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Abstract. We improve the promising Colour by Correlation method for
computational colour constancy by modifying it to work in a three
dimensional colour space. The previous version of the algorithm uses only
the chromaticity of the input, and thus cannot make use of the information
inherent in the pixel brightness which previous work suggests is useful.
We develop the algorithm for the Mondrian world (matte surfaces), the
Mondrian world with fluorescent surfaces, and the Mondrian world with
specularities. We test the new algorithm on synthetic data, and on a data set
of 321 carefully calibrated images. We find that on the synthetic data, the
new algorithm significantly out-performs all other colour constancy
algorithms. In the case of image data, the results are also promising. The
new algorithm does significantly better than its chromaticity counter-part,
and its performance approaches that of the best algorithms. Since the
research into the method is still young, we are hopeful that the performance
gap between the real and synthetic case can be narrowed.

1 Introduction

The image recorded by a camera depends on three factors: The physical content of the
scene, the illumination incident on the scene, and the characteristics of the camera. It
is the goal of computational colour constancy to identify, separate, or mitigate the
effects of these factors. Doing so has applications in computer vision and image
reproduction.

In this paper we improve the promising Colour by Correlation [1] method
for computational colour constancy by casting it in a three-dimensional colour space.
Colour by Correlation is promising because it can combine more sources of
information than the related state-of-the-art gamut-mapping approach [2-6], and thus it
is potentially even more effective. The extra source of information that becomes
available is the statistical distribution of expected surfaces and illuminants, and how
their interactions affect the expected distribution of the observed camera responses.
However, the current version of Colour by Correlation uses only chromaticity
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information. Since the algorithm works in a chromaticity space, it has no way of
using any information that might be available in the pixel brightness. However,
previous work has shown that it is beneficial to use the pixel brightness information
[4, 6, 7], even if only the illuminant chromaticity is being sought. Thus it is natural
to modify Colour by Correlation so that it can also use this information.

In this paper we provide details of the changes required to have this algorithm
work in a three-dimensional colour space. The modified algorithm naturally allows
extensions for both metallic and non-metallic specularities, in analogy with previous
work on gamut-mapping for these conditions [7, 8]. In addition, the algorithm can
deal with fluorescent surfaces, much like the two-dimensional version, as described in
[7, 9]. We begin with a brief discussion of the two-dimensional Colour by
Correlation algorithm.

2 Colour by Correlation in Chromaticity Space

Finlayson et el. introduced Colour by Correlation [1] as an improvement on the
Colour in Perspective method [3]. The basic idea of Colour by Correlation is to pre-
compute a correlation matrix which describes how compatible proposed illuminants
are with the occurrence of image chromaticities. Each row in the matrix corresponds
to a different training illuminant. The matrix columns correspond to possible
chromaticity ranges resulting from a discretization of (r,g) space, ordered in any
convenient manner. Two versions of Colour by Correlation are described in [1]. In the
first version, the elements of the correlation matrix corresponding to a given
illuminant are computed as follows: First, the (r,g) chromaticities of the reflectances
in the training set under that illuminant are computed using the camera sensors. Then
the convex hull of these chromaticities is found, and all chromaticity bins within the
hull are identified as being compatible with the given illuminant. Finally, all entries
in the row for the given illuminant corresponding to compatible chromaticities are set
to one, and all other elements in that row are set to zero.

To estimate the illuminant chromaticity, the correlation matrix is multiplied
by a vector whose elements correspond to the ordering of (r,g) used in the correlation
matrix. The elements of this vector are set to one if the corresponding chromaticity
occurred in the image, and zero otherwise. The i'th element of the resulting vector is
then the number of chromaticities which are consistent with the illuminant. Under
ideal circumstances, all chromaticities in the image will be consistent with the actual
illuminant, and that illuminant will therefore have maximal correlation. As is the case
with gamut-mapping methods, it is possible to have more than one plausible
illuminant, and in our implementation we use the average of all candidates close to
the maximum. We label this algorithm C-by-C-01 in the results.

In the second version of Colour by Correlation, the correlation matrix is set
up to compute the probability that the observed chromaticities are due to each of the
training illuminants. The best illuminant can then be chosen using a maximum
likelihood estimate, or using some other estimate as discussed below. To compute the
correlation matrix, the set of (r,g) for each illuminant using our database of surface
reflectances is again found. The frequency of occurrence of each discrete (r,g) is then
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recorded. If additional information about the frequency of occurrence of these
reflectances is available, then the frequency counts are weighted accordingly. However,
since such a distribution is not readily available for the real world, in our
implementation we simply use uniform statistics. The same applies for the
illuminant data set. The counts are proportional to the probability that a given (r,g)
would be observed, given the specific illuminant. The logarithms of these
probabilities for a given illuminant are stored in a corresponding row of the
correlation matrix. The application of the correlation matrix, which is done exactly as
described above, now computes the logarithm of the posterior distribution.

This computation of the posterior distribution is a simple application of
Bayes's rule. Specifically, the probability that the scene illuminant is I, given a
collection of observed chromaticities C, is given by:

P(I | C) = P(C | I)P(I)

P(C)
 (1)

Since we are assuming uniform priors for I, and since P(C) is a normalization which
is not of interest, this reduces to:

P(I | C) µ P(C | I) (2)

Assuming that the observed chromaticities are independent, P(C|I) itself is the product
of the probabilities of observing the individual chromaticities c, given the
illuminantÊI:

P(C | I) = P(c | I)
c˛C
Õ (3)

Taking logarithms gives:

log(P(C | I)) = log(P(c | I)
c˛C
å ) (4)

This final quantity is exactly what is computed by the application of the correlation
matrix to the vector of chromaticity occurrences. Specifically, the i'th element of the
resulting vector is the logarithm of the posterior probability for the i'th illuminant.

The method described so far will work fine on synthetic data, provided that
the test illuminant is among the training illuminants. However, once we apply the
method to the real world, there are several potential problems. First, due to noise, and
other sources of mismatches between the model and the real world, an observed set of
chromaticities can yield zero probability for all illuminants, even if the illuminant, or
a similar one, is in the training set. Second, the illumination may be a combination
of two illuminants, such as an arbitrary mix of direct sunlight and blue sky, and
ideally we would like the method to give an intermediate answer. We deal with these
problems as follows. First, as described below, we ensure that our illuminant set
covers (r,g) space, so that there is always a possible illuminant not too far from the
actual. Second, as we build the correlation matrices, we smooth the frequency
distribution of observed (r,g) with a Gaussian filter. This ensures that there are no
holes in the distribution, and compensates for noise.
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Example Colour by Correlation Posterior Distribution
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Fig. 1: An example posterior distribution, showing the probabilities that the illuminant
in the training set with chromaticity (r,g) explains the observed data produced from a
randomly selected illuminant and 8 randomly selected surface reflectances.

The final step is to choose an answer, given the posterior probability
distribution, an example of which is shown in Figure 1. The original work [1]
mentions three choices: The maximum likelihood, mean likelihood, or local area
mean, introduced in [10]. That work discusses these methods in detail with respect to
a related colour constancy algorithm, where they are referred to as the MAP, MMSE,
and MLM estimators, respectively. We will adopt this notation here. The MAP
estimate is simply the illuminant which has the maximum posterior probability. To
compute the MMSE estimate of the chromaticity estimate we take the average (r,g)
weighted by the posterior distribution. The MLM estimator is computed by
convolving the posterior distribution with a Gaussian mask, and then finding the
maximum. In general, one would like to choose the particular Gaussian mask which
minimizes the error of some specific task. Unfortunately, the bulk of our results are
not of much help here, as they are based on RMS error, and thus we already know that
the MMSE method will work better. Thus we provide results only for the
computationally cheaper MAP method, and least-squares optimal MMSE method.
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3 The Extension to Three Dimensions

We now consider what a three-dimensional analog to the two-dimensional algorithm
entails. In the two-dimensional case, the observed two-dimensional descriptors
(chromaticities) were tested against possible theories of the distributions of those
descriptors, each theory corresponding to one of the illuminants in the training set. In
the three-dimensional version, we wish to do the same with three-dimensional
descriptors. However, we run into the problem that the brightness of the illuminant
changes the observed values. In effect, not only does each illuminant produce a theory,
but every brightness level of each illuminant produces a theory. Thus we must
attempt to match over possible illuminant brightnesses, as well as over illuminants.
This leads to several problems.

The first problem is that, a priori, the illuminant can have any non-negative
brightness. This is different than chromaticity which is naturally constrained, and thus
easily discretized. To solve this problem we propose making an initial estimate of the
illuminant brightness using some other means. For this, we found a grey world type
estimate to be adequate. Specifically, we compute the average of R+G+B over the
image pixels, and multiply the result by a factor chosen to give the best estimate
when the same procedure was applied to synthetic data. The value of the factor used
for the experiments was 4.3. For some applications the median or other estimation
method may very well be superior to the average, being more robust in the face of
outliers. However, on our data, the mean worked better than the median.

Having determined an estimate of the illuminant brightness, we reason that it
is unlikely to be wrong by more than a factor of k=3. Now, on the assumption that
the illuminant brightness is between L/k and kL, we discretize this range on a
logarithmic scale, giving us a finite number of possible illuminant brightness
theories. We verified that the specific choice of k=3 gives the same results as
providing the algorithm with the exact illuminant brightness in its place. Clearly, a
larger or smaller value could be more appropriate, depending on circumstances.

The next problem that we faced is that the literal analogy of the two-
dimensional method leads to unmanageably large correlation matrices. There are two
contributions to the increase in size. First, the matrix row length increases because of
the added descriptorÑthe rows now store linearized versions of three-dimensional
arrays where two-dimensional arrays were previously stored. Second, the strategy of
considering each illuminant at each brightness level implies, a priori that we would
further need to increase the number of rows by a factor of the brightness resolution
because now we would need a row for every brightness of every illuminant. The
combined effect of these two factors lead to correlation matrices which are simply too
large.

Fortunately, the second increase in size is not necessary. We instead loop
over the possible brightnesses, and simply scale the input by an appropriate amount
each time. Conceptually, this amounts to the same thing as having a correlation
matrix row for each illuminant at each brightness. In practice, however, it leads to a
subtle problem due to the discretization. If we consider the alternative of building a
correlation matrix row for each possible brightness, we see that as the proposed
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illuminant brightness decreases, the bins become proportionally more populated. For
example, if the illuminant brightness is halved, then the same data is put into half as
many bins. Now the algorithm proceeds by summing terms for each observed
response. The terms are the logarithms of quantities proportional to the probability
that a proposed illuminant occurs with the observed response. If we consider each term
to be negative, then we see that decreasing the number of terms increases the sum.
Since we are trying to maximize this sum, the algorithm will favor low brightness
values, because these tend to put the observations into as few bins as possible,
leading to fewer terms. This is an artifact of the discretization, and clearly is not
wanted.

We discuss two possible approaches to deal with this problem. First, we can
allow duplicate entries into the bins. In order to minimize the effect of duplicates
present in the data, the data could be pre-processed to remove all initial duplicates.
This method gives excellent results when used in conjunction with generated data.
However, we have not had equal success with image data.

A second approach to the above problem is to compensate for the
discretization problem directly. We reason as follows: If we were to have constructed
correlation matrices for each brightness level, then the frequency counts placed in the
bins to compute the probabilities would have been roughly inversely proportional to
the brightness. Thus the probabilities themselves would be inversely proportional to
the brightness, and to obtain a fair estimate, we need to divide each probability in the
product by a value proportional to the brightness. In the log representation, this
means that we subtract the log of the brightness times the number of occupied bins.
This method also yields excellent results when used in conjunction with generated
data. More importantly, the results using image data are also promising. We feel that
this algorithm can be substantially improved, and one of the key areas for further
study is this discretization problem.

We now consider the choice of three-dimensional descriptors. One natural
choice is RGB. However, given the asymmetry of the role of brightness and
chromaticity in computational colour constancy, we feel that a better choice is to use
(r,g) chromaticity, together with R+G+B. This has several advantages over using
RGB. First, due to the above mentioned asymmetry, we may wish to use different
resolutions for the chromaticity and the brightness. Second, this choice provides
conceptual clarity, in that our method then subsumes the two-dimensional version as
the sub-case where there is only one division for the R+G+B coordinate. Finally, we
find it convenient to have only one coordinate which can be arbitrarily large.

The algorithm as described is easily extended to model complex physical
scenes. For example, we can model fluorescent surfaces, as already done in the two-
dimensional case in [9], and we can model specular surfaces, including metallic ones,
as was done for gamut-mapping algorithms in [8]. The Colour by Correlation method
has an advantage over the gamut-mapping methods in that the expected frequency of
occurrence of these phenomena can be modeled. Unfortunately we currently do not
know these statistics for the real world, and hence it is difficult to exploit this in the
case of image data. Nevertheless, doing so holds promise for the future because if
some estimate of the likelihood of occurrence of these classes of surfaces could be
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made, then three-dimensional Colour by Correlation would be more robust than the
extended versions of three-dimensional gamut mapping. This is due to the fact that it
can allow for the possibility of, for example, metallic surfaces, while compensating
for the fact that there is only a low likelihood that such surfaces are present. Gamut-
mapping, on the other hand, is forced to use uniform statistics.

4 Algorithm Summary

We now provide a summary of the method. The implementation of the algorithm
consists of two parts. First the correlation matrices are built, and then these matrices
are used to perform colour constancy. The first stage is a one time operation, and
consequently, we are not concerned about resource usage. We begin with a data set of
illuminant and reflectance spectra. Ideally, we would know the expected frequency of
occurrence of these surfaces and illuminants, but since we do not, we assume that
there are all equally likely. For surface reflectances we used a set of 1995 spectra
compiled from several sources. These surfaces included the 24 Macbeth colour checker
patches, 1269 Munsell chips, 120 Dupont paint chips, 170 natural objects, the 350
surfaces in Krinov data set [11], and 57 additional surfaces measured by ourselves.

The choice of illuminant spectra must be made with more care, as the
algorithms are sensitive to the statistics of the occurrence of the illuminants in the
training set. We feel that it is best to have the training and testing sets both at least
roughly uniformly distributed in (r,g) space. To obtain the appropriate illuminant
sets, we first selected 11 sources to be used for the image data. These were selected to
span the range of chromaticities of common natural and man made illuminants as best
as possible, while bearing in mind the other considerations of stability over time,
spectral nearness to common illuminants, and physical suitability. To create the
illuminant set used for training, we divided (r,g) space into cells 0.02 units wide, and
placed the 11 illuminants described above into the appropriate cells. We then added
illumination spectra from a second set of 97, provided that their chromaticity bins
were not yet occupied. This second set consisted of additional sources, including a
number of illumination spectra measured in and around our university campus. Then,
to obtain the desired density of coverage, we used random linear combinations of
spectra from the two sets. This is justified because illumination is often the blending
of light from two or more sources. Finally, to produce the illuminant set for testing,
we followed the same procedure, but filled the space 4 times more densely.

Given the illuminant and reflectance data sets, we generate the required sensor
responses using estimates of our camera sensitivity functions, determined as described
in [12]. Thus to apply the algorithms to image data, we must first map the data into
an appropriate linear space (also described in  [12]), and perform other adjustments to
compensate for the nature of the imaging process as described more fully in [7].

We use the colour space (r,g,L) where L=R+G+B, r=R/L, and g=G/L. We
divide the space into discrete bins. The resolution of the discretization of the three
components do not need to be equal. There is no reason to make the first two different
from each other, but, as discussed above, it can be advantageous to use a different
value for the third. For all experiments we used 50 divisions for (r,g), which is
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consistent with the discretization resolution used in this work for two-dimensional
Colour by Correlation. When specularities are added, as discussed shortly, the overall
number of bins required for L increases. We express the resolution for L in terms of
the number of bins devoted to matte reflection. For the experiments with generated
data, we generally used a value for L which also leads to 50 divisions for matte
reflection, but this is likely higher resolution than is necessary, and in fact,
preliminary results indicate that a smaller number is likely better. Thus for the image
data experiments, we used 25 divisions.

Given a discretization of colour space, we then map this space into a vector,
using any convenient method. We note that since half of the values in (r,g) are
impossible, a more compact representation can be used than the naive one. Since the
three-dimensional correlation matrices are large, we make use of this observation to
reduce storage requirements.

Thus we form a two-dimensional array, where each row is the above
linearization of colour space, and the rows correspond to training illuminants. We
then build up the matrix by computing, for each illuminant, the RGB of the
reflectances in our database. We then compute the frequency of occurrence of the
colours within each discrete cell in our colour space. These frequencies are
proportional to the probabilities; they can be converted to probabilities by dividing by
the total number of surfaces. Finally, for convenience, we store the logarithm of the
probabilities.

To add fluorescent surfaces, we compute the responses which occur for each
illuminant using the model described in [9]. The relative expected frequency of such
surfaces is expressed by simply adjusting the frequency counts during the construction
of the correlation matrix. In our experiments with fluorescent surfaces, we set the
frequency of occurrence of any fluorescent surface to be about 20%. Since we only
model 9 such surfaces, the frequency of occurrence of each was set to be 50 times that
of each of the surfaces in the set of roughly 2000 reflectances.

We can also model specular reflection. This is a little more involved than
handling fluorescent surfaces. First, we need to extend the number of bins in the L
direction, as specular reflection is modeled as reflection which exceeds that of a perfect
white. Then, we must model both the relative frequency of occurrence of specularities,
as well as the frequency of each degree of specular reflection. It should be clear that the
model can well be used with metallic specularities, an analogy with the work in [8],
but we do not study those here.

The second part of the algorithm is the use of the above matrix for colour
constancy. We wish to compute the likelihood of an illuminant-brightness
combination. We loop over the possible illuminants, and then the possible
brightnesses, to obtain an estimate for each combination. To compute a maximum
likelihood estimate, we simple keep track of the maximum value reached and the
corresponding illuminant and brightness. However, since we are also interested in
studying the mean likelihood estimate, we store all values in order to make that
estimate from them as a second step. We now provide additional details of the
likelihood calculation.
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Again, for each proposed illuminant, we loop over a discretization of
possible brightnesses on a log scale. We remind the reader that the range is set by an
initial rough estimate of the brightness. We generally use 101 brightness levels; This
is likely excessive. For each proposed brightness level, we scale the input
accordingly, using the brightness of the proposed illuminant. We then form a vector
representing the observed scene assuming this brightness level. The components of
this vector correspond to the linearized form of the discretized colour space.

To compute the entries of this vector we begin by initializing all
components to zero. We then compute the corresponding bin for each colour observed
in the scene. If we are using the first method to solve the discretization problem
discussed in the previous section, then we store a count of the number of colours
falling in each bin. Alternatively, if we are using the second method we simply note
the presence of the colour with a count of one. All bins corresponding to colours not
observed remain zero.

To obtain the likelihood of the proposed illuminant-brightness combination,
we simply take the dot product of the computed vector with the row in the correlation
matrix corresponding to the proposed illuminant. Since the values stored in the
correlation matrix are the logarithms of probabilities, the dot product computes the
logarithm of the product of the probability contributions for each observation (see
Equation 5). If we are using the second method to compensate for the discretization
problem discussed above, we then adjust the result by subtracting the logarithm of the
proposed brightness times the count of the occupied bins.

5 Experiments

We tested the new algorithm on generated and image data. For the first two sets of
results on generated data we used the first method of dealing with the discretization
problem. For the third set of results with generated data, as well as for the image data
results, we used the second method. For the experiments with generated data we used
the set of test illuminants describe above. We remind the reader that both the training
illuminant set and the test illuminant set were designed to systematically cover (r,g)
space, but the test illuminant set covered that space four times more densely.

Figure 2 shows the chromaticity performance of the method using both
maximum likelihood and mean likelihood estimation as a function of the number of
surfaces in the generated scenes. We also provide the results for corresponding two-
dimensional versions of the algorithms, as well as the results for two gamut mapping
methodsÑthe original method [2], labeled CRULE-MV in the results, and a new
variant introduced in [7], and labeled as ND-ECRULE-SCWIA-12 to maintain
consistency with the literature. This later algorithm has been shown to be comparable
to the best computational colour constancy algorithms over a wide range of
conditions, and thus provides a good counter-point to the three-dimensional version of
Colour by Correlation.

The results clearly show that the new method excels when tested on data with
similar statistics to that used for training. The error drops to the minimum possible
given the discretization when only 16 surfaces are used, clearly out-performing the
other algorithms.
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For the second experiment we looked at the performance of the method under
a variety of simulated conditions. We developed three-dimensional Colour by
Correlation algorithms for fluorescent surfaces and specular reflection, and tested these
algorithms, along with the version for matte surfaces, under the conditions of matte
surfaces, the matte and fluorescent surfaces, and matte surfaces with specularities. The
test conditions were similar to the training conditions, especially in the fluorescent
case. In the specular case, the rough discretization of specular reflection used for
creating the correlation matrices only approximates what the algorithms were tested
against.

Again the results, shown in Table 2, are very promising. As expected, the
algorithms do very well when tested under the conditions they were designed for. More
promising is that the algorithms seem quite robust to the absence of these conditions.
For example, adding fluorescent capability reduced the error from 0.060 to 0.022 when
fluorescent surfaces were present, but using the algorithm with fluorescent capability
in the case of standard surfaces incurred minimal penalty (0.026 instead of 0.025).
(These figures are using the MMSE estimator). In general, it is clear that for generated
data, these algorithms perform better than any of the others which are listed in
TableÊ2.

For the third experiment, we tested the second method of dealing with the
discretization problem discussed above. The results are shown in Table 3. We also
include additional comparison algorithms in this table. Again, the new methods do
significantly better than the next best strategy, which is the ND-ECRULE-SCWIA-12
algorithm developed in [7]. Using the MMSE estimator, the three-dimensional Colour
by Correlation error is 0.24; using the MAP estimator it is 0.29; and using ND-
ECRULE-SCWIA-12 it is 0.39. The results also indicate that the second method of
dealing with our discretization problem may be better than the first, as the errors are
lower, but we note that the difference can also easily be explained by random
fluctuations within our error estimates.

We also tested the method on a data set of 321 images. These images were of
30 scenes under 11 different illuminants (9 were culled due to problems). The images
are described in more detail in [7]. As mentioned above, we have not yet been able to
significantly improve upon the two-dimensional method using the first method of
dealing with our discretization problem. Using the second method, however, the
results, shown in Table 4, are very promising. We see that the error of the new
methodÊ(0.46) is approaching that of the best performer listed, namely
ECRULE-SCWIA-12 (0.37) and CRULE-MV (0.045). This error is significantly less
than that for the two-dimensional counter-part (0.077).

6 Conclusion

We have shown how to modify the Colour by Correlation algorithm to work
in a three-dimensional colour space. This was motivated by the observations that the
correlation method is more powerful than the chromaticity gamut-mapping method
due to the use of statistical information, and that three-dimensional gamut mapping is
also more effective than its chromaticity counterpart due to the use of information
inherent in the pixel brightness. We wished to combine these two features into one
algorithm The resulting algorithm is also suitable for modification to deal with
complex physical surfaces such as fluorescence, and standard and metallic
specularities. In fact, if the frequency of occurrence of these surfaces could be
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estimated, then this algorithm could also exploit these statistics. In summary, this
algorithm is able to use more sources of information than any other, and thus is
potentially the most powerful colour constancy method.

We tested a number of versions of the algorithm on synthetic and image data.
The results with synthetic data are excellent, and it seems that these algorithms are in
fact the best performers in this situation. The results with image data are also
promising. In this case the new methods perform significantly better than their two
dimensional counterparts. Currently, however, the performance still lags a little
behind the best algorithms for image data. It is quite possible that the performance
gap between real and image data can be reduced, as we have only recently begun to
study the algorithm in this context. However, previous work [7] has shown that
statistical algorithms do tend to shine during synthetic testing, and therefore, we must
be cautious not to over-sell the method until the image data performance exceeds that
of the current best methods.

Finally we note that the algorithm as described is computationally quite
expensive, both in terms of memory use, and CPU time. Since our initial intention
was to push the limits of the error performance, we have not addressed ways to speed
up the algorithm. If the performance on image data can be made comparable to that for
generated data, then an important next step is to consider what can be done in this
regard.
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Fig. 2: The chromaticity performance of the new method as compared to the two-
dimensional version of the algorithm and two gamut mapping methods. For both
Colour by Correlation methods we provide results using both maximum likelihood
(MAP) and mean likelihood (MMSE) estimation.
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NOTHING The result of doing no colour constancy processing

AVE The illuminant is assumed to be the average of the illuminant data
base (normalized), regardless of the input.

MAX Estimate illuminant by the max RGB in each channel.

GW Estimate illuminant colour by assuming that image average is the
colour of a 50% reflectance

DB-GW Estimate illuminant colour by assuming that image average is the
colour of the average of a reflectance database.

CRULE Original gamut constraint method described in

ECRULE CRULE with illumination constraint

MV Solutions are chosen from the feasible set delivered by the gamut
mapping method using the max volume heuristic

ICA Solutions are chosen from the feasible set delivered by the gamut
mapping method by averaging.

SCWIA Solutions are the average over feasible illuminant chromaticities,
weighted by a function chosen to emphasize illuminants with
chromaticities around the maximum volume solution, as described
in  [7].

ND Gamut mapping algorithm is extended to reduce diagonal model
failure as described in [7, 9]

C-by-C-MAP Colour by Correlation [1], with a Gaussian mask to smooth the
correlation matrix and maximum likelihood estimate.

C-by-C-MMSE Colour by Correlation [1], with a Gaussian mask to smooth the
correlation matrix and mean likelihood estimate.

3D-C-by-C-MAP The Colour by Correlation method for a three-dimensional colour
space as developed in this paper, and using the maximum
likelihood estimate.

3D-C-by-C-MMSE The Colour by Correlation method for a three-dimensional colour
space as developed in this paper, and using the mean likelihood
estimate.

FL Algorithm is extended for fluorescence. For gamut mapping and
two-dimensional Colour by Correlation, this is described in [9].
For 3D-C-by-C, the algorithm is developed in this work.

SPEC Algorithm is extended for fluorescence. For gamut mapping this is
described in [8]. For 3D-C-by-C, the algorithm is developed in this
work.

Table 1: Key to the algorithms referred to in the results.
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Synthetic
scenes with 8
matte surfaces

Synthetic
scenes with 8
matte and
fluorescent
surfaces

Synthetic
scenes with 8
matte and
specular
surfaces

NOTHING 0.116 0.114 0.110

AVE-ILLUM 0.088 0.086 0.084

GW 0.057 0.116 0.034

DB-GW 0.047 0.092 0.032

MAX 0.066 0.104 0.033

C-by-C-01 0.078 0.071 0.079

C-by-C-MAP 0.044 0.059 0.040

C-by-C-MMSE 0.037 0.048 0.033

3D-C-by-C-MAP 0.030 0.066 0.043

3D-C-by-C-MMSE 0.025 0.060 0.037

FL-3D-C-by-C-MAP 0.033 0.023 *

FL-3D-C-by-C-MMSE 0.026 0.022 *

SPEC-3D-C-by-C-MAP 0.038 * 0.023

SPEC-3D-C-by-C-MMSE 0.032 * 0.017

CRULE-MV 0.050 0.103 0.027

CRULE-AVE 0.061 0.088 0.052

ECRULE-MV 0.045 0.078 0.026

ECRULE-ICA 0.051 0.065 0.045

FL-ECRULE-MV 0.049 0.061 0.027

FL-ECRULE-ICA 0.058 0.051 0.056

SP-ND-ECRULE-MV 0.053 0.085 0.029

SP-ND-ECRULE-ICA 0.047 0.062 0.026

Table 2: Algorithm chromaticity performance under three different conditions of
variants of the new methods designed for the various conditions, as well as that for a
number of comparison algorithms. For these results, the first method of dealing with
our discretization problem was used.
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Algorithm Performance estimating (r,g)
chromaticity of the illuminant.
(–4%)

NOTHING 0.111

AVE-ILLUM 0.083

GW 0.055

DB-GW 0.047

MAX 0.061

C-by-C-01 0.076

C-by-C-MAP 0.043

C-by-C-MMSE 0.035

3D-C-by-C-MAP 0.029

3D-C-by-C-MMSE 0.024

CRULE-MV 0.048

ND-ECRULE-SCWIA-12 0.039

Table 3: Algorithm chromaticity performance in the Mondrian world of the new
method (MAP and MMSE), as well as that for a number of comparison algorithms.
For these results, the second method of dealing with our discretization problem was
used.

Algorithm Performance estimating (r,g)
chromaticity of the illuminant.
(–4%)

NOTHING 0.125

AVE-ILLUM 0.094

GW 0.106

DB-GW 0.088

MAX 0.062

C-by-C-01 0.075

C-by-C-MAP 0.084

C-by-C-MMSE 0.077

3D-C-by-C-MAP 0.047

3D-C-by-C-MMSE 0.046

CRULE-MV 0.045

ECRULE-SCWIA-12 0.037

Table 4: Algorithm chromaticity performance on 321 images of the new method
with two estimators (MAP and MMSE), as well as that for a number of comparison
algorithms. For these results, the second method of dealing with our discretization
problem was used.
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