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Abstract. Segmentation of optical flow fields, estimated by spatio-tem-
porally adaptive methods, is – under favourable conditions – reliable
enough to track moving vehicles at intersections without using vehicle or
road models. Already a single image plane trajectory per lane obtained
in this manner offers valuable information about where lane markers
should be searched for. Fitting a hyperbola to an image plane trajectory
of a vehicle which crosses an intersection thus provides concise geometric
hints. These allow to separate images of direction indicators and of stop
marks painted onto the road surface from side marks delimiting a lane.
Such a ‘lane spine hyperbola’, moreover, facilitates to link side marks
even across significant gaps in cluttered areas of a complex intersection.
Data-driven extraction of trajectory information thus facilitates to link
local spatial descriptions practically across the entire field of view in order
to create global spatial descriptions. These results are important since
they allow to extract required information from image sequences of traffic
scenes without the necessity to obtain a map of the road structure and to
make this information (interactively) available to a machine-vision-based
traffic surveillance system.
The approach is illustrated for different lanes with markings which are
only a few pixels wide and thus difficult to detect reliably without the
search area restriction provided by a lane spine hyperbola. So far, the
authors did not find comparable results in the literature.

1 Introduction

Geometric results derived from (model-based) tracking of road vehicles in traffic
image sequences can already be transformed into conceptual descriptions of road
traffic. The generation of such descriptions from video recordings of road traffic
at inner-city intersections – see, e. g., [2,3,4,6,11] – presupposes, however, the
availability of knowledge about the spatial lane structure of the intersection.
In addition to knowledge about the geometric arrangement of lanes, knowledge
about lane attributes is required such as, e. g., which lane might be reserved for
left or right turning traffic – see Figure 1 for illustration.

D. Vernon (Ed.): ECCV 2000, LNCS 1843, pp. 411–427, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



412 K. Mück, H.-H. Nagel, and M. Middendorf

So far, this kind of knowledge had to be provided a-priori by the designer(s)
of a system, either by a qualitative interactive extraction from image sequence
data or by digitizing a map of the intersection. Even if a city administration pro-
vides a map of an intersection comprising all significant lane markings, however,
experience has shown that such a map may not be up-to-date.

Fig. 1. The left panel shows a representative frame from a traffic intersection video
sequence recording traffic from the incoming arm of road A (upper left quadrant)
through the intersection to the outgoing arm of road B at the bottom. The right panel
shows another frame from this same sequence, recorded while pedestrians where allowed
to walk and no vehicles happen to be in the field of view of the recording video camera.
Lane markings have been extracted from this frame.

This state of affairs naturally suggests an attempt to automatically extract
the lane structure of an intersection from the video sequence recording the road
traffic to be analyzed. The next section outlines our approach, followed by a
more detailed description in Sections 3 and 4, illustrated by experimental results
obtained by an implementation of this approach. Additional experimental results
are presented in Section 5. A concise overview of relevant publications is followed
by a comparison with our approach and by conclusions in Section 6.

2 Basic Assumptions and Outline of the Approach

Experience with data-driven image segmentation approaches – regardless whe-
ther edge- or region-oriented – has shown that success at an affordable compu-
tational expense depends critically on the exploitation of appropriate implicit
knowledge about the depicted scene, including its illumination, and about the
imaging conditions. We venture that progress results if such implicit knowledge
can be explicated and thus made amenable to scrutiny, a precondition for further
improvement.
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This contribution assumes that vehicles which approach, cross, and leave
an intersection stay predominantly within their lane. Image plane trajectories of
vehicles thus provide crucial information about the number and geometry of lanes
as well as about admitted driving directions. The image region corresponding to
a lane can thus be conceived to be a ribbon of approximately constant width.
The vehicle trajectory constitutes the ‘spine’ of such a ‘lane ribbon’.

Lanes around an innercity intersection are composed in general of three seg-
ments: a straight ‘approaching’ arm, a straight-line or circular-arc segment across
the intersection proper, and a straight ‘leaving’ arm. As will be shown, these
characteristics can be captured astonishingly well and concisely by one arm of a
hyperbola. The assumed ‘hyperbolic spine’ of a lane thus constitutes a powerful
cue for lane interpolation across the intersection area.

Direction markers painted onto the road surface are expected near the spine
of a lane ribbon and parallel to it whereas stopping lines cut nearly perpendicular
across the lane ribbon. Sidemarks delimit the lane along the ribbon borders in
the approaching and leaving arm segments, but are often omitted within the
intersection area itself. All lane markers are assumed to be elongated bright
blobs surrounded by dark road surface.

These quite general – but nevertheless essentially appropriate – assumptions
can be exploited to the extent that we succeed to extract vehicle trajectories
in the image plane without introducing knowledge about position, orientation,
shape, and motion of vehicles in the scene. Instead, we assume that vehicles
can be represented as blobs with sufficient spatiotemporal contrast – i. e. not
necessarily purely spatial contrast – to segment them from the remainder of the
imaged scene. We assume, moreover, that such ‘object image candidates (OICs)’
move smoothly in the image plane.

The transformation of these assumptions into an algorithm for the extraction
of lane descriptions from intersection traffic image sequences will be treated in
more detail in the next section.

3 Extraction of Lane Spines from Image Sequences

Automatic machine-vision-based traffic surveillance at an intersection avoids se-
veral complications if a single camera records the relevant intersection area (no
tracking beyond the field of view of a camera into that of another, more simple
camera calibration, no inter-camera correspondence problems, etc.). The price
to be paid for this simplification consists in rather small image structures which
have to be detected, tracked, and classified, since a large field of view at a given
resolution results in small object images. The following discussion treats only
the evaluation of monocular image sequences.

3.1 Detecting and Tracking the Image of a Moving Road Vehicle

If a vehicle trajectory is expected to provide the information about where in the
image one should search for lane markings, then this trajectory must be extrac-
ted with a minimum of a-priori knowledge. Detection and tracking of moving
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(a) (b) (c) (d)

Fig. 2. The leftmost panel (a) shows an enlarged section around a vehicle to be
tracked, cropped from the 375th frame of the sequence illustrated in Figure 1. Panel
(b) shows the accepted OF-vectors overlayed to this enlarged section whereas the OIC-
mask generated for the first subsequence ending with this frame is shown as an overlay
in panel (c). Panel (d) shows OIC-mask contours obtained for this vehicle, overlayed to
the 375th frame of this sequence. The OIC-mask position has been advanced from frame
m to m+1 by the average optical flow vector um obtained from the OF-blob determined
for this vehicle in frame m. The centers of these OIC-masks form a trajectory obtained
by a purely data-driven approach.

vehicles will be investigated by estimation and segmentation of densely popula-
ted Optical Flow (OF) fields, despite the considerable computational expenses
involved: compared with, e. g., change detection approaches, OF-field segments
provide immediately usable information about magnitude and direction of the
shift velocity of greyvalue structures. In many cases, such information allows
to exclude alternative interpretations of results. If executed properly, moreover,
the estimation of OF-fields provides additional information about the reliability
of an estimation and, thereby, further supports the algorithmic analysis of any
result in doubt.

In view of the rather small image structures to be tracked, we adopted – albeit
in a modified manner – a recently published approach towards OF-estimation
[13]: optical flow is computed by determination of the eigenvector corresponding
to the smallest eigenvalue of the so-called ‘Greyvalue Local Structure Tensor’
∇g(∇g)T , a weighted average (over a local environment of the current pixel)

of the outer product of ∇g = ( ∂g
∂x , ∂g

∂y , ∂g
∂t )T , where ∇g denotes the gradient of

the greyvalue function g(x, y, t) with respect to image plane coordinates (x, y)
and time t. Spatio-temporal adaptation of the filter masks for gradient estima-
tion improves the trade-off between noise reduction and separation of different
greyvalue structures.

A 4-connected region of OF-estimates is then selected as an ‘OF-blob’, pro-
vided at each pixel position within such a region

1. the OF-magnitude exceeds a minimum threshold (separation between sta-
tionary background and moving vehicles),

2. the smallest eigenvalue of ∇g(∇g)T is smaller than a threshold (i. e. the
greyvalue structure remains essentially constant in the OF-direction), and

3. the two larger eigenvalues of ∇g(∇g)T both exceed a minimum threshold
(i. e. the greyvalue variation in both spatial directions is sufficient to reliably
estimate an OF-vector).
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OF-blobs which can be persistently detected at mutually (according to the
OF-estimate) compatible image plane locations are aggregated into an ‘Object
Image Candidate (OIC)’ as follows. We assume that the shape of a vehicle’s
image does not change significantly during a subsequence of n (' 12) frames.
Let uk denote the average OF-vector of the k-th OF-blob within a subsequence
(k = 1, 2, . . . , n − 1). The k-th OF-blob is shifted forward by

∑n−1
j=k uj (with

components of the resulting sum vector rounded to the next integer value) and
‘stacked’ on top of the OF-blob extracted from the last frame within this subse-
quence. Among the pixel locations supporting this stack, we retain as an initial
OIC-mask only those which are covered by at least p % (with, e. g., p = 45)
of the n possible entries from the stacked OF-blobs. The OIC-contour is then
taken as a rough estimate for the image shape of a moving vehicle.

For the first subsequence, OIC1initial is accepted in this form. In the case
of later subsequences, however, consecutive OIC-masks are merged in order to
adapt an OIC-mask to possible changes in appearance of an object image. An
OIC-mask OICi−1 obtained from the (i−1)-th subsequence is shifted by u(i−1)n

+∑n−1
j=1 uij

to the location of OICiinitial obtained from the next (i-th) subsequence.
The two OIC-masks are stacked, each with the weight (i. e. hit count) determined
at its generation. Analogously to the generation of an initial OIC-mask, all pixel
locations are retained which received a weight of at least p % of the 2n possible
entries from the two stacked OIC-masks.

Figure 2 illustrates the generation of an OIC-mask.

3.2 Extraction of the ‘Lane Spine’

Fig. 3. Left panel: The OIC-mask contours, shown every 20 half-frames, with small
dark ‘x’ denoting the center of an OIC-Mask. Right panel: The ‘lane spine’, a hyperbola
fitted according to equ. 1 – using every half-frame – to the OIC-mask trajectory shown
in the left panel.
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As mentioned in Section 2, image plane trajectories of vehicles crossing the
intersection illustrated in Figure 1 can in good approximation be described by
a hyperbola. In analogy with established practice for ellipses [16], we fit the
following polynomial

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (1)

to a sequence of OIC-mask centers such as shown in Figure 3. The free para-
meter in this homogeneous equation is fixed by the requirement A − C = 1,
in analogy to the well-known trace requirement A + C = 1 for ellipse fitting
(see, e. g., [16]). The degenerate case of a straight-line trajectory is automati-
cally detected and treated separately. The axes of the right-handed eigenvector
coordinate system of the resulting conic are fixed by requiring that the apex of
the hyperbola intersects the first axis and the estimated vehicle trajectory opens
into the positive direction of this axis.

4 Extraction of Lane Structures from Image Sequences

In innercity intersections such as those shown in Figure 1, lanes are in general
delimited at the sides by bright lines, by sidewalks with a visible curb, or by a
surface with color or texture visibly different from the lane surface. We generally
expect, therefore, to find edge elements marking the side of a lane image. The
problem consists in the challenge to reliably detect a sufficiently large fraction
of these edge elements in order to facilitate their concatenation into a coherent
lane delimiter. At this point, we introduce a-priori knowledge about (continuous
or interrupted) lane side boundary markings in the form of a ‘lane model’. In
principle, one could define such a model in the (2-D) image plane or in the
(3-D) scene. We decided to define the model in the scene, because the depen-
dencies between the ‘lane spine’ and the hyperbolas representing the lateral lane
boundaries are more simply described in the scene. If we know the projective
transformation by the camera system, a lane representation in the scene domain
can be transformed without any further heuristics into the image plane. Our
lane model will be denoted as a ‘hyperbolic ribbon’. This hyperbolic ribbon will
be fitted to the edge elements tentatively selected as marking the side boundary
of a lane image.

4.1 Hyperbolic Ribbon as Lane Model

As mentioned in section 2, the spine of curved intersection lanes can in good
approximation be described by a hyperbola. Based on such a ‘hyperbolic spine’,
we are able to construct a ribbon of hyperbolas to describe the lateral delimiters
of a curved lane. A lane has one delimiter at the right and one at the left side. So
it seems to be enough to construct a ribbon of three hyperbolas. One hyperbola
can be defined by five parameters [mx, my, θ, a, b]. The parameters mx and my

represent the center point, θ describes the orientation and a, b specify the form
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Fig. 4. The left panel depicts the ‘lane spine’ G as shown in the right panel of Figure 3,
together with the two ‘lane boundary’ hyperbolas H, H ′. These three hyperbolas repre-
sent a lane as a ‘hyperbolic ribbon’. The ‘leaving’ arm is wider than the ‘approaching’
arm of the lane, but the asymptotes of all hyperbolas are parallel. The coordinate
system shown refers to the lane spine G, i. e. mGx = mGy = 0 and θG = 0. The
right panel illustrates how to construct one side of a hyperbolic ribbon with different
widths. The center point mH′ of the hyperbola H’ can be constructed with the norma-
lized directions of the asymptotes T1 and T2, the angle α = π − 2η, and a scale factor
based on the widths d1, d2. The direction and orientation of the hyperbola H’ are the
same, respectively, as those of the lane spine G, i. e. the normalized directions of the
asymptotes T ′

1, T ′
2 are the same as the normalized directions of T1, T2. The position of

the apex sH′ is defined by the distance between the apices sG and sH′ .

of a hyperbola. A ribbon of three – nominally unrelated – hyperbolas therefore
requires the specification of 15 parameters.

The outer hyperbolas can be derived from the hyperbolic spine inside the
ribbon with a few basic and useful assumptions about the symmetry of a lane.
These assumptions, based on official guidelines for constructing innercity inters-
ections, lead to a large reduction of the number of parameters while defining a
hyperbolic ribbon (see Figure 4). All of the following definitions are related to
the eigensystem of the lane spine G which is shifted by (mx, my)T and rotated
by θ relative to the coordinate system of the scene, according to the parameters
[mx, my, θ, a, b] of lane spine G:

– Orientation: All hyperbolas have the same orientation θ. This reduces the
number of parameters from 15 by two to 13.

– Shape: Each hyperbola has a pair of asymptotes. These asymptotes repre-
sent the straight parts of a lane. We assume, therefore, that all aperture
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angles have the same value η with tan(η) = b/a. This reduces the number of
parameters by two more to 11.

– Position: The ‘approaching’ arm and the ‘leaving’ arm of a lane at an in-
nercity intersection can differ in their width. The parameters d1 and d2 take
this observation into account. Figure 4 shows how the center point of the
hyperbola H’ is moved. It can be computed from the center point of G as
follows:

mH′ =

(
(d1 + d2)/(2 sin(η))

(d1 − d2)/(2 cos(η))

)
. (2)

The position of the center point of the hyperbola H can be computed ana-
logously:

mH = −
(

(d1 + d2)/(2 sin(η))

(d1 − d2)/(2 cos(η))

)
, (3)

Equations 3 and 2 can be derived based on the geometric context shown in
the right panel of Figure 4. This reduces the number of parameters further
by two parameters to 9.

– Apex: The last free parameter defines the position of the apex. This position
specifies, too, the acuity of the hyperbola at this point, because the center
point, orientation and aperture angle are fixed. A hyperbola G in the normal
form

x2

a2 − y2

b2 = 1 (4)

has its apex at (a, 0)T . Multiplying this vector by a factor p moves the apex
along the first axis: (p·a, 0)T . At the same time, the hyperbolas have to retain
their shape. This can be achieved by multiplying the shape parameter b with
the same factor p. The aperture angle η — where tan(η) = (p·b)/(p·a) = b/a
— will thus remain unchanged. The distance between the apices sH′ and sG

as well as between sH and sG is defined by

‖sH′sG‖ = ‖sHsG‖ = τ · d1 + d2

2
. (5)

Usually the width of the curved section of a lane is greater than in the straight
lane sections. This can be taken into account by setting τ to values greater
than 1. The factors pH and pH′ , referring to the lane boundary hyperbolas
H and H’, respectively, can be computed by solving:

pH · a = a +
d1 + d2

2 sin(η)
−
√(

τ
d1 + d2

2

)2

−
(

d2 − d1

2 cos(η)

)2

, (6)

pH′ · a = a − d1 + d2

2 sin(η)
+

√(
τ

d1 + d2

2

)2

−
(

d2 − d1

2 cos(η)

)2

. (7)

Using these assumptions, the initial number of 15 parameters can be reduced to
only 8 parameters for describing a complete hyperbolic ribbon:
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< (mx, my)T
G, θG, aG, bG, d1, d2, τ >

where the index G refers to the lane spine G.
This model approximates a lateral lane delimiter by an infinitely thin line.

In order to take the finite width of a lane delimiter into account, we extend the
model: we use a hyperbolic ribbon for each lane delimiter, this time parame-
terized for the width dw of the lane delimiter. The complete lane model can
thus be described by the tuple < (mx, my)T

G, θG, aG, bG, d1, d2, τ, dw1, dw2 > of
parameters. The parameters dw1, dw2 represent the width of the left and right
lane boundary delimiter, respectively. Two separate parameters are necessary in
general since lane delimiters between adjacent lanes may differ in width from
those delimiting the road sides.

4.2 Fitting Hyperbolic Ribbons to Edge Elements

Fig. 5. The hyperbolas H1 and H2 model one lateral boundary of a lane. All edge
elements inside the hyperbolic tolerance ribbon limited by the hyperbolas Bl and Br

are candidates for the fitting step. An edge element has a position and a direction, so
we can interpret an edge element as a line. As shown in the lower part of this Figure,
the intersection of this line with the hyperbolas Bl and Br results in the parameters
λl and λr. If λl < 0 < λr, the edge element inside the hyperbolic ribbon limited by Bl

and Br will be fitted to the hyperbola H1, otherwise to H2. The edge element shown
at position (u, v)T in the upper part of this Figure has the distance dH1 from H1. This
distance measure takes into account the gradient orientation at the point (u, v)T . If
we consider an edge element as a line, this distance can be derived by intersecting this
line with the hyperbola H1.

Fitting hyperbolic ribbons to edge elements is based on the approach of [10].
Although the lane model is defined in the scene, the projected image of this model
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is fitted to the edge elements in the image: the sum of Mahalanobis distances
between edge elements and the projected model – parameterized according to the
actual parameter estimates (which constitute the components of the filter state
vector) – is iteratively optimized. The finally accepted state vector represents
the matched lane in the scene.

The estimation process is initialized by the lane spine mentioned above. The
widths of the arms of a lane are initially set to the same standard value. The
typical lane width, the typical width at the curved section of a lane, and the
typical width of the lateral lane boundary delimiters can be found in guidelines
for constructing innercity intersections. All parameters can thus be initialized
by reasonable values.

The distance function takes the gradient orientation of an edge element into
account (see Figure 5). Let an edge element e = (u, v, φ)T and the hyperbola H
be given by

e :
(

x
y

)
= λ

(
cos(φ)
sin(φ)

)
+
(

u
v

)
, (8)

H : Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (9)

The signed distance function dH(e,x) which quantifies the distance between an
edge element e and the hyperbola H under the actual state x (with x =
(mxG

, myG
, θG, aG, bG, d1, d2, τ, dw1, dw2)T ) is defined by:

dH(e,x) =
{

λ1 , |λ1| < |λ2|
λ2 , otherwise (10)

with

λ1 =
−p/2 +

√
p2/4 − qr

r
, λ2 =

−p/2 −√p2/4 − qr

r
,

r = A cos2(φ) + B cos(φ) sin(φ) + C sin2(φ) ,

p = 2A cos(φ)u + B(cos(φ)v + sin(φ)u) +
+ 2C sin(φ)v + D cos(φ) + E sin(φ),

q = Au2 + Buv + Cv2 + Du + Ev + F .

Note that a negative distance is possible.
The lane is modeled with two lane delimiters. Each of them consists of two

outer hyperbolas H1, H2 (the hyperbolic spine is only used for the construction
of the hyperbolic ribbon, but not for the computation of the distance between
edge elements and the projection of the lane model). Fitting all edge elements of
the entire image to a lane model will consume too much time. It is necessary, the-
refore, to decide which edge element should be associated with which hyperbola.
The first constraint is satisfied by building a hyperbolic tolerance ribbon around
each of the delimiters (see Figure 5). All edge elements inside such a hyperbolic
tolerance ribbon between the hyperbolas Bl and Br are considered candidates
for the fitting process. The association of an edge element with the correct hy-
perbola (H1 or H2) is based on the typical greyvalue distribution near a lane
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delimiter since delimiters are in general brighter than the rest of the lane. An
edge element represents this property by the gradient direction at this position:
this direction has to be approximately perpendicular to the assigned hyperbola.
It is easy to decide whether an edge element has to be associated with the left or
the right hyperbola of the delimiter: An edge element considered as a directed
line can be intersected with the boundaries of the hyperbolic tolerance ribbon.
Let λl = dBl

(e,x) and λr = dBr
(e,x) denote the distances of the edge element

to the intersections of this line with the hyperbolas Bl and Br. If λl < 0 < λr,
the edge element will be associated with hyperbola H1, otherwise with hyperbola
H2 (see Figure 5).

5 Experimental Results

Figure 6 shows two successfully detected lanes with fitted models overlayed. The
fitting process describes the lane delimiters essentially correct. A small discre-
pancy in the curved section of the lane shown in the left panel corresponds to
the variation of the lane width as described above.

Both lanes differ in width between their approaching (2.85 m) and their lea-
ving (3.50 m) arms. In addition, the widths at the stop line is a little bit smaller
(2.75 m) than in the incoming straight sections of both arms. The lane spine
derived for the right lane was a bit off the lane center since the driver of the
respective car did not drive strictly along the lane center. The starting state
for the right boundary delimiter thus was initialized too far to the right. The
fitting process could not fully correct this state initialization. A possible solution
for such a problem could consist in exploiting a longer observation of the scene:
rather than relying on the first trajectory in order to derive a lane spine, one
could select a more appropriate one, based on a statistical analysis of several
trajectories.

The left panel of Figure 7 shows all hyperbolas used in fitting a lane. The
enlarged sections allow to verify the quality of fit in more detail.

The approach has been extended in order to treat neighboring lanes with
essentially the same parameter set as illustrated by the right panel of Figure 7:
assuming equal widths and orientation for both lanes and symmetrical apex dis-
placements for boundary spines, we only need one additional parameter, namely
for the width of the common boundary delimiter separating the two neighboring
lanes. In this manner, we are able to fit six hyperbolas – which can differ sub-
stantially with respect to their position and orientation in the image plane – to
about 4900 edge elements, using only 11 parameters. A backprojection of lane
delimiters extracted in this manner into the road plane and a comparison with
official map information about lane markings at the depicted intersection yields
good agreement (see Figure 8).

The approach reported up to here has been extended even further in order to
cope with situations such as those illustrated by the left upper panel in Figure 9:
since this sequence comprises only fifty frames, no vehicle trajectory covers a
lane across the entire intersection. We thus fit multiple trajectory segments (see
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Fig. 6. The left panel shows a fit of a hyperbolic ribbon to the left lane, computed
according to the approach described in Section 4. The hyperbolic spine is drawn in blue,
the hyperbolas in the centre of the lane delimiters are painted red, while the hyperbolas
which model the boundaries of the lane delimiters are painted yellow. All edge elements
which are taken into account during the fitting process are painted in blue, too. Within
the upper enlarged subwindow, it can be clearly seen that edge elements due to the
large traffic sign which occludes part of this lane do not endanger an appropriate fit.
The right panel shows a fit of a hyperbolic ribbon to the right lane, in analogy to the
left panel.

Fig. 7. The left panel shows all hyperbolas exploited for the fit to the left lane,
together with an enlarged section. The black hyperbolas bound the area in which edge
elements are supposed to belong to the enclosed lane delimiter. One can clearly detect
the differently (colored in either pink or green) oriented edge elements on the sides
of bright blobs corresponding to short lane markings. (Notice the effect of greyvalue
overshoot in the scanline direction for a transition between the bright lane markings
and the dark background which results in unexpected additional edge elements colored
in green, clearly visible in the insets!) The right panel shows a simultaneous fit of two
hyperbolic lane models side-by-side (using a joint parameter set, thus significantly
reducing the number of parameters required to describe both lanes) to two neighboring
lanes.
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Fig. 8. This image shows the backprojections of two simultaneously fitted lanes (see
Figure 7) into a map of the intersection provided by the official land registry. The
comparatively small deviations in the lower part of the image are attributed to small
systematic errors of the camera calibration. As Figure 7 shows, the lanes were fitted
well in the image plane both for the incoming and the leaving arm. It can be seen that
the incoming lanes become smaller close to the stopping line in order to allow for an
additional ‘bicycle lane’ for those bicyclists who want to continue straight ahead.

the top right panel in Figure 9) from different vehicles in neighboring lanes to
a jointly parameterized pair of two neighboring ‘lane spine hyperbolas’. The
initial estimates for these lane spine hyperbolas are shown in the lower left panel
and the final result for the boundary limits in the lower right panel of Figure 9.
The remaining deficiency regarding the ‘leaving’ arm is due to the lack of an
appropriate initialization and of sufficient contrast to facilitate a correction in
the estimation of lane boundary delimiters. This Figure illustrates both the
power and current limits of our approach.

6 Comparison and Conclusions

The idea to exploit data-driven tracking of moving objects in video sequences
in order to derive descriptions of developments in the scene has found increa-
sing interest recently, due to methodological improvements in the detection and
tracking of moving objects. The continuous decrease of the price/performance
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(a) (b)

(c) (d)

Fig. 9. The upper left panel (a) shows an overview of another traffic intersection. In
the upper right panel (b), object contours of all vehicles were overlayed. This variation
of the basic method was used due to the shortness – 100 halfframe – of the video
sequence. The starting state of the fitting process based on the object contour centroids
is shown in panel (c). Despite of the short sequence, the model of two lanes could be
fit successfully to the visible lane delimiters (see panel (d)). The quite bad result in
the upper left quadrant of the lower right panel (d) is due to missing tracking data –
and thus missing object contour centroids – in this area.
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ratio for computers has significantly accelerated research in this area. Recent
investigations have concentrated on tracking moving bodies in order to extract
significant temporal events (see, e. g., [14], [5]) or to build coarse scene models in
addition, but based on multiple calibrated cameras [7]. Others use data-driven
tracking in order to recover 3D trajectories under the ‘ground plane constraint’
and exploit the knowledge acquired thereby to control an active camera platform
in order to keep a moving body within the field of view of the camera set-up [1].

Lane finding is an important subtask for machine-vision-based control of road
vehicles. In such a context, execution time is at a premium, with the effect that
preference is given to computationally simple algorithms. As long as a vehicle
guided by machine-vision just has to follow an (at most slowly curving) road
or to continue straight ahead across an intersection, lane boundaries can be ap-
proximated sufficiently well by low-order polynomials of the horizontal image
coordinate as studied, for example, by [8]. In [12], similar simple road configura-
tions are investigated for lane keeping purposes by machine-vision. Although [9]
addresses this same problem of lane keeping, its author analyzed the image of a
slowly curving lane recorded by a video-camera mounted behind the windshield
of a driving car and concluded that it can be well approximated in the image
plane as a hyperbola – essentially due to the effect of perspective projection
under the conditions mentioned. In our case, the lane spine is modeled by a
hyperbola in the scene: the straight line sections enclosing the curved section
are due to the lane structure across an intersection in the scene – as opposed
to be due to a perspective effect in the image plane associated with a constant
curvature lane in the scene. Since we exploit the hyperbolic lane structure in
the scene in order to reduce the number of parameters to be estimated for lane
boundary delimiters and neighboring lanes, our approach turns out to be able
to cope successfully with a considerable number of potentially distractive edge
elements.

So far, we did not encounter an example where a vehicle trajectory has been
used to extract a global quantitative description of multiple lane borders in an
image sequence of a nontrivial traffic scene.

We exploit image-plane trajectories of vehicles in order to collect evidence in
the image plane about the exact position of side marks in the form of edge seg-
ments in very restricted image regions, thereby significantly reducing the danger
of picking up unwanted edge elements or edge segments. Fitting an hyperbola
to vehicle trajectories enables us to interpolate the (frequently ‘invisible’) part
of the lane within an intersection area. Local spatial descriptors can thereby be
linked along the vehicle trajectory into the remainder of the field of view, thus
establishing global spatial descriptors. An added attraction of our approach is
seen in the fact that the transformation of hyperbolic curves under perspective
projection can be studied in closed form. This should facilitate investigations
regarding a quantitative transfer of spatial descriptions within an image into
spatial scene descriptions.

Future research will not only be devoted to increase the robustness of the
approach reported here, but also to develop estimation procedures for initializa-
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tion parameters which have so far been set interactively, such as the initial width
for a lane. The accumulation of information about lanes from multiple vehicle
trajectories certainly belongs into this category, too, picking up ideas reported
by, e. g., [15].

Robust automatic extraction of lane boundaries should facilitate the detec-
tion and classification of additional road markers painted onto a lane. Such a
capability allows to determine the ‘semantics’ of such a lane, for example that
it constitutes a lane reserved for left turning traffic – for example, see Figure 7.
This information will significantly simplify to characterize traffic behavior at the
conceptual or even natural language level of description.

Acknowledgments

We thank M. Haag for discussions and help during our investigations and for
valuable comments on a draft version of this contribution.

Partial support of this research by the Deutsche Forschungsgemeinschaft
(DFG) is gratefully acknowledged.

References

1. K.J. Bradshaw, I.D. Reid, and D.W. Murray: “The Active Recovery of 3D Mo-
tion Trajectories and Their Use in Prediction”, IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. PAMI-19, pp. 219–233, 1997.

2. H. Buxton and S. Gong: “Visual Surveillance in a Dynamic and Uncertain World”,
Artificial Intelligence, Vol. 78, pp. 431–459, 1995.

3. S. Dance, T. Caelli, and Z.-Q. Liu: “A Conceptual, Hierarchical Approach to Symbo-
lic Dynamic Scene Interpretation”, Pattern Recognition, Vol. 29(11), pp. 1891–1903,
1996

4. J.H. Fernyhough, A.G. Cohn, and D.C. Hogg: “Generation of Semantic Regions
from Image Sequences”, in Proc. Fourth European Conference on Computer Vision
(ECCV’96), 15-18 April 1996, Cambridge/UK; B. Buxton and R. Cipolla (Eds.),
Lecture Notes in Computer Science LNCS 1065 (Vol. II), pp. 475–484, Springer-
Verlag Berlin, Heidelberg, New York 1996.

5. J.H. Fernyhough, A.G. Cohn, and D.C. Hogg: “Building Qualitative Event Models
Automatically from Visual Input”, Proc. ICCV’98, Bombay/India, pp. 350–355,
January 1998.

6. R. Gerber and H.-H. Nagel: “(Mis-?)Using DRT for Generation of Natural Language
Text from Image Sequences”, in Proc. Fifth European Conference on Computer
Vision, 2-6 June 1998, Freiburg/Germany; H. Burkhardt and B. Neumann (Eds.),
Lecture Notes in Computer Science LNCS 1407 (Vol. II), pp. 255–270, Springer-
Verlag Berlin, Heidelberg, New York 1998.

7. W.E.L. Grimson, C. Stauffer, R. Romano, and L. Lee: “Using Adaptive Tracking to
Classify and Monitor Activities in a Site”, Proc. CVPR’98, pp. 22–29, June 1998.

8. F. Guichard and J. Ph. Tarel: “Curve Finder Combining Perceptual Grouping
and a Kalman Like Fitting”, Proc. International Conference on Computer Vision
ICCV’99, 20–27 September 1999, Kerkyra (Corfu), Greece, pp. 1003–1008.



Data-Driven Extraction of Curved Intersection Lanemarks 427

9. A. Guiducci: “Parametric Model of the Perspective Projection of a Road with Ap-
plications to Lane Keeping and 3D Road Reconstruction”, Computer Vision and
Image Understanding 73:3 (1999) 414–427.

10. F. Heimes, H.-H. Nagel, and Th. Frank: “Model-Based Tracking of Complex In-
nercity Road Intersections”, Mathematical and Computer Modelling, Vol. 22(9-11),
pp. 189–203, 1998.

11. R.J. Howarth: “Interpreting a Dynamic and Uncertain World: Task-Based Con-
trol”, Artificial Intelligence, Vol. 100, pp. 5–85, 1998.

12. Ch. Kreucher and S. Lakshmanan: “LANA: A Lane Extraction Algorithm that
Uses Frequency Domain Features”, IEEE Trans. on Robotics and Automation 15:2
(1999) 343–350.

13. H.-H. Nagel and A. Gehrke: “Spatiotemporally Adaptive Estimation and Seg-
mentation of OF-Fields”, in Proc. Fifth European Conference on Computer Vi-
sion (ECCV’98), 2-6 June 1998, Freiburg/Germany; H. Burkhardt and B. Neu-
mann (Eds.), Lecture Notes in Computer Science LNCS 1407 (Vol. II), pp. 86–102,
Springer-Verlag Berlin, Heidelberg, New York 1998.

14. N. Johnson and D. Hogg: “Learning the Distribution of Object Trajectories for
Event Recognition”, Proc. BMVC’95, pp. 583–592, 1995.

15. M. Mohnhaupt and B. Neumann: “On the Use of Motion Concepts for Top-Down
Control in Traffic Scenes”, Proc. ECCV’90, Antibes/France, O. Faugeras (Ed.),
LNCS 427, pp. 598-600, April 1990.

16. Z. Zhang: “Parameter Estimation Techniques: A Tutorial with Application to Co-
nic Fitting”, Image and Vision Computing , Vol. 15, pp. 59–76, 1997.


	Introduction
	Basic Assumptions and Outline of the Approach
	Extraction of Lane Spines from Image Sequences
	Detecting and Tracking the Image of a Moving Road Vehicle
	Extraction of the `Lane Spine'

	Extraction of Lane Structures from Image Sequences
	Hyperbolic Ribbon as Lane Model
	Fitting Hyperbolic Ribbons to Edge Elements

	Experimental Results
	Comparison and Conclusions

