1
φ̇(x)

)
dx+

∫ 1

0

(1 + φ̇(x))(θ(x) − θ ◦ φ(x))2dx

2.3 Consistent Self-Matching

Another natural condition is that, when comparing a function θ with itself, the
optimal φ should be φ = id. In other terms, one should have, for all functions θ,
and all diffeomorphisms φ∫ 1

0

F (φ̇(x), θ(x), θ ◦ φ(x))dx ≥
∫ 1

0

F (1, θ(x), θ(x))dx (4)

Making the change of variable y = φ(x) in the first integral and letting
ψ = φ−1, (4) yields, for any diffeomorphism ψ, and for all θ∫ 1

0

F ∗(ψ̇(x), θ(x), θ ◦ ψ(x))dx ≥
∫ 1

0

F (1, θ(x), θ(x))dx

so that, if (4) is true for F , it is also true for F ∗ and thus for F s (one has
F ∗(1, u, u) = F (1, u, u) for all u). This shows that our conditions are compatible.

We use a more convenient, almost equivalent, form of (4):

[Self-matching] There exists a measurable function λ : IRd → IR such that,
for all ξ > 0, u, v ∈ IRd,

F (ξ, u, v) ≥ F (1, u, u) + λ(v)ξ − λ(u)

We have

Proposition 1. If F satisfies [Self-matching], then inequality (4) is true for
all φ, θ.

Conversely, if inequality (4) is true for all φ and θ, and if F is differentiable
with respect to its first variable at ξ = 1, then [Self-matching] is true.

The first assertion is true by the sequence of inequalities:∫ 1

0

F (φ̇(x), θ(x), θ ◦ φ(x))dx ≥
∫ 1

0

F (1, θ(x), θ(x))dx

+
∫ 1

0

φ̇(x)λ(θ ◦ φ(x))dx −
∫ 1

0

λ(θ(x))dx

=
∫ 1

0

F (1, θ(x), θ(x))dx

since
∫ 1

0 φ̇(x)λ(θ ◦ φ(x))dx =
∫ 1

0 λ(θ(x))dx by change of variables. The proof of
the converse is given in the appendix.
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2.4 Focus Invariance

Additional constraints may come from invariance properties which are imposed
on the matching. Whereas [Convex], [Symmetry] and [Self-matching] have
some kind of universal validity, the next ones have to be, to some extent, appli-
cation dependent.

The invariance property we consider in this section will be called “focus
invariance”. It states that the matching remains stable when the problem is
refocused on a sub-interval of [0, 1].

To describe this, consider θ and θ′ as signals, defined on [0, 1], and assume
that they have been matched by some function φ∗ . Let [a, b] be a sub-interval of
[0, 1] and set [a′, b′] = [φ∗(a), φ∗(b)]. To refocus the matching on these intervals,
rescale the functions θ and θ′ , to get new signals defined on [0, 1], which can
be matched with the same procedure. Focus invariance states that this new
matching is the same as the one which has been obtained initially.

Let us be more precise. To rescale θ (resp. θ′), define θab(x) = θ(a+(b−a)x)
(resp. θ′a′b′(x) = θ′(a′ + (b′ − a′)x)), x ∈ [0, 1]. Comparing these signals with the
functional F yields an optimal matching which, if it exists, minimizes

∫ 1

0

F (φ̇(x), θa,b(x), θ′a′,b′ ◦ φ(x))dx (5)

The original optimal matching between the functions θ and θ′ clearly mini-
mizes ∫ b

a

F (φ̇(y), θ(y), θ′ ◦ φ(y))dy

with the constraints φ(a) = a′ and φ(b) = b′. Making the change of variables
y = a+(b−a)x, setting ψ(x) = (φ(y)−a′)/(b′−a′), this integral can be written

(b − a)
∫ 1

0

F (λψ̇(x), θa,b(x), θ′a′,b′ ◦ ψ(x))dx (6)

with λ =
b′ − a′

b− a
. We say that F satisfies a focus invariance property if, for any

θ and θ′ , the minimizer of (5) is the same as the minimizer of (6).
One possible condition ensuring such a property is that F is itself (relatively)

invariant under the transformation (ξ, u, v) = (λξ, u, v), that is, for some α > 0,
for all ξ > 0, u, v ∈ IRd,

F (λξ, u, v) = λαF (ξ, u, v)

or F (ξ, u, v) = ξαF (1, u, v). We state this condition

[Focus] For some α > 0, F takes the form, for some function F1 defined on
IRd × IRd: F (ξ, u, v) = −ξαF1(u, v).

For such a function, [Convex] is true if and only if, either α = 1, or α ∈]0, 1[
and F1 ≥ 0, or α ∈] −∞, 0[∪]1,+∞[ and F1 ≤ 0. To ensure [Symmetry], one
needs α = 1/2 and F1 symmetrical. We thus get that
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Proposition 2. The only matching functionals which satisfy [Symmetry] and
[Focus] take the form

F (ξ, u, v) = −
√
ξF1(u, v) (7)

with F1(u, v) = F1(v, u).
Such a function F satisfies [Convex] if and only if F1(u, v) ≥ 0 for all u

and v.
It satisfies [Self-matching] if, for all u, v ∈ IRd,

F1(u, v) ≤
√
F1(u, u)F1(v, v) (8)

Proof. It remains to prove the last assertion. For [Self-matching], we must
have, for some function λ,

−λ(u) − F1(u, u) = min
v,ξ

(−λ(v)ξ −
√
ξF1(u, v))

For a fixed v, −λ(v)ξ − √
ξF1(u, v) has a finite minimum in two cases: first,

if λ(v) < 0, and this minimum is given by F1(u, v)2/(4λ(v)) and second, if
λ(v) = F1(u, v) = 0. In the first case, we have

−λ(u) − F1(u, u) = min
v,λ(v)>0

F1(u, v)2

4λ(v)
(9)

In particular, taking v = u, one has, if λ(u) > 0,

F1(u, u)2 + 4λ(u)F1(u, u) + 4(λ(u))2 ≤ 0

which is possible only if F1(u, u) = −2λ(u). Given this fact, which is true also if
λ(u) = 0, (9) clearly implies (8).

2.5 Scale Invariance for Shape Comparison

Focus invariance under the above form is not a suitable constraint for every
matching problem. Let us restrict to the comparison of plane curves, which has
initially motivated this paper. In this case, the functions θ typically are geomet-
rical features computed along the curve, expressed in function of the arc-length.
In such a context, focusing should rather be interpreted from a geometrical
point of view, as rescaling (a portion of) a plane curve so that it has, let’s say,
length 1. But applying such a scale change may have some impact not only on
the variable x (which here represents the length), but also on the values of the
geometric features θ. In [13], for example, the geometric features were the ori-
entations of the tangents, which are not affected by scale change, so that focus
invariance is in this case equivalent to geometric scale invariance. Letting κ be
the curvature computed along the curve, the same invariance would be true if
we had taken θ = κ′/κ2 (which is the “curvature” which characterizes curves up
to similitudes). But if we had chosen to compare precisely Euclidean curvatures,
the invariance constraints on the matching would be different: since curvatures
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are scaled by λ−1 when a curve is scaled by λ, the correct condition should be
(instead of [Focus]):

F (λξ, λu, v) = λαF (ξ, u, v)

This comes from rescaling only the first curve. Rescaling the second curve yields

F (λξ, u, v/λ) = λβF (ξ, u, v)

Note that, if the symmetry condition is valid, we must have β = 1 − α, which
we assume hereafter.

One can solve this identity, and compute all the (continuously differentiable)
functions which satisfy it. This yields functions F of the kind

F (ξ, u, v) = H(ξ
v

u
)uαvα−1

Note that, since F should be convex as a function of ξ, H itself shoud be
convex. The symmetry condition is ensured as soon as xH(1/x) = H(x) for all
x. One choice can be

F (ξ, u, v) = |ξv − u| .
which satisfies [Convex], [Symmetry] and [Self-matching].

Many variations can be done on these computations. The first chapters of [8]
contain information on how devising functionals which satisfy given criteria of
invariance.

2.6 Remark

A similar, “axiomatic” approach has been taken in [1], in which a set of con-
straints has been proposed in the particular case of matching curvatures for
shape comparison. They have introduced a series of conditions, in this context
(which turned out, however, to be incompatible). The only common condition
with our paper is the symmetry, since we have chosen not to discuss the trian-
gular inequality. Note, also, that scale invariance is not taken into account in
[1].

3 Existence Results

One essential issue, for the matching problem, is to know by advance that the
associated variational problem has a solution. It is also interesting to be able
to analyze a priori some properties of the optimal matching. These problems
have been addressed in [12], in the particular case of focus invariant symmetric
matching, that is, for F of the kind F (ξ, u, v) = −√

ξF1(u, v) (the objective was
in particular to be able to deal with functionals like (3)). However, we believe
that, with a not so large effort, the results can be extended to a wider range of
cases.

In general, it is (relatively) easy to prove that the variational problem has a
solution in a larger space than only the diffeomorphisms of [0, 1]. In [12] (see also



580 A. Trouvé and L. Younes

[10]), we have extended the functional to the set of all probability measures on
[0, 1], replacing φ̇ by the Radon-Nicodym derivative with respect to Lebesgue’s
measure. Using a direct method (cf. [4]), a minimizer of the extended functional
could be shown to exist. The hardest part of the study is then to give conditions
under which this minimizer yields a correct matching, in the sense that it pro-
vides at least a homeomorphism of [0, 1]. We now state the results, in the case
when F (ξ, u, v) = −√

ξF1(u, v). Fixing θ and θ′ , we let f(x, y) = F1(θ(x), θ′(y)),
and

Uf (φ) = −
∫ 1

0

√
φ̇(x)f(x, φ(x))dx

where φ̇ should be understood as a Radon-Nicodym derivative of the measure
defined by µ([0, x[) = φ(x). To simplify, we assume that
Notation For a, b ∈ [0, 1]2 denote by [a, b] the closed segment {a+ t(b −
a), 0 ≤ t ≤ 1}, and by ]a, b[ the open segment [a, b] \ {a, b}. A segment
is horizontal (respectively vertical) if a2 = b2 (respectively a1 = b1),
where a = (a1, a2) and b = (b1, b2).

Notation We let ∆f =
∫ 1

0

f(x, x)dx, and Ωf be the set

Ωf =


(x, y) ∈ [0, 1]2 : |x− y| ≤

√
1 −

(
∆f

‖f‖∞

)2



We have

Theorem 1. Assume that f ≥ 0 is bounded, upper semi-continuous, and

– there exists a finite family of closed segments ([aj , bj])j∈J such that each
of them is horizontal or vertical and f is continuous on [0, 1]2 \ F where
F =

⋃
j∈J [aj , bj].

– there does not exist any non empty open vertical or horizontal segment ]a, b[
such that ]a, b[⊂ Ωf and f vanishes on ]a, b[.

Then there exists φ∗ ∈ Hom+ such that Uf (φ∗) = min{Uf(φ), φ ∈ Hom+}.
Moreover, if φ is a minimizer of Uf , one has, for all x ∈ [0, 1], (x, φ(x)) ∈ Ωf .

We have denoted by Hom+ the set of (strictly) increasing homeomorphisms on
[0, 1]. We now pass to conditions under which the optimal matching satisfies
some smoothness properties.

Definition 1. We say that f : [0, 1]2 → � is Hölder continuous at (y, x) if there
exist α > 0 and C > 0 such that

|f(y′, x′) − f(y, x)| ≤ Cmax(|y′ − y|α, |x′ − x|α) (10)

for any (y′, x′) ∈ [0, 1]2 such that (y′, x′) �= (y, x).
We say that f is locally uniformly Hölder continuous at (y0, x0) if there exists

a neighborhood V of (y0, x0) such that, f is Hölder continuous at all (y, x) ∈ V ,
with constants C and α which are uniform over V .
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Theorem 2. Let f be a non-negative real-valued mesurable function on [0, 1]2

and assume that Uf reaches its minimal value on Hom+ at φ∗ . Then for any
x0 ∈ [0, 1], if f((φ(x0), x0) > 0 and if f is Hölder continuous at (x0, φ(x0)), then
φ∗ is differentiable at x0 with strictly positive derivative.

Moreover, if f is locally uniformly Hölder continuous, then φ̇∗ is continuous
in a neighborhood of x0.

Theorem 3. Assume that f is continuously differentiable in both variables. Let
φ ∈ Hom+ be such that Uf (φ) = min{Uf(ψ) |ψ ∈ Hom+} and that, for all
x ∈ [0, 1], one has f(x, φ(x)) > 0. Then, φ is twice continuously differentiable.

4 Numerical Study

We now study the numerical problem of minimizing a functional of the kind

U(φ) =
∫ 1

0

F (φ̇(x), θ(x), θ′ ◦ φ(x))dx

in φ, for two functions θ and θ′ defined on [0, 1], with values in IRd; φ is an
increasing diffeomorphism of [0, 1].

We assume [Convex], so that F is convex in its first variable. This condition
will allow us to devise a dynamic programming algorithm to compute exactly
the optimal matching in the case of discretized functions θ and θ′ .

We recall the notation, for all ξ > 0, u, v ∈ IRd: F ∗(ξ, u, v) = ξF (1/ξ, v, u).
We start with a very simple lemma, which is implied by the first assumption:

Lemma 2. Assume [Convex]. Let 0 ≤ a < b ≤ 1, and 0 ≤ a′ < b′ ≤ 1. Fix
u, v ∈ IRd. Then the minimum in φ of

∫ b

a

F (φ̇(x), u, v)dx

with constraints φ(a) = a′ and φ(b) = b′, is attained for φ linear: φ(x) = a′ +
(x− a)(b′ − a′)/(b− a).

Moreover, F is convex in φ̇ if and only if F ∗ is convex in φ̇

Proof. For any convex function G, and for any φ such that φ(a) = a′ and φ(b) =
b′, the fact that ∫ b

a

G(φ̇(x))dx ≥ (b − a)G(
b′ − a′

b− a
).

is a consequence of Jensen’s inequality.
The second assertion is lemma 1.
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Now, we assume that θ and θ′ are piecewise constant. This means that there
exist subdivisions of [0, 1], 0 = s0 < s1 < · · · < sm−1 < sm = 1 and 0 = s′0 <
s′1 < · · · < s′n−1 < s′n = 1, and some constant values θ1, . . . , θm, θ′1, . . . , θ

′
n in

IRd, such that θ(x) ≡ θi on [si−1, si[ and θ′(x) ≡ θ′i on [s′i−1, s
′
i[.

We now get a new expression for U(φ) in this situation. For this, we let
ψ = φ−1. We also denote τi = φ(si) and τ ′i = ψ(s′i). We have

U(φ) =
m∑

i=1

∫ si

si−1

F (φ̇(x), θi, θ
′ ◦ φ(x))dx =

m∑
i=1

∫ τi

τi−1

ψ̇(x′)F (1/ψ̇(x′), θi, θ
′(x′))dx′

=
m∑

i=1

∫ τi

τi−1

F ∗(ψ̇(x′), θ′(x′), θi)dx′ =
m∑

i=1

n∑
j=1

∫ τi∧s′
j

τi−1∨s′
j−1

F ∗(ψ̇(x′), θ′j , θi)dx′

Thus, by lemma 2, the minimizer of U can be searched over all piecewise linear
φ. Moreover, φ has to be linear on every interval of the kind ]τi−1 ∨ s′j−1, τi ∧ s′j [.
For such a φ, we have

U(φ) =
m∑

i=1

n∑
j=1

(τi ∧ s′j − τi−1 ∨ s′j−1)F
∗(
τ ′j ∧ si − τ ′j−1 ∨ si−1

τi ∧ s′j − τi−1 ∨ s′j−1

, θ′j , θi)

So that U is only a function of τ := (τ1, . . . , τm−1) and τ ′ := (τ ′1, . . . , τ ′n−1),
and the numerical procedure has to compute their optimal values. With a slight
abuse of notation, we write U(φ) = U(τ, τ ′).

The function U(τ, τ ′) can be minimized by dynamic programming. Let us give
some details about the procedure. To have some idea on the kind of functions φ
which are searched for, place, on the unit square [0, 1]2, the grid G which contains
all the points m = (s, s′) such that either s = si for some i, or s′ = s′j for some j.
We are looking for continuous, increasing mappings φ which are linear on every
portion which does not meet G (see figure 1).

On the set G, let Hij be the horizontal segment s′ = s′j , si−1 ≤ s < si.
Similarly, let Vij be the vertical segment s = si, s

′
j−1 ≤ s′ < s′j . Let Gij =

Hij ∪ Vij . If M ∈ G, denote by iM , jM the pair i, j such that M ∈ Gij

If M = (s, s′) and P = (t, t′) in G, write M < P if s < t and s′ < t′.
For M ∈ G, let �(M) be the set of points M ′ ∈ G such that M ′ < M and if
M ∈ Gij for some i, j then M ′ ∈ Vij−1 ∪Hi−1j . Finally, for M = (s, s′) ∈ G and
P = (t, t′) ∈ �(M), let

V (P,M) = (t′ − s′)F ∗(
t− s

t′ − s′
, θ′jM

, θiM ) = (t− s)F (
t′ − s′

t− s
, θiM , θ

′
jM

)

We can reformulate the problem of minimizing U into the problem of finding
an integer p and a sequence M0 = (0, 0),M1, . . . ,Mp−1,Mp = (1, 1) ∈ G such
that, for all i, Mi−1 ∈ �(Mi), which minimizes

L(M0, . . . ,Mp) :=
p∑

i=1

V (Mi−1,Mi) .
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s(1) s(2)

s’(n-3)

s’(2)

s’(1)

s(m-2) s(m-1)

s’(n-1)

s’(n-2)

Fig. 1. Piecewise linear function φ on the grid G

ForM ∈ G, denote by �(M) the set of all sequencesM0 = (0, 0),M1, . . . ,Mp−1,
Mq = M such that for all i, Mi−1 ∈ �(Mi). Denote by W (M) the infimum of L
over �(M). The dynamic programming principle writes, in our case:

W (M) = sup
P∈�(M)

(W (P ) + V (P,M)) (11)

This formula enables one to compute by induction the function W for all
M ∈ G. We have W (0, 0) = 0, and for all k > 0, if W (M) has been computed
for all M such that iM + jM ≤ k, then using (11), one can compute W (M) for
all M such that iM + jM = k + 1.

Dynamic programming has been widely used for speech recognition ([11]), or
for contour matching ([5], [9], [6], [3]). As presented above our method involves
no pruning, no constraint on the slope of the matching functional, unlike most
of the applications in dynamic time warping. If δ = 1/N is the grid step for the
discrete representation of [0, 1]2 (the points M0, . . . ,Mp will be assumed to have
coordinates of the kind (k/N, l/N) for integer k, l between 0 and N), one can
check that the complexity of the algorithm is of order N2, for a complete global
minimization.

5 Experiments

We present experimental results of curve comparison. The matched functions
are the orientations of the angles of the tangents plotted versus the Euclidean
arc-length of the curves (which are assumed to have length 1). The curves are
closely approximated by polygons, and the algorithm of section 4 is used. Thus,
we are dealing with piecewise constant functions θ : [0, 1] �→ [0, 2π[.
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Since our representation is not rotation invariant, and since, for closed curves,
the origins of the arc-length coordinates are not uniquely defined, we have first
used a rigid alignment procedure similar to the one presented in [7]. Matching
is then performed on the aligned shapes.

We have used several matching functionals. They are described in the cap-
tions of the figures.

The shapes have been extracted from a database composed with 14,000 ge-
ographical contours from a map of a region of Mali. These contours are hand-
drawn natural boundaries of topographical sites, and the comparison procedure
is part of an application aiming at providing an automatic classification of the
regions.

For each pair of compared shapes, the results are presented in two parts:
we first draw the (piecewise linear) optimal matching on [0, 1]2, the grey-levels
corresponding to the values of F (1, u, v) (or Gλ(1, u, v)). On the second picture,
we draw both shapes in the same frame, with lines joining some matched points.
One of the shapes has been shrinked for clarity.

Fig. 2. Two comparisons within a set of six shapes from the database (each line
ordered by similarity). The distance is the minimum of Lθ,θ′ using F (ξ, u, v) = 1 −√

ξ
∣∣cos (

u−v
2

)∣∣ .

6 Appendix

We finish the proof of proposition 1, and show that (4) and the fact that F has
a partial derivative in ξ at ξ = 1 imply [Self-matching]. For this, we consider a
particular case. Take numbers 0 < γ < β ≤ 1 and assume that θ is constant on
[0, γ[, equal to u ∈ IRd and on [γ, β] (equal to v). Let φ(x) = x for x ∈ [β, 1], and
φ be piecewise linear on [0, β]. More precisely, we fix γ∗ < γ and let φ be linear
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Fig. 3. Shape comparisons using F (ξ, u, v) = 1 −√
ξ

∣∣cos (
u−v

2

)∣∣ .

Fig. 4. Shape comparisons using Gλ(ξ, u, v) = ξ2+ 1
ξ
+λ(1+ξ) sin2

(
u−v

2

)
with λ = 100
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on [0, γ∗ ], [γ∗ , γ] and [γ, β]. We also let γ̃ = φ(γ) and impose that γ = φ(γ∗)
(see fig. 5).

0

γ

β

γ β

φ

id

γ∗

γ∼

(u,v)

(v, v)

(v, u)(u, u)

Fig. 5. Analysis of (4) in a particular case

We thus have, on [0, β]:

φ̇(x) =




γ

γ∗
on ]0, γ∗[

γ̃ − γ

γ − γ∗
on ]γ∗, γ[

β − γ̃

β − γ
on ]γ, β[

If we apply (4), we get the inequality

γ∗F(
γ

γ∗
,u,u)+(γ−γ∗)F(

γ̃−γ
γ−γ∗ ,u,v)+(β−γ)F(

β− γ̃
β−γ ,v,v) ≥ γF(1,u,u)+(β−γ)F(1,v,v)

which yields

(γ−γ∗)F(
γ̃−γ
γ−γ∗ ,u,v)≥ γ[F ∗(1,u, u)−F ∗(

γ∗

γ
,u, u)]+(β−γ)[F(1, v, v)−F(

β− γ̃
β−γ ,v,v)]

For ξ �= 1, let G(ξ, u, v) = (F (ξ, u, v) − F (1, u, v))/(ξ − 1) and G∗(ξ, u, v) =
(F ∗(ξ, u, v) − F ∗(1, u, v))/(ξ − 1). We have

(γ−γ∗)F (
γ̃−γ
γ−γ∗ , u, v) ≥ γ(1− γ∗

γ
)G∗(

γ∗

γ
, u, u) + (β−γ)(1− β− γ̃

β−γ )G(
β− γ̃
β−γ , v, v)

= (γ−γ∗)G∗(
γ∗

γ
, u, u) + (γ̃−γ)G(

β− γ̃
β−γ , v, v)
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or, letting ξ = (γ̃ − γ)/(γ − γ∗), ξ1 = γ∗/γ, ξ2 = (β − γ̃)/(β − γ),

F (ξ, u, v) ≥ G∗(ξ1, u, u) + ξG(ξ2, v, v)

and one can check that, by suitably choosing the values of γ, γ̃, γ∗ , this inequality
is true for any ξ > 0, and ξ1 < 1, ξ2 < 1. Assume now that F is differentiable
with respect to its ξ variable at ξ = 1. For u ∈ IRd, denote by λ(u)

λ(u) =
∂F

∂u
(ξ, u, u)

This implies that G and G∗ can be extended by continuity to ξ = 1, and, since
G∗(ξ, u, u) = F (1/ξ, u, u) − ξG(1/ξ, u, u), one gets, in letting ξ1 and ξ2 tend to
1:

F (ξ, u, v) ≥ F (1, u, u) + ξλ(v) − λ(u)
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