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Abstract. This paper proposes a new method for effecting feature correspon-
dence between images. The method operates from coarse to fine and is superior to
previous methods in that it can solve the wide baseline stereo problem, even when
the image has been deformed or rotated. At the coarsest level a RANSAC-style
estimator is used to estimate the two view image constraint R which is then used to
guide matching. The two view relation is an augmented fundamental matrix, being
a fundamental matrix plus a homography consistent with that fundamental matrix.
This is akin to the plane plus parallax representation with the homography being
used to help guide matching and to mitigate the effects of image deformation.
In order to propagate the information from coarse to fine images, the distribution of
the parameters Θ of R is encoded using a set of particles and an importance sam-
pling function. It is not known in general how to choose the importance sampling
function, but a new method “IMPSAC” is presented that automatically generates
such a function. It is shown that the method is superior to previous single resolution
RANSAC-style feature matchers.
Keywords: Structure from motion, Stereoscopic vision.

1 Introduction

The goal of this work is to obtain accurate matches and image relations between cons-
ecutive images, with the ultimate aim of recovering 3D structure and camera projection
matrices from an uncalibrated image sequence (such as might be obtained from a hand-
held camcorder) where the motion is unlikely to be smooth or known a priori. Once
the matches and two view image relation have been recovered, they can be used for
image compression, or as a basis for building 3D graphical models from an image se-
quence [2,22,28]. These are underpinned by the need to match tokens/features (usually
interest points) successfully through image sequences with a large number of frames.
It transpires that the correspondence problem is one of the most difficult parts of struc-
ture recovery, especially when these images are far apart (the wide baseline problem)
or when they undergo large rotations (the image deformation problem). Small baseline
image matching technology has made large advances over the past decade [1,2,3,11,17,
22,26,30], but there has been comparatively little progress in wide baseline matching
technology. Furthermore, the small baseline methods do not work on every image pair.
For example, feature based cross correlation methods may fail if (1) there are insufficient
features in the image pair, (2) there is too much repeated structure for features to get
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a good match, or (3) there is an image deformation that causes the cross correlation to
fail.

There has been some work on rectifying these problems. Pritchett and Zisserman [19]
present a set of recipes for special cases, but no unified theory of how to solve the problem
in general. Cham and Cipolla [5] present a multi scale method for feature matching when
making mosaics. The work is valid only if there is no parallax, i.e. if the image motion
is governed by a homography. Furthermore the formulation is flawed as it propagates
parameters using the estimate at the coarser level as a prior for the estimate at the finer,
but since the images at fine and coarse resolution are not independent, the prior and
likelihood are not independent. This leads to an erroneous posterior, which is then used
(in their method) as a prior for the next level, compounding the error.

The method presented here solves the image deformation and wide baseline matching
problems. It also requires no camera calibration. A coarse to fine approach is adopted
in which information about the epipolar geometry is passed from the coarser levels to
the finer. Ideally, the information to be transmitted would be the posterior distribution of
the parameters at the coarser level. Encoding this posterior distribution and its relation
to the finer level is an intricate task, not least because the normalization constant of
the distribution is unknown. Three powerful statistical methods are enlisted to create a
solution: (1) to represent the distributions as a set of particles, (2) the use of importance
sampling to generate unbiased draws from the posterior distribution, (3) RANSAC to
generate the importance sampling function. In this way the posterior distribution at
the coarse level is used as an importance sampling function to draw samples from the
posterior distribution at the finer level. As a result, the epipolar geometry is estimated
by using features at many different scales, solving the problem of having to select this
scale manually.

A fundamental component of several existing algorithms is the use of epipolar geome-
try to simplify the search for correspondences between view pairs, particularly because
epipolar geometry and matches consistent with this geometry may be computed simul-
taneously, using only features in each view. Two images of a rigid object are related by a
fundamental matrix, or in special cases just by a homography. The types of two view rela-
tions that might arise are described in Section 2, and the likelihood of the matches given
these relations in Section 2.1. Existing geometry based matching methods are revie-
wed in Section 3, they comprise two stages: (a) estimate best cross correlation matches,
(b) estimate epipolar geometry using a robust estimator. However this approach breaks
down for the image deformation and wide base line cases. In Section 4 the coarse to fine
algorithm is outlined, and the wide base line problem overcome, but cross correlation
still fails if there is image deformation. This is because matches are initially scored by a
combination of their cross correlation score and their agreement with epipolar geometry.
However in order to calculate the cross correlation the deformation of each image patch
must be known. Thus an image deformation homography is estimated in addition to the
epipolar geometry, leading to a plane plus parallax representation. Local patches may
be warped by the image deformation homography to establish cross correlation scores.
This combined set of parameters is referred to as the augmented fundamental matrix
and is described in Section 5. The results are given in Section 7, where the algorithm is
demonstrated on the wide baseline and the image deformation problems.
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Notation The image of a 3D scene point X is x1 in the first view and x2 in the second,
where x1 and x2 are homogeneous three vectors, x = (x, y, 1)�. The correspondence
x1 ↔ x2 will also be denoted as x1,2. Throughout, underlining a symbol x indicates the
perfect or noise-free quantity, distinguishing it from x = x+∆x, which is the measured
value corrupted by noise.

2 The Two View Relations

Within this section the possible relations R on the motion of points between two views
are summarized. Four examples of R are considered: (a) the Fundamental matrix [7,
12], (b) the affine fundamental matrix [18] (c) the planar projective transformation (a
homography), and (d) the affinity. All these two view relations are estimable from image
correspondences alone.

The epipolar constraint is represented by the Fundamental matrix [7,12]. This rela-
tion applies for general motion and structure with uncalibrated cameras; consider the
movement of a set of point image projections from an object which undergoes a rotation
and non-zero translation between views.After the motion, the set of homogeneous image
points {xi}, i = 1, . . . n, as viewed in the first image is transformed to the set {xi

′} in
the second image, with the positions related by

x′�
i Fxi = 0 (1)

where x = (x, y, 1)� is a homogeneous image coordinate and F is the Fundamental
Matrix. The affine fundamental matrix FA is the linear version of F. The affine camera
is applicable when the data is viewed under orthographic conditions and gives rise to a
fundamental matrix with zeroes in the upper 2 by 2 submatrix1, and it is studied in detail
by Shapiro [20].

In the case where all the observed points lie on a plane, or the camera rotates about
its optic axis and does not translate, then all the correspondences lie on a homography:

x′ = Hx . (2)

The affinity HA is a special case of the homography with zeros for the first two elements
of the bottom row. Again it is valid under uncalibrated orthographic conditions.

2.1 Likelihood of a Match Given a Relation

In this section, the maximum likelihood formulation is given for computing any of the
multiple view relations, given a set of matches. Later this formalism will be extended to
include the case when the matches themselves are unknown and must be estimated. In
the following we make the assumption that the noise in the two images is Gaussian on

1 Actually FA occurs in the non-orthographic case when the optical planes of the two cameras
coincide [23]. Affine reconstruction in this case gives projectively correct results.
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each image coordinate with zero mean and uniform standard deviation σ. Thus, given a
true correspondence, the probability density function of the noise perturbed data is

p(x1,2|R) =
∏

i=1...n
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−
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where n is the number of correspondences and R is the appropriate 2 view relation, e.g.
the fundamental matrix or projectivity.

The above derivation assumes that the errors are Gaussian. Often, however, features
are mismatched and the error on the match is not Gaussian. Thus the error can be modelled
as a mixture model of Gaussian and uniform distribution:-

p(e) =
(

γ
1√

2πσ2
exp(− e2

2σ2 ) + (1 − γ)
1
v

)
(4)

where γ is the mixing parameter and v is just a constant, σ is the standard deviation of
the error on each coordinate. To correctly determine γ and v entails some knowledge of
the outlier distribution; here it is assumed that the outlier distribution is uniform, with
−v

2 .. + v
2 being the pixel range within which outliers are expected to fall (for feature

matching this is dictated by the size of the search window for matches). Therefore the
error minimized is the negative log likelihood:
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(5)
Given a suitable initial estimate there are several ways to estimate the parameters of

the mixture model, most prominent being the EM algorithm [6,16], but gradient descent
methods could also be used. Because of the presence of outliers in the data the standard
method of least squares estimation is often not suitable as an initial estimate, and it is
better to use a robust estimate such as RANSAC which is described in the next section.

3 Random Sampling Guided Matching

Within this section the state of the art in feature matching is described. This computation
requires initial matching of points (e.g. corners detected to sub-pixel accuracy by the
Harris corner detector [10]) between two images; the aim is then to compute the relation
from these image correspondences. Given a corner at position (x, y) in the first image, the
search for a match considers all corners within a region centred on (x, y) in the second
image with a threshold on maximum disparity. The strength of candidate matches is
measured by sum of squared differences in intensity. At this stage, the threshold for
match acceptance is deliberately conservative in order to minimise incorrect matches.
Nevertheless, many mismatches will occur because the matching process is based only
on proximity and similarity. These mismatches (called outliers) are sufficient to render
standard least squares estimators useless. Consequently robust methods must be adopted,
which can provide a good estimate of the solution even if some of the data are outliers.

There are potentially a significant number of mismatches amongst the initial matches.
Since correct matches will obey the epipolar geometry, the aim is to obtain a set of
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“inliers” consistent with the epipolar geometry using a robust technique. In this case
“outliers” are putative matches which are inconsistent with the epipolar geometry. Robust
estimation by random sampling (such as MLESAC, LMS or RANSAC) have proven the
most successful [8,24,29,26]. These algorithms are well known and briefly summarized
in Fig. 1.

Table 1. A brief summary of all the stages of random sampling guided matching

1. Detect corner features using the Harris corner detector [10].
2. Putative matching of corners over the two images using proximity and cross correlation

to get best set of matches.
3. Repeat for a fixed number of samples or until “jump out” [25] occurs

a) Select a random sample without replacement of the minimum number of correspon-
dences {x1,2

i } required to estimate the relation R
b) Estimate the unique image relation R consistent with this minimal set.
c) Calculate the error −L for all matches (MLESAC), or the median of residuals (LMS),

or the number of inliers (RANSAC).
4. Select the best solution over all the samples i.e. that which minimizes −L (MLESAC),

or that which minimized the median error (LMS), or that which maximized the number
of inliers (RANSAC).

5. Minimize robust cost function over all correspondences using gradient descent.

3.1 Problems with Conventional Matching

There are two types of failure mode for the class of matching algorithms in Table 1. The
first is the wide baseline case, see Figure 1, which shows two images taken at the same
time instant 2 where the disparity is 160 pixels. In the conventional algorithm, described
above, a search window must be set for putative matches. If this search window is too
large (which it must be in this case to guarantee that the correct match lies within it),
then there is a combinatorial explosion of putative matches. This leads to a catastrophic
failure of correlation matching as there are too many potential false matches for each
corner. The second failure mode is caused when the image is rotated (see Figure 2).
In this case, standard correlation matching cannot be expected to succeed, because the
correlation score is not rotationally invariant. Using a rotationally invariant correlation
score does not correct this problem; instead it reduces the discriminating power of the
score, increasing the number of mismatches even when the second image is not rotated.
The answer to both these problems, presented here, is to adopt a coarse to fine strategy.
The coarse to fine strategy has been used successfully for small baseline homography
matching [4], but neglected for feature matching.

2 Kindly provided by Dayton Taylor
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Fig. 1. Wide Baseline Failure of MLESAC/LMS/RANSAC: 50 matches from the first and last
images of the Samsung sequence. The images are were imaged at the same time instance and
are two of 50 taken from a 50 camera stereo rig. The features are shown in each image (circles)
together with the line joining them to their correspondence in the other image, and are matched
with an affine fundamental matrix. Although several of the features with small disparities have
been correctly matched, features with large disparities are incorrectly matched. This is because,
as the disparity increases, so does the number of potential mismatches.

Fig. 2. Catastrophic Failure of MLESAC/LMS/RANSAC Due To Rotation: the second image
in the Zhang sequence has been rotated by 90 degrees, in addition there is a slight change of
pose of the head. The image correlation used is not invariant to rotation, so there are too many
mismatches for MLESAC to converge. Rotation-invariant correlation is not a solution to this
problem, because it is less discriminating and thus results in too many mismatches even when the
second image is not rotated.
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4 Coarse to Fine

In the coarse to fine strategy, an image pyramid is formed by subsampling the image
repeatedly by a factor of 2. At the coarsest level of this pyramid (level l = 0), the
distribution of the parameters θ of the relation R given the data Dl is p(θ |Dl). The
information contained in this posterior distribution should be propagated down to the
finer levels. One way to propagate information from one level to the next is to simply
propagate down the mode of this distribution. However, at the coarsest levels this dis-
tribution is not expected to have a strong peak and often propagation of the mode does
not convey sufficient information. Too soon a commitment to a single hypothesis may
cause the algorithm to converge to the wrong solution. Rather, it is desirable to pass as
much of the distribution as possible from one level to the next.

The coarse to fine strategy is beneficial for a number of reasons. It furnishes a
solution to the wide baseline problem because the search window, and thus the number
of potential false matches per corner, is reduced at the coarser levels. Furthermore,
at the coarser level, it is less computationally intensive to estimate the global image
deformation (e.g. cyclorotation), by testing different hypotheses for the deformation of
the cross correlation between image patches.

Two problems arise with this. First, the parametric form of the distribution is not
known. Second, the normalizing factor of the distribution is not known. The first problem
is overcome by representing the distribution by a set of particles {θ 1 . . .θ m} with
weights {w1 . . . wm}. This sort of representation has been used with a good deal of
success in the tracking literature [14]. Ideally the set of particles would be drawn from
the posterior distribution. One way to achieve this is via importance sampling, which is
defined next.

4.1 Importance Sampling

Importance sampling [9] is a key step in drawing approximate samples from complicated
high dimensional posterior distributions for which the normalization factor is unknown.
Suppose it is of interest to draw samples from such a distribution q(θ), and there exists
a normalized positive density function (the importance sampling function) g(θ) from
which it is possible to draw samples. The algorithm proceeds as follows:

1. Generate a set of M draws St = {θ 1, . . .θ M} from g(θ).
2. Evaluate q(θ) for each element of St.

3. Calculate importance weights wi =
q(θ i)
g(θ i) for each element of St.

4. Sample a new draw from St+1 from St where the probability of taking a new θ i is
proportional to its weight wi.

Iterating this procedure from step 2 is called sampling importance resampling (SIR).
This process, in the limit, produces a fair sample from the distribution q(θ) [9]. The rate
of convergence is determined by the suitability of the importance function g(θ). The
worst possible scenario occurs when the importance ratios are small with high probability
and large with low probability. There is no general purpose method for choosing a good
importance sampling function, but in the next section it will be explained how RANSAC
can be used to construct one.



826 P.H.S. Torr and C. Davidson

4.2 Using RANSAC to Generate the Importance Sampling Function: IMPSAC

The success of RANSAC-style methods proves that at least some of the generated sam-
ples lie in areas of high posterior probability. It would be nice to be able to harness the
RANSAC mechanism in order to generate a good importance sampling function with
which to propagate information from coarse to fine levels. There are several ways in
which this can be done. The method we favour is to model the importance function
g(θ) as a mixture of Gaussians, each centred at a RANSAC sample, with the mixing
parameters being in proportion to the posterior likelihood of each sample: p(θ |D). This
presents a new method for propagating probabilities: generate a density function g(θ)
via RANSAC and use this as an importance sampling function to draw samples from
the posterior. This method is dubbed “IMPSAC”.

Speed Up 1. Using all the particles to generate the mixture of Gaussians can be slow.
Generally if the distribution is to be represented by L particles then a particle can be
excluded from the computation if it contains less than 1/L of the mass of the density
function.

Speed Up 2. Often the artifice of constructing the mixture of Gaussians can be
computationally onerous. A simpler device can be obtained under the assumption that
the initial set of particles generated by the random sampling of minimal match sets is
uniform. Although this assumption is not realistic in theory, unless we are interested
in calculating integrals or exact expectations under the distribution, it is safe to make
in practise (when all we are interested in is finding the mode of the distribution). One
case when the exact posterior would be of interest would be if one was evaluating the
evidence to effect model selection (e.g. choosing whether F or H best modelled the
data. This is the subject of a forthcoming paper).

5 The Augmented Fundamental Matrix

In [27] it was shown that using H to guide matches throughout the sequence leads to
fewer matches being extracted in the part of the sequence undergoing a general motion,
as might be expected since the model underfits this part. However, when a loose threshold
of 3 pixels was used (as opposed to a threshold of 1.25 pixels which is the two sigma
window arising from interest point measurement noise) the homography is able to carry
correct matches even when the planar assumption is broken. The explanation lies in
the “plane plus parallax” model of image motion [13]: the estimated homography often
behaves as if induced by a ‘scene average’ plane, or indeed is induced by a dominant
scene plane; the homography map removes the effects of camera rotation and change
in internal parameters, and is an exact map for points on the plane. The only residual
image motion (which is parallax relative to this homography) arises from the scene relief
relative to the plane. Often this parallax is less than the loose displacement threshold,
so that all correspondences may still be obtained. Thus the homography provides strong
disambiguation for matching and the parallax effects do not exceed the loose threshold.

This suggests a new method for matching, in which one (or more) homographies
and a fundamental matrix are estimated for the data. The homographies estimated at the
coarser level are used to guide the search windows in order to detect matches for the
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features at the finer level. They can also be used to guide the cross correlation matching
at the finer level in that the patches that are correlated can be corrected by transformation
under the homography. This representation is referred to as the augmented fundamental
F+ or affine fundamental matrix F+

A. For the examples presented in this paper, one
homography is sufficient to guide matching. This leads to a 10 parameter estimation
problem for F+ (8 for the homography and 2 for the epipole, alternatively: 7 for the
fundamental matrix and 3 for the plane of the homography), and 7 for F+

A (6 for the
affinity and 1 for the epipole, alternatively 4 for the affine fundamental matrix and
3 for the plane). Future work will consider the use of several planes to augment the
fundamental matrix, but for many image sequences one seems to be sufficient to get
good matches.

In order to estimate the augmented relation, the likelihood for a match given this
relation (Section 2.1) is decomposed into two parts: the first is the usual likelihood of the
fundamental matrix (4), the second is the likelihood of the parallax in the image given
the homography. This is assumed to be Gaussian with large variance. This has the effect
in general that if two equally good matches happen to lie along an epipolar line the one
closer to the base plane represented by the homography is favoured.

5.1 Augmented Likelihood Formulation

Previously the optimisation was done on only the “best” set of matches found under cross
correlation. If the image deformation is unknown, this is no longer acceptable and the
likelihoods must be extended to incorporate a term for the probability of the correlation
conditioned on a given match and a given homography. Given the set of images (the
data) Dl at level l of the image pyramid, both the parameters of the relation θ and the
set of matches δi, i = 1 . . . n need to be estimated. Here the ith match is encoded by δi,
which is the disparity of the ith feature of the first image. The set of disparities of all the
features is ∆. The laws of probability give:

p(θ , ∆|Dl) ∝ p(Dl|θ , ∆)p(θ , ∆) = p(Dl|θ , ∆)p(∆|θ )p(θ ) . (6)

Under the assumption that the errors in each match are independent, and that the the
distribution of matches are independent:

p(θ , ∆|Dl) =
∏

i

p(θ , δi|Dl) ∝
∏

i

p(Dl|θ , δi)p(δi|θ )p(θ) . (7)

This is the criterion to be optimised. However, only the augmented relation θ is propa-
gated from the coarser level, and the matches are encoded by the homography part of θ
and the disparity assigned to the parallax.

The probability of θ can be calculated by integrating out the disparity parameters.
Note the following identity:

∫∞
−∞ p(X,Y|I)dY = p(X|I). Then

p(θ |Dl) ∝
∫

p(Dl|θ , δ1)p(δ1|θ )p(θ )dδ1 × . . . ×
∫

p(Dl|θ , δn)p(δn|θ )p(θ )dδn. (8)

Since δi may take only a finite number of values, corresponding to the features j =
1 . . . m of the second image (see below for the case of occlusion),

p(θ |Dl) ∝
∏

i

∑
j

p(Dl|θ , δi = j)p(δi = j|θ )p(θ) (9)
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Each term in this expression is the product of three elements. First, p(Dl|θ , δi = j)
is the likelihood of the image (patches) given the augmented fundamental matrix F+

and the match δi = j. This is evaluated from the cross correlation score after warp
under the homography part of F+ under the assumption that the image intensities have
Gaussian error mean zero and standard deviation σD. The second term p(δi = j|θ ) is the
likelihood of the match given the relation, given by equation (3) (account for occlusion
is made below). The third term p(θ ) is the prior on the relation, assumed uniform here,
but this can be altered to include any appropriate prior knowledge.

Thus the decomposition above is useful in two ways: (1) it yields p(θ |Dl) without
having to commit to a set of matches and (2) the likelihood p(Dl|θ , δi) takes account
of the different hypothesised image deformations.

Occlusion To take account of occlusion, the disparity δi for a given match can take
a null value, representing the fact no match can be found with a finite probability, that
is p(δi = ø) = ρ1. For this value of δi, the conditional probability of the image patch
correlation p(Dl|θ , δi) is also set to a constant value ρ2. The resulting estimate of θ
remains constant over a large range of ρ1,2. Smaller values of these constants tend to
peak the distribution, while larger values flatten it.

6 Feature Matching Algorithm Using IMPSAC

The algorithm is summarized in Fig. 2. The first stage is to generate the features at all
levels. Then, at the coarsest scale, cross correlation scores are generated between all
features, with each patch undergoing 16 evenly space rotations (this is only necessary
if image deformation is expected). Random sampling of minimal match sets is used to
generate an initial set of putative solutions, each match being picked in proportion to its
correlation likelihood.

After the coarsest level l = 0, two options are considered for generation of the subse-
quent importance sampling functions, both valid.The first method (importance sampling)
is to use the mixture of Gaussian methods described above. This has the advantage that
new particles are generated across the whole parameter space, the disadvantage that it is
slow to compute. The second method (importance resampling) represents gl(θ), l > 0

using the set of particles Sl each assigned probability p(θ i) = πi where πi = w(θ i)∑
j

w(θ j)

and w(θ i) = p(θ i|Dl)
gl−1(θ i)

. A problem with the resampling approach is that one particle

θ max may come to represent all the probability mass at a given level and hence all
the particles at the finer level will be replicas of it. One solution to this problem in a
different setting is justified by Sullivan and Blake [21] in which a small amount of noise
(compensated for by subtracting it from the prior p(θ)) is added to each particle as it
is transmitted to the next level. This can be intuitively explained in this case by the fact
that the resolution of the match-coordinates changes as the image is subsampled (here
by a factor of 2). For instance, if the features are not represented to sub-pixel accuracy,
then change of scale introduces some uncertainty into where the features should lie at
the next scale of the order 0-1 pixel. Each particle was estimated from a minimal set
of feature matches. Thus, to add uncertainty to θ , noise from 0-1 pixel is added to the
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minimal set used to estimate it. In this case, each particle represents a distribution over
θ -space, determined by the level of uncertainty in the coordinates.

Table 2. Feature Matching Algorithm using IMPSAC.

1. At each scale: Detect features.
2. Putative matching of corners over the coarsest two images using proximity and cross

correlation under a variety of rotations.
3. At the coarsest level. Generate a set of particles S0 = {θ 0

m} and weights {w0
m},

m = 1 . . . M as follows:
a) Select a random sample without replacement of the minimum number of correspon-

dences required to estimate the relation R
b) Calculate θ 0

i from this minimal set.
c) Calculate w0

i = p(θ |D0) for each sample.
4. For l = 1 to l = finest level

a) Generate an importance sampling function gl(θ) from Sl−1.
b) Generate M draws from gl, to generate Sl.
c) For each θ l

i, calculate wl
i = p(θ l

i|Dl)/gl(θ l
i).

5. The particle with the maximum posterior probability is taken as the MAP estimate. This
can then be used as a starting point for a gradient descent algorithm.

7 Results

The final stage of the algorithm in Table 2 is to select the most likely particle at the
finest level as the most likely hypothesis. This is the particle θ imax which maximises
p(θ i|D). The ith feature in the first image is matched to the feature j in the second
image which maximises p(δi = j|θ imax). Figure 3 shows the successful matching of
two images with up to 160 pixels disparity, demonstrating the capacity of IMPSAC for
wide baseline matching. Figure 4 shows how IMPSAC is robust to large rotations of
the image. In figure 5, mismatches of MLESAC are corrected by rematching with the
augmented likelihood, doubling the number of matched features.

8 Future Work

Due to space constraints, model selection is not the topic of this paper. However it will
be briefly illustrated how importance sampling can be used to evaluate the marginal
likelihoods required for model comparison. Given a set of k models M1 . . .Mk that can
explain the data D (here the models are fundamental matrix, homography, augmented
fundamental matrix etc.) then Bayes rule leads us to

p(Mi|DI) =
p(D|MiI)p(Mi|I)

p(D|I) , (10)
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Fig. 3. Wide Baseline Success of IMPSAC: the first and last images from the Samsung sequence,
captured at the same time but from different positions. The disparity between the images is up to
160 pixels, yet only 3 or 4 of the 50 example matches shown are mismatched.
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Fig. 4. Rotation Success of IMPSAC: Despite the combination of a rotation of 90 degrees and
the change in pose of the face, the features are correctly matched. Although just 40 features are
shown for clarity, over 1000 were matched.
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Fig. 5. MLESAC Mismatches Corrected byAugmented Likelihood: (Above) MLESAC matches
with affine fundamental matrix include numerous mismatches. (Below) From the same MLESAC
hypothesis, rematching with augmented likelihood increases number of matches from 509 to 1274,
also reducing mismatches.

where I is the prior information assumed about the world. Note p(D|I) is the same for
all models. Assuming that all the models are equally likely a priori i.e. Mi = 1

k , the
key posterior likelihood of each model is the evaluation of p(D|MjI), which is called
the evidence. This is the integral of the likelihood over all possible values of the model’s
parameters:

p(D|MjI) =
∫

p(D|Mjθ I)p(θ |MjI)∂θ (11)

where θ are the jth model’s parameters, and p(θ |MjI) is the prior distribution of
parameters of the model. One method for numerically evaluating this integral would
be to uniformly sample the parameter space and sum the posteriors of the samples.
Unfortunately the high dimensionality of the parameter space precludes this. One could
draw samples from the prior and sum the posterior of these samples, but typically the prior
is too diffuse to yield samples around the peak of the distribution. Importance sampling
furnishes a Monte Carlo method for performing this integration [9], the advantage of
which is that samples can be taken more densely around the expected peak of the posterior
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and less densely in areas of little interest. If the importance sampling function is g(θ)
(g(θ) is a normalized density), then given a set of M particles drawn from g(θ)

p(D|MjI) →
i=M∑
i=1

p(D|Mjθ I)p(θ |MjI)
g(θ)

as M → ∞ (12)

Evaluation of this leads to the selection of an augmented fundamental matrix model for
the Samsung sequence shown in Figure 3, a homography model for the Zhang sequence
shown in Figure 4, and an augmented affine fundamental matrix for Figure 5.

9 Conclusion

Within this paper coarse to fine estimation of structure and motion has been demonstra-
ted. This has been achieved through the synthesis of powerful statistical techniques. The
concept of using a random sampling estimator to generate the importance sampling fun-
ction, IMPSAC, is a general mechanism that can be used in a wide variety of statistical
problems beyond this. It provides a solution to the general problem of how to create im-
portance sampling functions for outlier corrupted data. The coarse to fine strategy helps
overcome the wide baseline problem, and this combined with the plane plus parallax
representation (the augmented fundamental matrix) overcomes the image deformation
problem. The resultant is a general purpose and powerful image matching algorithm that
can be used for 3D reconstruction or compression. Finally how the importance sampling
can also be used for automatic model selection is explained.
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