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Abstract. Use-case driven software development processes can seriously com-
promise the ability of systems to evolve if a careful distinction is not made be-
tween "structure" and "use", and this distinction is not reflected immediately in
the first model and carried through to the implementation. By "structure", we
are referring to what derives from the nature of the application domain, i.e. to
what are perceived to be the "invariants" or core concepts of the business do-
main, as opposed to the business rules that apply at a given moment and deter-
mine the way the system (solution) will be used.

This paper shows how the notion of coordination contract can be used to support
the separation between structure and use at the level of system models, and how
this separation supports the evolution of requirements on "use" based on the re-
vision or addition of use cases, with minimal impact on the "structure" of the
system.

1 Introduction

Use cases as introduced by Jacobson [11] and incorporated into the UML [3] play a
fundamental role in object-oriented system development: they provide a description of
the way the system is required to interact with external users. Existing proposals for a
software development based on the UML are use case driven. It is not difficult to
understand why. Given that the ultimate goal is to produce software that fulfils the
expectations of the prospective users, driving the process based on user needs seems to
make good sense.

However, our own experience in developing software using object-oriented meth-
ods has revealed that this approach is not without dangers. A use-case driven process
can compromise the ability of the system to evolve if a careful distinction is not made
between “structure” and “use”, and this distinction is not reflected immediately in the
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first model and carried through to the implementation. By “structure”, we are not
referring to the architecture of the solution but what derives from the nature of the
application domain, i.e. to what are perceived to be the “invariants” or core concepts
of the business domain, as opposed to the business rules that apply at a given moment
and determine the way the system will be used.

The high degree of volatility of most application domains makes this distinction
between core concepts and business rules a fundamental one. Time-to-market, and
other business constraints dictated by the fierce competition that characterise the busi-
ness activities of today, require that information systems be able to accommodate new
business rules with minimal impact on the core services that are already implemented.

We believe that use-cases play a fundamental role in software development. How-
ever, we must be able to separate core entities from volatile business rules in the initial
requirements analysis activity, and ensure that is evolution, and not construction, that
is use-case driven. Such a process will be better shaped for supporting continuity and
robustness to changes in the business domain. Hence our purpose in this paper is to
use a new semantic primitive — coordination contract — for structure to be separated
from use, and for evolution to become use-case centred.

The rest of this paper is organised as follows. In Section 2 we set the scenes of the
problem we want to discuss by modelling a case study in a traditional way. In Section
3 we initiate a discussion about evolution and show why existing object-oriented ap-
proaches are not evolutionary. In Section 4 we give a brief overview of coordination
contracts as a semantic primitive. In Section 5 we illustrate how contracts can be used
to cope with changes in the business rules. In Section 6 we relate coordination con-
tracts with other work. Finally, in Section 7 we draw some conclusions.

2 Capturing Requirements through Use Cases

2.1 Use Case Driven Approach: An Overview

Use cases, together with a use case driven approach to software development, were
first introduced by Jacobson [11] and then adopted by the UML [3]. Since then, use
case modelling has become a popular and widely used technique for capturing and
describing functional requirements of a software system. It is also used as a technique
for bridging the gap between descriptions that are meaningful to software users and
descriptions that contain sufficient details for modelling and constructing a software
system.

A use case model is represented by a use case diagram and use case descriptions.
The diagram provides an overview of actors and use cases, and their interactions. The
use cases’ descriptions detail the functional requirements. An actor is anything that
interfaces with the system. Some examples are people, other software, hardware de-
vices, data stores or networks. Each actor assumes a role in a given use case. A use
case represents an interaction between an actor and the system, i.e. it describes the
outwardly visible requirements of a system. Use cases are recommended as a primary
artefact and contribute to analysis, design as well as planning, estimating, testing and
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documentation. In addition, a use case model will often be part of a contract between
the development organization and the customer regarding the functional requirements
of the system to be developed. The quality of the use case model therefore has a large
impact on the quality of the rest of the project.

Identifying and describing the user requirements should be accomplished in a sys-
tematic way. After building the use case model we can then draw interaction diagrams
to describe the use cases’ behavioural part. As new objects are found during this proc-
ess we can start constructing a class diagram.

2.2 The Toll Collection System Case Study

In order to illustrate modelling and further evolution of requirements, let us use a
simplified version of the toll collection system implemented in Portugal [5].
“In a road traffic pricing system, drivers of authorised vehicles are charged at
tollgates automatically. The tolls are placed at special lanes called green
lanes. For that, a driver has to install a device (a gizmo) in his/her vehicle.
The registration of authorised vehicles includes the owner’s personal data,
bank account number and vehicle details.
Gizmos are read by the tollgate sensors. The information read is stored by the
system and used to debit the respective accounts.
When an authorised vehicle passes through a green lane, a green light is
turned on, and the amount being debited is displayed. If an unauthorised vehi-
cle passes through it, a yellow light is turned on and a camera takes a photo of
the vehicle’s licence plate.
There are green lanes where the same type of vehicles pay a fixed amount
(e.g. at a toll bridge), and ones where the amount depends on the type of the
vehicle and the distance travelled (e.g. on a motorway).”
Looking at who will get information from the system and who will provide it with
information helps identifying the following actors:

— Vehicle owner: this is responsible for registering a vehicle;

Vehicle gizmo: this comprehends the vehicle and the gizmo installed on it;

Bank: this represents the entity that holds the vehicle owner’s account;

System clock: represents the internal clock of the system that periodically triggers
the calculation of debits.

Asking what are the main tasks of each actor helps identifying use cases. For the
actors identified we have the use cases listed below and depicted in Figure 1:

— Register vehicle: is triggered by “vehicle owner”; it is responsible for registering a
vehicle and its owner, and communicate with the bank to guarantee a good account;

— Pass single toll: is triggered by “vehicle gizmo”; it is responsible for dealing with
tolls where vehicles pay a fixed amount. It reads the vehicle gizmo and checks on
whether it is a good one. If the gizmo is ok the light is turned green, and the amount
to be paid is calculated and displayed. If the gizmo is not ok, the light is turned
yellow and a photo is taken.
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— Enter motorway: is triggered by “vehicle gizmo”; it checks the gizmo, turns on the
light and registers an entrance. If the gizmo is invalid, a photo is taken.

— Exit motorway: is triggered by “vehicle gizmo”; it checks the gizmo and if the
vehicle has an entrance, turns on the light accordingly, calculates the amount to be
paid (as a function of the distance travelled), displays it and records this passage. If
the gizmo is not ok, or if the vehicle did not enter in a green lane, the light is turned
yellow and a photo is taken.

— Pay bill: is triggered periodically by “system clock”; it sums up all passages for
each vehicle, issues a debit to be sent to the bank and a copy to the vehicle owner.

D
g T TR

\O Bank

VehicleOwner
Pay Bill
;( ): Pass Single Toll SystemClock
VehicleDriver O
O Enter Motorway

Exit Motorway

Fig. 1. The use case diagram of the road pricing system

The actors are linked to the use cases through association relationships. The arrow
indicates the communication path between an actor and a use case.

The behaviour of each use case can be better defined in a set of interaction dia-
grams. We favour sequence diagrams, for their simplicity and because it is easier to
see the temporal order of the messages. Each message on a sequence diagram corre-
sponds to an operation on a class. So that sequence diagrams are not too complex, we
build sequence diagrams to show scenarios, that is, an individual story of a transaction.
For the three main use cases PassSingleToll, EnterMotorway and ExitMotor-
way, we can identify at least two scenarios for each one; one to deal with authorised
vehicles and another to deal with non-authorised vehicles. Figure 2 depicts the se-
quence diagram for an authorised vehicle passing a single toll. (Other scenarios can be
drawn in a similar way).

3 Supporting Requirements Modelling and Evolution

To promote understandability and reusability and to support requirements evolution,
the models that we develop, as well as the design solutions that we derive from them,
should provide mechanisms that help us to guarantee separation of concerns at differ-
ent levels. This section shows what can be achieved using UML.
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Fig. 2. A sequence diagram for the primary scenario Pass Single Toll

3.1 Building a Class Diagram

In UML we can use different kinds of objects to deal with different categories of in-
formation and behaviour. For example, an interface, or boundary, object should only
be responsible for defining the structure of the interactions between the environment
and the system. The interface object SingleToll, depicted in Figure 2, also controls
the application, i.e. it is the system’s decision maker. It is this object that decides what
to do if the vehicle is an unauthorized one, for example. This makes the end system
less reusable and understandable, compromising maintainability and making require-
ments evolution difficult to achieve.

Control objects, as proposed by Jacobson, can solve part of this problem [11]. They
provide a means to separate interfacing responsibilities, from the basic system’s enti-
ties and from functionalities that are hard to distribute among interface and entity
objects. Interface objects can then be concerned only with the interactions with the
outside world, while control objects drive the application, centralizing the responsibil-
ity of coordinating the set of tasks necessary to perform an use case. (And entity ob-
jects deal with the core concepts of the problem domain, of course.) Changes in the
way actors interact with the system will then just affect the interfaces and the system’s
functionality does not need to be touched.

Control objects are transient objects that are instantiated to perform a single action,
usually being the coordination of several other actions on server (entity) objects, and
are destroyed when that action ends. They can be used when the functionality of the
use case requires processing information from several objects and this includes deci-
sion points where the next alternative to be executed has to be chosen. Therefore,
when in a sequence diagram the coordination task is being given to an interface object,
as in Figure 2, a control object (in this case SingleTollProcessor) should be in-
troduced between SingleToll and Gizmo to deal with that. Such an approach would
result in adding five control objects to our class diagram (see Figure 3). Notice that the
dashed arrows represent typical interactions needed to handle the behaviour described
in the use cases.
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Fig. 3. Class diagram for the road pricing system

3.2 Dealing with Evolving Requirements

Control objects help to derive a good structural model for the system from the use-
case analysis, but are they able to deal with the evolution of requirements that derive
from new or different ways of using the system? Evolving requirements that reflect
changes occurring at the level of business rules should not affect the entities that
model the core concepts of the application domain. This cannot be achieved simply
using control objects, as these objects are static, i.e. they cannot be reconfigured dy-
namically. A mechanism to support evolution should allow us to change the business
rules without obliging us to change the core concepts already implemented.

To illustrate the problems raised by evolving requirements lets imagine that the
owner of the system decides to offer a new set of packages to the users of the already
modelled road pricing system.

“Certain public resources have physical limitations. For example, highways and
bridges have a limited capacity for free-flowing traffic beyond which traffic conges-
tion dramatically reduces the capacity for traffic flow. Several proposals for differen-
tial pricing seek to provide a monetary incentive for drivers to use such limited re-
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sources during off-peak hours so alleviating the problems of congestion. In practice,
peak hour tolls or other user charges are set at a higher price than the price for off-
peak usage. The larger price differential the greater the incentive for a change in driver
habits. In this way the differential becomes a variable that can be changed depending
on factors that influence the demand for road or bridge facilities, such as season of the
year, popular holidays, weekends, etc. Additionally, a differential can be set to dis-
criminate between users based on social factors, such as setting lower rates for health
care vehicles, fire engines, handicapped drivers.”

These requirements suggest two new use cases, one to deal with the special vehi-
cles package and another to deal with the peak hour traffic package.

In a traditional approach, we must modify the already modelled classes, or even add
new classes, to incorporate the new functionality into the system. Let us analyse the
changes needed to handle peak hour traffic. In a typical classroom solution the condi-
tion isPeakHour would be declared on PriceTable as a precondition on get-
Price (). Having the new business rule “hardwired” to PriceTable does not seem a
very good strategy, for when the owner of the system comes up with a new price-
package for customers, other changes will need to be made.

A naive solution to adapt the existing system to the new business rule would be to
enrich PriceTable with the new operation getPeakHourPrice (). Besides requir-
ing obvious and direct changes to the class PriceTable, this solution is also intrusive
on the client side because the client classes now have to decide on which operation to
call. A further disadvantage of this solution is in the fact that the “business rule” is
completely coded in the way the client class calls the price table and, thus, cannot be
“managed” explicitly as a business notion.

The typical object-oriented solution to this new situation consists in defining a sub-
class PeakHourPriceTable with new attributes defining the peak hour periods. The
operation getPrice () would have to be redefined so that the price is calculated ac-
cording to a new rule. Nevertheless, there are two main drawbacks in this solution: (1)
it introduces, in the conceptual model, classes that have no counterpart in the real
problem domain (it is time of the day that may be “peak hour”, not the price table); (2)
this solution is still intrusive because the other classes in the system need to be made
aware of the existence of the new specialised class so that links between instances can
be established through the new class.

Dealing with special vehicles package would require similar changes in Price-
Table, but also the creation of a new association class between classes Vehicle and
Owner to establish the set of people driving special vehicles. In this case, the solution
would affect even more the components in the system and, as before, is still intrusive
as all the existing components have to be made aware that the new association class
has become available.

The above two new business packages would oblige us to change the analysis mod-
els, the designs, and, of course, compile the corresponding code in an already imple-
mented system. What would be interesting is to deal with new business rules without
having to change an existing solution.

What we propose is to have two different kinds of concepts to handle evolution:
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— classes of objects (e.g. Vehicle and Owner) that correspond to core business entities
that are relatively stable in the sense that the organisation would normally prefer
not to touch them;

— business products (e.g. special deals for off-peak usage) that may change according
to the business policies of the organization.

Ideally, the business products should be added or removed from the system without
requiring modifications in the core objects already implemented.

4 Coordination Contracts

Coordination contracts are the mechanism that will help achieving the dynamic evolu-
tion we have been arguing for. They provide simple modelling mechanisms, encapsu-
lating all the design issues regarding dynamic reconfiguration of the system. Therefore
the model is focused only on the rules that may change the behaviour of an existing
system.

The notion of coordination contract was proposed in [1] for representing explicitly,
as first class citizens, the rules that determine the way object interaction needs to be
coordinated to satisfy business requirements. Our perception has been that this infor-
mation is too often dispersed between the different diagrams that support models in
the UML, both static and dynamic. For instance, a class diagram may contain associa-
tions whose only purpose is to provide the relationships that are necessary for given
objects to be coordinated. The specific rules that enforce the required coordination
may be found coded in one or more interaction diagrams, for instance in terms of
message sequencing, or in state machines for controlling the operations being coordi-
nated. The end result is that this dispersion makes it difficult for these interactions to
be changed when new business requirements have to be added or old ones need to be
modified.

Contracts allow for such coordination mechanisms to figure explicitly in class dia-
grams as special association classes whose semantics is similar to that of connectors in
software architectures. A coordination contract (or, for simplicity, just “contract”)
consists, essentially, of a collection of role classes (the partners in the contract) and the
prescription of the coordination effects (the glue in the terminology of software archi-
tectures) that will be superposed on the partners to coordinate their joint behaviour.

As a semantic primitive, coordination contracts are basically independent of any
conceptual modelling approach in the same sense as, say, entities, associations or
attributes are. The general form of a contract is:

contract <name>
partners <list-of-participants>
invariant <invariant properties>
constants <local constants>
attributes <local attributes>
operations <local methods>
coordination <coordination rules>

end contract
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A contract has a name, a list of partners (the objects whose interactions we may
want to coordinate), describe the invariant properties that the partners of the contract
have to satisfy, a list of local constants, attributes and operations that may be useful to
help specify the coordination mechanisms and, finally, the coordination section under
which we describe the behaviour to be superposed. Each interaction under “coordina-
tion” has the form:

when <event>
with <guard>
do <reaction>

The condition under “when” establishes the trigger of the interaction. Typical trig-
gers are the occurrence of actions or state changes in the partners. The “do” clause
identifies the reactions to be performed, usually in terms of actions of the partners and
some of the contract’s own actions. Together with the trigger, the reactions of the
partners constitute what we call the synchronisation set associated with the interaction.
Finally, the “with” clause puts further constraints on the actions involved in the inter-
action, typically further preconditions.

The intuitive semantics of contracts can be summarised as follows:

— Contracts are added to a system by identifying the instances of the partner classes to
which they apply; these instances may belong to subclasses of the partners. The
actual mechanism of identifying the instances that will instantiate the partners and
superposing the contract is outside the scope of the paper. This can be achieved di-
rectly as in languages for reconfigurable distributed systems [13], or implicitly by
declaring the conditions that define the set of those instances.

— Contracts are superposed on the partners taken as black-boxes: the partners in the
contract are not even aware that they are being coordinated by a third party. In a
client-supplier mode of interaction, instead of interacting with a mediator that then
delegates execution on the supplier, the client calls directly the supplier; however,
the contract “intercepts” the call and superposes whatever forms of behaviour are
prescribed; this means that it is not possible to bypass the coordination being im-
posed through the contract because the calls are intercepted.

— The same transparency applies to all other clients of the same supplier: no changes
are required on the other interactions that involve either partner in the contract.
Hence, contracts may be added, modified or deleted without any need for the part-
ners, or their clients, to be modified as a consequence.

— The interaction clauses in a contract identify points of rendez-vous in which actions
of the partners and of the contract itself are synchronised; the resulting synchroni-
sation set is guarded by the conjunction of the guards of the actions in the set and
requires the execution of all the actions in the set.

— The effect of superposing a contract is cumulative; because the superposition of the
contract consists, essentially, of synchronous interactions, different contracts may
apply simultaneously to the same partners for the same trigger, which means that
the synchronisation set that is going to be executed as a reaction to the trigger con-
sists of the union of the synchronisation sets of the applicable triggers. Furthermore,
the resulting synchronisation set is guarded by the conjunction of the guards of the
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individual synchronisation sets. Determining which contracts should apply in which
states (of a system) is another matter, one that relates to the management of the
evolution of the system, not to its computational behaviour. We are currently de-
veloping a language for addressing such aspects, which relates to existing proposals
for dynamic reconfiguration of distributed systems and software architectures [13].

Coordination contracts can be represented in UML as a new stereotype <<con-
tract>> of classifier whose icon is the scroll symbol. Figure 4 shows the idea, with a
simplified example taken from our case study.

SingleTollProcessor PriceTable
<<control>>

etPrice
calculatePrice() 9 teel

[ ——

———

PeakHour

a
When calls(pt.getPrice())
and isPeakHour (System.Clock())
do chargePeakHourPrice ()

Fig. 4. PeakHour contract

A contract is a persistent entity that, through the when clause, intercepts interactions
with the partners or detects events in the partners to which it has to react. In our exam-
ple, whenever SingleTollProcessor calls getPrice() in PriceTable the con-
tract PeakHour intercepts the call and if the time is within a peak hour period, it su-
perposes a different way to calculate the price to be charged.

Notice that contracts do not define classes, with public properties. They do not offer
services; instead, they coordinate services provided by the core classes.

5 Evolving with Coordination Contracts

The purpose of coordination contracts is to provide mechanisms that allow business
rules to be added or removed from a system without affecting what is already speci-
fied and implemented. The two new use cases can be modelled through contracts, one
for each use case, as shown below. As a contract details the business rules of a use
case, changes in the use case only imply changes in the contract. Since contracts can
be dynamically added and removed from a system, changes in the requirements are
easily propagated to a solution.

The contract PeakHour is responsible for coordinating peak hour traffic and the
contract Specialvehicle coordinates the prices for special vehicles. We can com-
plement the class diagram with a scroll symbol for each contract (and a note describ-
ing the trigger, the condition, if any, and the actions to be superposed). For example,
as PeakHour intercepts calls to the operation getPrice (), we can “hang” the new
symbol on the dependencies (dashed arrows) reaching PriceTable (see Fig. 4).
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The full specification of PeakHour contract is:

contract PeakHour
partners pt: PriceTable;
constants peakCharge: Float:= 0.5;
tlam: Time:= 7; t2am: Time:= 9;
tlpm: Time:= 17; t2pm: Time:= 19;
operations
?isPeakHour (t: Time): Bool :=
(t>tlam and t<t2am) or (t>tlpm and t<t2pm)
coordination
peakHour:
when calls(pt.getPrice(classVehicle,local)) and
isPeakHour (System.clock())
do {return(pt.getPrice(classVehicle,local)* (1 +
peakCharge)) }
end contract

In our example, PeakHour defines several constants and the operation isPeak-
Hour () that will be used in the when clause to select the subset of interactions to
PriceTable that will be intercepted. If a vehicle uses a tollgate during peak hours,
the contract will coordinate the behaviour superposing a different algorithm to calcu-
late the amount to be paid. Otherwise, if the vehicle uses the system during off-peak
hours, the price paid is the regular one and the contract will have no effect. Notice that
the core classes previously modelled are seen as black boxes. As we said before, they
do not know that their interactions are being intercepted and coordinated by a third
party, which implies that they do not have to be modified.

The interactions established through contracts are atomic, i.e. the synchronisation
set determined by each coordination entry of the contract is executed as a transaction.
In particular, the object that calls PriceTable will not know what kind of coordina-
tion is being superposed. From its point of view, it is PriceTable that is being called.

Specialvehicle contract is specified as follows:

contract SpecialVehicle
partners st: SingleToll; et: ExitToll; wv: Vehicle;
g: Gizmo; pt: PriceTable;

constants discount: Float:= 0.2;
attributes p: Integer; special: Boolean;
coordination

VIVehicles:

when (calls(st.checkGizmo (id)) or
calls(et.checkGizmo (id) and special)

local g:= Gizmo.getById(id) ;

do

{if g.getStatus() then
p:= pt.getPrice(v.getClass(id), local)*

(1-discount) ;

st.Light.turnGreen|() ;
st.Display.showAmount (p) ;
st.usageDetails.create(local, System.date(),p);
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else st.Light.turnYellow() ;
st.photosTaken.create(st.Camera.takePhoto());}
end contract

As only a subset of vehicles can benefit from a lower price, interactions are inter-
cepted earlier than in the previous contract. Now we intercept calls, triggered by (spe-
cial) vehicles, sent by pay tolls to the corresponding control objects and superpose a
different behaviour. As we can see, when a contract is put “over” a control object
superposing its single operation behaviour, the end result is replacing the control ob-
ject in some situations. In a situation where we are developing a system for the first
time, we propose to scrap control objects and use coordination contracts instead. This
means that in our class diagram, each control object would be substituted by a regular
coordination contract where the partners would be the classes with dependencies to
that object.

We have not yet included in the specification the conditions under which a vehicle
subscribes a given contract. This is left to the “coordination context” through which
we can configure the system by using the services it makes available [2]. For exam-
ple, for a vehicle to subscribe the Specialvehicle contract the coordination context
must offer the service subscribeSpecialvVehicle(), as follows:

Coordination context Vehicle (v: Vehicle)
workspace
component types SingleToll; ExitToll; Vehicle;
Gizmo; PriceTable
contract types SpecialVehicle;

services
subscribeSpecialVehicle(g: Gizmo, s: Special):
pre exist v and v.owns(g)
post exists’SpecialVehicle(any,any,v,g,any) and
SpecialVehicle (any,any,v,g,any) ' .special=s
end context

Each context is “anchored” to a component or set of components. In this example
the anchor is a vehicle instance. The workspace section lists the component and con-
tract types involved in that context. The services are specified in terms of their pre and
post conditions. When instantiating the contract, its partners have to be instantiated as
well. In our example we use the keyword any to signify that this contract is valid for
all objects of the type of the corresponding partner. The service is available to vehi-
cles and its parameters are the gizmo owned by the vehicle and a boolean variable that
states if the vehicle is special.

As PeakHour contract is valid for all vehicles, this means that special vehicles
using the system during off-peak hours will get both discounts, resulting in a cumula-
tive effect. In situations where several contracts are superposing conflicting behaviour
to the same trigger, we can establish priorities among contracts to define which is the
one that performs the superposition.
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6 Related Work

What we propose through coordination contracts is a set of modelling primitives to
support the development and evolution of software systems. What distinguishes our
approach and takes it beyond what object-oriented and component-based methodolo-
gies can provide is its separation between computation and coordination. The compu-
tation level is concerned with the functionalities of the core entities of the domain
while the coordination level is responsible for the volatile business rules that describe
how a system is to be used.

For this purpose we brought together concepts and techniques from software archi-
tectures (the notion of connector [14]), parallel program design (the notion of superpo-
sition (or superimposition) [4, 7, 12]), distributed systems (the notion of techniques for
supporting dynamic reconfiguration [13]) and programming languages, which have
coined the term “Coordination Languages and Models” (the idea of separating com-
putation from coordination [9]) that are now integrated in the concept of coordination
contract. The coordination contracts can be dynamically superposed on the system, i.e.
at run-time. The basic idea is to model the collaborations outside the components as
coordination contracts that can be applied at run time to coordinate their behaviour.

Other technologies, such as aspect-oriented programming [6] and design patterns
[8], also contribute to making software more amenable to change. However, they do
this at a lower level of abstraction, at the design or even at the implementation level.
What we claim is that we can do that earlier in the software development life cycle,
using more abstract, higher level, primitives. Coordination contracts are used at a
specification level (and in this paper at a requirements level). A good design can be
changed at run-time, but that is more difficult to do, and usually requires a very good
understanding of the existing solution. Design patterns, for instance, offer solutions
that are too low level to be able to support an evolution process that takes place at the
much higher level of abstraction in which business strategies and rules are (re)defined:
they are useful for providing the design infrastructure that will support the required
levels of adaptability, but they cannot be used for modelling and controlling the evo-
lution process by themselves.

7 Concluding Remarks

We illustrated how coordination contracts can be used for handling requirements evo-
lution, by means of a case study. We started by modelling the requirements using an
approach based on the UML and then introduced new requirements to illustrate how
contracts can be used to deal with evolution.

Coordination contracts are just a “technology”, i.e. a means to an end. How to use
these means for the end purpose is another matter, and one that we have not addressed
in the paper. Knowing which concepts from the application domain correspond to core
entities and which correspond to volatile business rules requires a good deal of exper-
tise that is not necessarily available to everyone. Therefore, we should also work on
the requirements engineering methods in a way that this distinction becomes apparent
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when interacting with the clients. That is, use-case analysis needs to be in a context
where the distinction between core entities and business rules is more clearly pro-
moted. We believe that, through coordination contracts, we have the modelling primi-
tive that will allow for this distinction to be enforced. Although we have focused only
on modelling, we have already developed an implementation of coordination patterns
based on design patterns that can be deployed on current platforms for component-
based development like CORBA, EJB and COM [10].
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