
Embedding Metrics into Information Systems
Development Methods: An Application of

Method Engineering Technique

Motoshi Saeki

Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

saeki@cs.titech.ac.jp

Abstract. Many methods for information systems development such as
object oriented analysis and design (OOA & OOD) support the activi-
ties to construct artifacts, but do not include the activities to measure
the quality of the artifacts or to improve them based on the results of
their measurement. In this paper, by using a meta modeling technique,
we propose a general framework of extending an existing method into
the method which includes the activities for attaching semantic informa-
tion to the artifacts and for measuring their quality using this informa-
tion. Embedding this information into a method can be considered as
a method assembly of the meta model of the method and the metrics
model. We can formally represent this process with Method Engineering
Language (MEL). We show an example that our technique is applied to;
the extended version of a use case modeling method.

1 Introduction

Various methods for information systems development such as object oriented
methods[10] have been proposed in this decade and are being put into practice.
These methods only support the human activities to construct artifacts, but
do not include the activities to measure the quality of the artifacts and/or to
improve them based on the results of their measurement. Since there are wide
varieties of artifacts for methods, we should have different metrics to measure the
quality for the methods and it is necessary to define the metrics according to the
methods. For example, in the method where we develop a class diagram, we can
use the CK metrics[8] and improve artifacts based on the values of CK metrics.
The technique of Cyclomatic number[13] can be applied to the construction of an
activity diagram of UML (Unified Modeling Language)[15] in order to measure
its complexity, so that we can avoid constructing complicated activity diagrams.
These examples show that effective metrics vary on a method.

The existing metrics such as CK metrics and Cyclomatic number are for ex-
pressing the structural and syntactical characteristics of artifacts only, but do
not reflect their semantic aspects. Suppose two class diagrams of Elevator Con-
trol System, which are the same except for the name of a class; one includes the

J. Eder and M. Missikoff (Eds.): CAiSE 2003, LNCS 2681, pp. 374–389, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Embedding Metrics into Information Systems Development Methods 375

class named “A” and in the other one the class is named “Elevator”. Although
these diagrams are completely the same in graph structural view, the latter di-
agram has higher quality rather than the former, because the latter uses the
domain-specific word “Elevator” and every reader can easily understand what
this class denotes. However, the existing metrics provides the same value for
these two diagrams. This example shows that the metrics expressing semantic
aspects allows us to measure the quality of artifacts more correctly and precisely.
It is difficult to extract automatically semantic information from the complete
artifacts, thus a developer can and should attach this semantic information to
the artifacts (including intermediate ones) by manual during his development
activities. That is to say, the method that the developer adopts should include
the supports of attaching semantic information. And the method should also
suggest how to calculate the measures from the attached semantic information.
In the above example of the class diagrams of “Elevator”, the example method
should support the human activity of measuring the occurrences of domain spe-
cific words in a class diagram and suggest how to improve the quality of the
diagram based on this measurement. The measure of the occurrences of domain
specific words is specific to this method. To embed the function of measuring
artifact quality into methods, we should explore the techniques how to build
the methods supporting the metrics of artifacts, including the definition of the
metrics.

Method engineering is a discipline for exploring techniques to build project-
specific methods[4], and meta modeling techniques to specify methods semi-
formally or formally have been developed to manipulate the methods by com-
puter. It provides the technique called method assembly to compose a new
project-specific method from a set of meaningful parts of the existing methods[5,
14,17]. Meaningful parts of methods are called method fragments or method
chunks. A method assembly technique can be used to embed metrics models
into the existing methods and to get a new method that has the function to
measure the quality of artifacts. In the above example of “Elevator” class dia-
gram, we have two method fragments; 1) a meta model of class diagram method
as a base, and 2) a metric model based on the occurrences of domain-specific
words in class diagrams. When we assemble these two method fragments, we can
get a new method that can measure the quality of class diagrams based on the
occurrences of domain-specific words. Thus a meta modeling technique is used
to define metrics model according to a method, and the assembly technique pro-
vides a general framework how to tailor an existing method into a new method
that can measure the quality of artifacts.

In this paper, by using a meta modeling technique and a method assembly
one, we propose a general framework of extending an existing method into the
method which includes the activities for attaching semantic information to the
artifacts and for measuring their quality. Semantic information and the definition
of the measures are formally defined on a meta model, and they are embedded
into a meta model of an original method by performing a method assembly. We
use the formal language Method Engineering Language (shortened to MEL),

376 M. Saeki

since it provides a unified framework to describe both of method fragments
and method assembly processes. Furthermore, we present an example that our
technique is applied to; the extended version of a use case modeling method.
In the example, we get the use case modeling method where the quality of a
use case diagram can be calculated. It can be formalized as method assembly
processes and be defined in MEL. In this sense, this paper shows the expressive
power of MEL through the application to the example.

In the next section, we introduce how to describe method fragments, i.e. a
meta modeling technique. Section 3 presents a general framework how to extend
methods on its meta model. We call this extended version of a method a mea-
surable method. Section 4 presents the example of defining the metrics for use
case diagrams, and we show how to get the measurable method by using method
assembly.

2 Meta Modeling Technique and MEL

Although the textbooks and manuals of a development method such as object
oriented methods contain narrative texts written in natural language, figures
and examples for ease of understanding, there are several techniques to model a
method formally or semi-formally in order to manipulate the method by com-
puter, e.g. to generate CASE tools based on it[12]. These techniques are called
meta modeling techniques. Roughly speaking, methods consist of two facets; one
is artifact and the other is activity. The artifact facet specifies what artifacts are
developed following a method, e.g. class diagrams, while the activity one spec-
ifies the processes to develop the artifacts, e.g. “Identify objects and classes at
first” in object oriented methods. Figure 1 shows a simplified example of a meta
model for the method of constructing a use case diagram of UML diagrams[15].
In the figure, the structure of the artifact is defined in a class diagram, while the
activities and their execution order are specified in an activity diagram. Dotted
arrows (object flows) stand for the artifacts that are produced by an activity.
For example, the second activity “Identify Use Cases” produces a set of the
identified “Use Cases” and their relationships to “Actors”.

Although we use a class diagram and an activity one of UML on account of
the easiness to understand, we describe the meta models in more formal style
by using Method Engineering Language (MEL)[6]. Figure 2 shows the MEL
descriptions of Figure 1. In MEL, method fragments are classified into two types
; product fragment and process one. The description of a product fragment in
MEL can be considered as a textual representation of a class diagram which
defines the structure of the products shown in Figure 1 (a). The description
that begins with the reserved word “PRODUCT” defines the concept of product
elements included in a method and corresponds to a class of Figure 1(a). On
the other hand, the word “ASSOCIATION” declares the relationship between
concepts, i.e. an association between the classes. The description of a process
fragment corresponds to a textual representation of an activity diagram. MEL
has syntactic constructs for composing more complicated activities from the

Embedding Metrics into Information Systems Development Methods 377

Use Case

Actor

Identify Actors

Identify Use Cases

Describe Use Cases

Identify Relationships among Use Cases

Use Case Diagram

(a) Artifact part (b) Activity part

uses
extends

communicates

Use Case

Actor

Identify Actors

Identify Use Cases

Describe Use Cases

Identify Relationships among Use Cases

Use Case Diagram

(a) Artifact part (b) Activity part

uses
extends

communicates

Fig. 1. An Example of A Meta Model

activities, e.g. sequential execution, conditional branch, iteration and parallel
execution including fork and join, etc. Readers can find the activity “Construct
a use case diagram” is composed as a sequential execution of the four activities,
as shown in Figure 2(b). The reserved word “REQUIRED” specifies the input
products for the process.

PROCESS Construct a Use Case Diagram:

LAYER Diagram;

TYPE Creation;

PART OF Create an Analysis Model;

REQUIRED {Interview results};

REQUIRED OPTIONAL

Current Information system;

(- Identify Actors ;

- Identify Use Cases ;

- Describe Use Cases ;

- Identify Relationships among Use Cases ;

)

DELIVERABLES {Use Case Diagram}.

PRODUCT Use Case Model;

ID Use Case Model;

IS_A Diagram, Structured Text;

LAYER Diagram;

PART OF Analysis Model;

NAME TEXT;

PRODUCT Use Case:

LAYER Concept;

PART OF Use Case Model;

SYMBOL Oval;

NAME TEXT;

ASSOCIATED WITH {(uses,), (extends,),

(hasUseCase,), (communicates,)}.

ASSOCIATION hasUseCase:

ASSOCIATES (Use Case Diagram, Use Case);

CARDINALITY (1..n; 1..1).

(a) Product Fragment

(b) Process Fragment

PROCESS Construct a Use Case Diagram:

LAYER Diagram;

TYPE Creation;

PART OF Create an Analysis Model;

REQUIRED {Interview results};

REQUIRED OPTIONAL

Current Information system;

(- Identify Actors ;

- Identify Use Cases ;

- Describe Use Cases ;

- Identify Relationships among Use Cases ;

)

DELIVERABLES {Use Case Diagram}.

PRODUCT Use Case Model;

ID Use Case Model;

IS_A Diagram, Structured Text;

LAYER Diagram;

PART OF Analysis Model;

NAME TEXT;

PRODUCT Use Case:

LAYER Concept;

PART OF Use Case Model;

SYMBOL Oval;

NAME TEXT;

ASSOCIATED WITH {(uses,), (extends,),

(hasUseCase,), (communicates,)}.

ASSOCIATION hasUseCase:

ASSOCIATES (Use Case Diagram, Use Case);

CARDINALITY (1..n; 1..1).

(a) Product Fragment

(b) Process Fragment

Fig. 2. An Example of MEL Descriptions

378 M. Saeki

3 Method Assembly for Measurable Methods

Almost of all existing metrics for measuring the quality of an artifact is based on
its syntactical structure. For example, in CK metrics, the number of operations1

per class (WMC), the depth of an a class from a root in an inheritance tree
(DIT) and so on are calculated, in order to express the complexity of an object
oriented design from various viewpoints. These measures do not reflect semantic
aspects of the artifacts. Suppose that many operations having the same function
occur in the different classes in an object oriented design. This design cannot be
said to be a good design, because we should modify all of the occurrences of the
operations if we change the function, i.e. it has low modifiability. To quantify this
situation, we need the semantic information on which operations have the same
function, and this type of information cannot be automatically obtained from
the syntactic characteristics of the design document. A developer should add this
information by manual during his development activities. More concretely, he
investigates which operations have the same function and attach this information
as attributes of the artifacts. And he also defines how to calculate the metrics
from the attached attributes. It greatly depends on development methods what
attributes to attach and how to quantify quality characteristics.

Furthermore McCall et. al. proposed that a quality characteristic such as
completeness could be quantified by a weighted arithmetic average of the met-
rics [7], and these weight factors also depend on the methods. In this sense, we
extend the existing method into a new one whose meta model has 1) attributes
in its artifact part, 2) activities for investigating the attribute values of the ar-
tifact, 3) expressions for calculating metrics from the attribute values, and 4)
mathematical expressions such as weighted arithmetic average for quantifying
quality characteristics based on the metrics. Figure 3 shows a general frame-
work for extending an existing method on its meta model. The upper left part
Meta Model (Method Description) of the figure shows a general description in
an existing method, where the activity “Identify Artifact Elements” produces
the elements of the artifacts. On the other hand, in the lower left part Metrics
Model Definition, we define attributes, metrics, weighted factors. It also includes
the activity of attaching the semantic information of artifacts as attribute values
(“Describing Attribute Values”) and the activity of using quality characteristics
for artifact improvement (“Considering Quality Characteristics”). The classes
“Metrics” and “Quality Characteristics” specify the measures using “Attribute”
and the expressions for calculating quality characteristics from the metrics re-
spectively. By assembling these two parts to a new method, we can get the right
part of the figure. We call it a measurable method of the existing method. This
assembly process can be formally specified with specific manipulation operators
of MEL on the meta models as mentioned in [6,9].

1 We should have used the term “methods” instead of “operation”. To avoid the
confusion to a development method, however we use the word “operation” in this
paper.

Embedding Metrics into Information Systems Development Methods 379

Artifact Element

Identify Artifact Elementｓ

Artifact Element
Identify Artifact Element

AttributeMetrics

Quality Characteristics

Describe Attribute Value

Consider Quality Characteristics
AttributeMetrics

Describe Attribute Valueｓ

Consider Quality Characteristics

Meta Model (Method Description)Meta Model (Method Description)

Metrics Model DefinitionMetrics Model Definition

Measurable MethodMeasurable Method

Method Assembly

Quality Characteristics

Artifact Element

Identify Artifact Elementｓ

Artifact Element
Identify Artifact Element

AttributeMetrics

Quality Characteristics

Describe Attribute Value

Consider Quality Characteristics
AttributeMetrics

Describe Attribute Valueｓ

Consider Quality Characteristics

Meta Model (Method Description)Meta Model (Method Description)

Metrics Model DefinitionMetrics Model Definition

Measurable MethodMeasurable Method

Method Assembly

Quality Characteristics

Fig. 3. Method Assembly for Measurable Methods

The above is a very simple but general framework for producing measurable
methods. The point is that we can produce measurable methods by means of ap-
plying method assembly to the existing, non-measurable methods. Let’s consider
another but also general example to get measurable methods by using method
assembly.

GQM (Goal-Question-Metric) model has been proposed in [3] as a framework
for defining and interpreting software measurement. Its model includes three ba-
sic concepts; 1) Goal: the purposes of the measurement, in more detail, a goal
specifies what objects are measured for what purposes from which viewpoints
with respect to which focuses, 2) Question: Questions are for clarifying the at-
tainment of the Goal and for assessing the Goal, and 3) Metric: a set of data
to quantitatively answer the corresponding Questions. A class diagram of the
upper left part GQM Meta Model in Figure 4 illustrates a meta model of GQM
products, while an activity diagram in the part shows the process to enact GQM
framework for measurement. At first, developers define a GQM model, i.e. define
Goals, generate Questions for each Goal and define Metric for the Goals, and
then collect the data according the specification of the Metric. After that, they
interpret the data to evaluate the Questions and the Goals.

The application of GQM framework to measure the quality of artifacts can
also be considered as the method assembly of a GQM and non-measurable meth-
ods, as shown in Figure 4. Metric is connected to artifact elements through its
“Attribute” values, and the activities of GQM are embedded in the form of par-
allel composition to the activities of the non-measurable method. In [11], GQM
approach was applied to meta data management in data warehouses, and the
GQM meta model was adapted to schemas of data warehouses. In this sense,

380 M. Saeki

it can be considered as a method adaptation in an artifact aspect only. On the
other hand, our technique includes method adaptation and assembly not only
for artifact parts but also activity parts.

value

Metric

Define a GQM model

Collect Data (Attribute Value)

Interpret Data

Attribute

purpose
object

viewpoint
focus

environment
attainment

Goal

　contents
　answer

Question

Artifact Element

Identify Artifact Elementｓ

GQM Meta ModelGQM Meta Model

Meta Model (Method Description)Meta Model (Method Description)

Method AssemblyMethod Assembly

Goal

Define a GQM model

Collect Data (Attribute Value)

Interpret Data

Question

Metric Attribute

Artifact Element

Identify Artifact Elements

Measurab le Meta Model with GQMMeasurab le Meta Model with GQM

value

Metric

Define a GQM model

Collect Data (Attribute Value)

Interpret Data

Attribute

purpose
object

viewpoint
focus

environment
attainment

Goal

　contents
　answer

Question

Artifact Element

Identify Artifact Elementｓ

GQM Meta ModelGQM Meta Model

Meta Model (Method Description)Meta Model (Method Description)

Method AssemblyMethod Assembly

Goal

Define a GQM model

Collect Data (Attribute Value)

Interpret Data

Question

Metric Attribute

Artifact Element

Identify Artifact Elements

Measurab le Meta Model with GQMMeasurab le Meta Model with GQM

Goal

Define a GQM model

Collect Data (Attribute Value)

Interpret Data

Question

Metric Attribute

Artifact Element

Identify Artifact Elements

Goal

Define a GQM model

Collect Data (Attribute Value)

Interpret Data

Question

Metric Attribute

Artifact Element

Identify Artifact Elements

Measurab le Meta Model with GQMMeasurab le Meta Model with GQM

Fig. 4. GQM Meta Model and Its Method Assembly

4 Defining Metrics with MEL: An Example of
Measurable Use Case Modeling Method

4.1 Modifiability on Use Case Diagrams

Quality characteristics for requirements specifications are listed up in IEEE830
standards[1], e.g. completeness, correctness, modifiability etc. One of the typical

Embedding Metrics into Information Systems Development Methods 381

metrics on a use case diagram is the number of the use cases appearing in
the diagram, and it is based on syntactical features of the diagram. Since it
is insufficient to quantify the quality characteristics of IEEE 830, we should
consider the metrics relevant to the meaning of use cases. For simplicity, we focus
on the metrics relevant to modifiability. If we modify a use case, its modification
can propagate to the use cases that are connected to it with “<<extends>>” or
“<<uses>>” relationships. The number of the occurrences of these relationships
among use cases can be a measure denoting modifiability. This measure can be
calculated directly from the structural characteristics of a use case diagram.
Let’s consider other measures that are more relevant to the meaning of use
cases. Based on [16], we adopt two additional dependency relationships among
the use cases; data dependency and control dependency, and the concept of basic
types of use cases called use case types. An analyst identifies both of them during
his activities for constructing a use case diagram, and it means that he should
perform additional activities, e.g. “Identify Control Dependencies”, “Identify
Data Dependencies” and “Identify Use Case Types” after finishing the activity
“Identify Use Cases”.

Control Dependency

(Control Flow)

Data Dependency
(Data Flow)

Contributors

PC Members
Authors

Publisher

Session Chairs

Making a Schedule

Appointing PC Members

Notifying Acceptance or

Rejection

Receiving Paper Submissions

Composing and Distributing

CFP

Distributing Papers to

Reviewers

Receiving Review Reports

Deciding Acceptance or

Rejection

Composing and Distributing a

Program

Sending Final Manuscripts

Requesting Session Chairs

PC Chairs

Invited

Speakers

Requesting Invited Speakers

Checking

Computing

Distributing

Receiving

Inquiry

Basic Types

②

③

④⑤

③

③

③

① ②

⑤

⑤

⑤

④

①

① ②

③

④

④

③ ④

④

Control Dependency

(Control Flow)

Data Dependency
(Data Flow)

Contributors

PC Members
Authors

Publisher

Session Chairs

Making a Schedule

Appointing PC Members

Notifying Acceptance or

Rejection

Receiving Paper Submissions

Composing and Distributing

CFP

Distributing Papers to

Reviewers

Receiving Review Reports

Deciding Acceptance or

Rejection

Composing and Distributing a

Program

Sending Final Manuscripts

Requesting Session Chairs

PC Chairs

Invited

Speakers

Requesting Invited Speakers

Control Dependency

(Control Flow)

Data Dependency
(Data Flow)

Contributors

PC Members
Authors

Publisher

Session Chairs

Making a Schedule

Appointing PC Members

Notifying Acceptance or

Rejection

Receiving Paper Submissions

Composing and Distributing

CFP

Distributing Papers to

Reviewers

Receiving Review Reports

Deciding Acceptance or

Rejection

Composing and Distributing a

Program

Sending Final Manuscripts

Requesting Session Chairs

PC Chairs

Invited

Speakers

Requesting Invited Speakers

Checking

Computing

Distributing

Receiving

Inquiry

Basic Types

②

③

④⑤

③

③

③

① ②

⑤

⑤

⑤

④

①

① ②

③

④

④

③ ④

④

Fig. 5. An Example of Use Case Diagrams

Figure 5 illustrates a use case diagram together with dependency relation-
ships and the information on use case types. For simplicity, we omit the interac-
tions between the actors and the use cases in the figure. This example is a tool for

382 M. Saeki

supporting tasks that program committee chairs (PC chairs) of academic inter-
national conferences have to perform. The PC chairs should compose the CALL
FOR PAPER (CFP) and organize the committee. They receive paper submis-
sions and distribute them to the reviewers, normally PC members. After getting
the review reports from the reviewers and summarizing them (“Receiving review
reports” in the figure), they have PC meetings to decide which papers will be
accepted or rejected. The authors of the papers are notified of their acceptance
or rejection by the PC chairs.

A control dependency expresses the execution order on use cases. For exam-
ple, after the use case “Notifying acceptance or rejection” is performed, “Sending
final manuscripts” should be done. A data dependency relationship represents
which use cases consume the data that another use case produces, and is also
significant to identify the use cases that we should modify. The modifications
on a use case can propagate the different use cases that have control or data
dependencies to it, so these occurrences has an influence on the difficulty in
the modifications. The more they occur in the diagram, the more difficult its
modification is.

Quality CharacteristicsQuality Characteristics

Use Case

Actor

Identify Actors

Identify Use Cases

Describe Use Cases

Identify Dependencies among Use Cases

Use Case Diagram

NO_extends MODIFIERBILITY

extends

uses

Control Dependency

Data Dependency

Identify Relationships among Use Cases

MetricsMetrics

AttributeAttribute

has_NO_extends

refer_to_NO_extends

Identify Use Case Type

Use Case Type

Quality CharacteristicsQuality Characteristics

Use Case

ActorActor

Identify Actors

Identify Use Cases

Describe Use Cases

Identify Dependencies among Use Cases

Use Case Diagram

NO_extends MODIFIERBILITY

extends

uses

Control Dependency

Data Dependency

Identify Relationships among Use Cases

MetricsMetrics

AttributeAttribute

has_NO_extends

refer_to_NO_extends

Identify Use Case Type

Use Case Type

Metrics ModelMetrics Model

Fig. 6. A Meta Model of Measurable Use Case Modeling Method

A use case type is a kind of an abstraction or a semantic category, which
stands for abstract meaning of a use case, and a set of the use case types depends
on an application domain. In the domain of the example like a data processing
system, we use five use case types “Receiving”, “Checking”, “Computing”, “Dis-

Embedding Metrics into Information Systems Development Methods 383

tributing” and “Inquiry”, all of which are the manipulation on data. Considering
the purpose of executing a use case, an analyst attaches these types to the iden-
tified use cases. The circled numbers in a use case in the figure shows the use
case types that are attached to it. For example, the use case “Receiving Pa-
per Submission” has the purposes of receiving paper submissions as data and of
checking if the submitted papers meet a certain format or not. That is to say, the
two types “Receiving” and “Checking” are attached to it. In this case, it has the
two roles, i.e. compounded meaning and its modifications can be complicated
because we should consider both of these two roles simultaneously during the
modification process. Thus we can use the number of attached use case types to
each use case as a measure of modifiability.

Figure 6 depicts a meta model, and it is the result of embedding these at-
tributes for quantifying modifiability to the existing meta model, according to the
general framework in Figure 3. For example, readers can find that the concept
“Use Case Type”, the associations “Control Dependency” and “Data Depen-
dency” are added as attributes to the product part of the meta model (product
fragment). As for a process part of the meta model (process fragment), two ac-
tivities for the metrics are added. For example, the activity “Identify Use Cases
Types” is for finding the types of the identified use cases. The activity for control
and data dependencies “Identify Dependencies among Use Cases” is also added
in the process part. We call this extended version of use case modeling method
a measurable use case method.

As mentioned above, we have two types of metrics from which the modi-
fiability can be indirectly measured; one is NOD (Number of Dependencies)
for denoting the ratio of how many relationships occur among use cases and
the other one NUCT (Number of Use Case Types) is the multiplicity ratio of
multiplicity of use case types attached to use cases. The definition of the metrics
can be defined by using the meta model as follows;

NOD = AllDependencies−#Dependency
AllDependencies

where AllDependencies = (#UseCase × (#UseCase − 1))/2.

NUCT = 1
AV Eu∈UseCase{#{ut∈UseCaseType | aggregates(u,ut)}}

Note that AllDependencies denotes the number of all possible dependencies
on a use case diagram from graph theoretic view, i.e. combinations between ar-
bitrary two use cases. We should explain conventional notation appearing in the
above expressions. The name of each class and the name of each association de-
note a set and a predicate respectively. For instance, UseCase and u ∈ UseCase
denote a set of the identified use cases and a use case u respectively. We use
“aggregates” as the predicate name of an object aggregation relationship. For
instance, aggregates(u, ut) denotes that the use case u has a use case type ut.
#S stands for the number of the elements of the set S. AV Ep(x){s(x)} means
the average value of a set of the numbers s(x) constructed from x such that p(x).
Dependency appearing in NOD is either extends, uses, Control Dependency or

384 M. Saeki

Data Dependency. Thus we have four variations of the metrics related to a kind
of dependency among use cases, and we call them NO extends, NO uses, NO CD
and NO DD in order. In the example, these values are 1, 1, (66 − 13)/66 = 0.8
and (66 − 15)/66 = 0.77 because AllDependencies = (12 × (12 − 1))/2 = 66.
Since NUCT is the reciprocal number of an average of attached use case types
for each use case, we can get NUCT= 12/17 = 0.71.

Finally, as McCall did, we adopt weighted arithmetic average to quantify
modifiability from these five metrics values and we can get it as follows;

MODIFIABLITY =

w1× NO extends +w2× NO uses +w3× NO CD +w4× NO DD +w5× NUCT

where w1 + w2 + w3 + w4 + w5 = 1 and 0 ≤ wi ≤ 1(i = 1, ...5).

This expression and the weighting factors are specified in an instance of
class “Quality Characteristics” as shown in Figure 3, and much experience can
determine their values. In this paper, taking the same value, i.e. 0.2 for each, as
an example, we get the value 0.2 × 1 + 0.2 × 1 + 0.2 × 0.8 + 0.2 × 0.77 + 0.2
× 0.71 = 0.2 + 0.2 + 0.16 + 0.15 + 0.14 = 0.85 as MODIFIABILITY quality.
By using this technique, we can quantify the other quality characteristics of a
use case diagram as a requirement specification.

has_Use_Case_Type

NUCTPROCESS Extend Product Fragments

to Measurable Use Case Modeling Method ;

TYPE ASSEMBLY

REQUIRED {Use Case Model, Use Case Type,

Control dependency, Data dependency, Metrics Model};

　(

　Join Use Case Model

　 With Control dependency,

　 Data dependency, Use Case Type,

Metrics Model

　Through

　has_NO_extends(Use Case Diagram, NO_extends)

has_NO_uses(Use Case Diagram, NO_uses)

has_NO_CD(Use Case Diagram, NO_CD)

has_NO_DD(Use Case Diagram, NO_DD)

has_NUCT(Use Case Diagram, NUCT)

has_Use_Case_Type(Use Case, Use Case Type)

　Into Attributed Use Case Model

)

PRODUCT Use Case Type:

LAYER Concept;

NAME [Receiving, Checking, Computing, Distributing, Inquiry]

ASSOCIATION Control dependency:

ASSOCIATES (Use Case, Use Case);

CARDINALITY (0..n; 0..n).

Use Case extends

uses

control dependency

data dependency

Use Case Diagram

has_NO_extends

Use Case Type

has_Use_Case_Type

NO_extends

NO_uses

NO_CD

NO_DD

Metrics ModelMetrics Model

has_Use_Case_Type

NUCTNUCTPROCESS Extend Product Fragments

to Measurable Use Case Modeling Method ;

TYPE ASSEMBLY

REQUIRED {Use Case Model, Use Case Type,

Control dependency, Data dependency, Metrics Model};

　(

　Join Use Case Model

　 With Control dependency,

　 Data dependency, Use Case Type,

Metrics Model

　Through

　has_NO_extends(Use Case Diagram, NO_extends)

has_NO_uses(Use Case Diagram, NO_uses)

has_NO_CD(Use Case Diagram, NO_CD)

has_NO_DD(Use Case Diagram, NO_DD)

has_NUCT(Use Case Diagram, NUCT)

has_Use_Case_Type(Use Case, Use Case Type)

　Into Attributed Use Case Model

)

PRODUCT Use Case Type:

LAYER Concept;

NAME [Receiving, Checking, Computing, Distributing, Inquiry]

ASSOCIATION Control dependency:

ASSOCIATES (Use Case, Use Case);

CARDINALITY (0..n; 0..n).

Use Case extends

uses

control dependency

data dependency

Use Case Diagram

has_NO_extends

Use Case Type

has_Use_Case_Type

NO_extends

NO_uses

NO_CD

NO_DD

Metrics ModelMetrics Model

Fig. 7. Method Assembly for Product Fragments of Measurable Use Case Modeling
Method

Embedding Metrics into Information Systems Development Methods 385

Figure 6 shows a meta model of the measurable use case modeling method
that can quantify the modifiability of a produced use case diagram, by using
above technique. Each class whose category is “Metrics” in the figure denotes a
metrics such as No extends and No uses. The class “MODIFIABILITY” defines
how to calculate the modifiability from the metrics. The details how to calculate
quality characteristics will be mentioned in the next subsection.

PROCESS Extend Process Fragments

to Measurable Use Case Modeling Method;

TYPE ASSEMBLY

REQUIRED {Construct a Use Case Diagram,

　　　　　Identify Use Case Type,

　　　　　Identify Dependencies among Use Cases};

　　(

　Let Identify Use Case Type

　Precede Describe Use Cases

　Let Identify Relationships among Use Cases

　Precede

Identify Dependencies among Use Cases

)

DELIVERABLES

{Construct Measurable Use Case Model}.

Describe Use Cases

Identify Dependencies among Use Cases

Identify Relationships among Use Cases

Identify Use Case Type

PROCESS Extend Process Fragments

to Measurable Use Case Modeling Method;

TYPE ASSEMBLY

REQUIRED {Construct a Use Case Diagram,

　　　　　Identify Use Case Type,

　　　　　Identify Dependencies among Use Cases};

　　(

　Let Identify Use Case Type

　Precede Describe Use Cases

　Let Identify Relationships among Use Cases

　Precede

Identify Dependencies among Use Cases

)

DELIVERABLES

{Construct Measurable Use Case Model}.

Describe Use Cases

Identify Dependencies among Use Cases

Identify Relationships among Use Cases

Identify Use Case Type

Fig. 8. Method Assembly for Process Fragments of Measurable Use Case Modeling
Method

4.2 Defining Measurable Methods by Method Assembly

As shown in Figure 6, the measurable use case modeling method is an extension
of a use case modeling method and we can get it by assembling some product
fragments and process ones. In MEL, we can define a method assembly process
as a set of the process fragments that specify how to add new fragments. It
consists of two fragments; one is for assembling product fragments and another
is for process ones.

Figure 7 illustrates a part of a method assembly process of Use Case Model
and Metrics Model, in order to get a product fragment of the measurable use
case modeling method. The readers can find that a concept as a class “Use Case
Type” and two associations, e.g. Control Dependency and Data Dependency are
newly added to the original method, by using “Join ... With ... Through ... Into”
statement of MEL. “Join F1 with F2 Through A1 into F3” is an operation to
assemble a product fragment F1 and a fragment set F2 by using associations
A1, and the fragment F3 is a result of the operation. In this figure, additional
six associations, e.g. “has NO extends” and “has Use Case Type” are adopted
to connect Use Case Type and Metrics Model to Use Case Model. A part of
the assembled fragments like Metrics Model will be shown later in Figure 9, and
Metrics Model is a meta model which consists of Metrics concepts (NO extends,

386 M. Saeki

NO uses, NO CD, NO DD, NUCT) and Quality Characteristics concept (Mod-
ifiability).

Figure 8 shows an assembly process for process fragments of the measurable
use case modeling method. Two new process fragments as activities “Identify Use
Case Types” and “Identify Dependencies among Use Cases” are added to the
original process fragment of use case modeling method. The assembly operation
“Let P1 Precede P2” creates an execution order between the process fragments
P1 and P2. Note that REQUIRED section specifies which process fragments
are assembled as inputs of the assembly process “Extend Process Fragments to
Measurable Use Case Modeling Method”.

PRODUCT NO_extends;

LAYER Concept;

PART OF Metrics Model;

NAME TEXT;

ATTRIBUTES

value : REAL

ASSOCIATED WITH {(has_No_extends,),

(refer_to_No_extends,)}.

(RULE :

value

= (AllDependencies - #Instances(extends)) / AllDependencies�

AllDependecies = (#Instances(Use Case) * (#Instances(Use Case)-1)/2;

).

���������	

value

���
�������

refer_to_NO_extends

�	����	���������
has_No_extends

PRODUCT NO_extends;

LAYER Concept;

PART OF Metrics Model;

NAME TEXT;

ATTRIBUTES

value : REAL

ASSOCIATED WITH {(has_No_extends,),

(refer_to_No_extends,)}.

(RULE :

value

= (AllDependencies - #Instances(extends)) / AllDependencies�

AllDependecies = (#Instances(Use Case) * (#Instances(Use Case)-1)/2;

).

���������	

value

���
�������
���
�������

refer_to_NO_extends

�	����	���������
has_No_extends

PRODUCT MODIFIABILITY:

LAYER Concept;

PART OF Metrics Model;

NAME TEXT;

ATTRIBUTES

value : REAL

ASSOCIATED WITH

{(refer_to_No_extends,),

(refer_to_No_uses,), (refer_to_CD,),

(refer_to_No_DD,), (refer_to_NUCT,)}.

(RULE :

value =

w1*refer_to_NO_extends.value

+ w2*refer_to_NO_uses.value

+ w3*refer_to_NO_CD.value + w4*refer_to_NO_DD.value

+ w5*NUCT

).

NO_extends

MODIFIABLITY

NO_uses

NO_CD

NO_DD

value

value

value

value

value

refer_to_NO_extends

refer_to_

NO_DD

refer_to_
NO_uses

refer_to_
NO_CD

NUCT

value

refer_to_NABT

PRODUCT MODIFIABILITY:

LAYER Concept;

PART OF Metrics Model;

NAME TEXT;

ATTRIBUTES

value : REAL

ASSOCIATED WITH

{(refer_to_No_extends,),

(refer_to_No_uses,), (refer_to_CD,),

(refer_to_No_DD,), (refer_to_NUCT,)}.

(RULE :

value =

w1*refer_to_NO_extends.value

+ w2*refer_to_NO_uses.value

+ w3*refer_to_NO_CD.value + w4*refer_to_NO_DD.value

+ w5*NUCT

).

NO_extends

MODIFIABLITYMODIFIABLITY

NO_uses

NO_CD

NO_DD

value

value

value

value

value

refer_to_NO_extends

refer_to_

NO_DD

refer_to_
NO_uses

refer_to_
NO_CD

NUCT

value

NUCT

value

refer_to_NABT

Fig. 9. Definitions of Metrics and Quality Characteristics with MEL

Embedding Metrics into Information Systems Development Methods 387

Finally, we need to define product fragments which have the functions to
calculate quality characteristics like MODIFIABILITY. Figure 9 illustrates the
definitions of the metrics NO extends and the quality characteristics MODIFI-
ABILITY. These definitions include their calculating expressions and weighting
factors in “rule” section of MEL. The rule section also specifies invariants which
hold on attribute values. For example, the attribute “value” in NO extends is
calculated by means of an equation of the rule section.

Figure 10 shows how to calculate the modifiability of a use case diagram
according to the definitions of Figs 6, 7, 8 and 9. It is written in UML object
diagram, because it can be considered as an instance of the meta model of Figure
6.

Making a Schedule

Appointing PC Members

Composing and Distributing
CFP

PC Chairs

Use Case Diagram

: NO_extends

value=1

: NO_CD

value=0.8

: NO_DD

value=0.77

: NO_uses

value=1refer_to_NO_extends

refer_to_

NO_DD

refer_to_
NO_uses

refer_to_
NO_CD

: MODIFIABILITY

value=0.85

0.2*NO_extends + 0.2*No_uses + 0.2*NO_CD + 0.2*NO_DD + 0.2*NUCT

: NUCT

value=0.71

refer_to_NUCT

Making a Schedule

Appointing PC Members

Composing and Distributing
CFP

PC ChairsPC Chairs

Use Case Diagram

: NO_extends

value=1

: NO_extends

value=1

: NO_CD

value=0.8

: NO_CD

value=0.8

: NO_DD

value=0.77

: NO_DD

value=0.77

: NO_uses

value=1

: NO_uses

value=1refer_to_NO_extends

refer_to_

NO_DD

refer_to_
NO_uses

refer_to_
NO_CD

: MODIFIABILITY

value=0.85

: MODIFIABILITY

value=0.85

0.2*NO_extends + 0.2*No_uses + 0.2*NO_CD + 0.2*NO_DD + 0.2*NUCT

: NUCT

value=0.71

: NUCT

value=0.71

refer_to_NUCT

Fig. 10. Calculating Quality Characteristics

5 Conclusion and Research Agenda

This paper presented a general framework how to embed quantification tech-
niques to the existing development methods by using method engineering tech-
niques. The meta models of a measurable method allows us to generate (semi-)
automatically CASE tools supporting measurement activities and the improve-
ment of product quality, by means of a CAME (Computer-Aided Method Engi-
neering) tool such as Decamerone[9], Mentor[18] and MetaEdit+[12].

Research agenda for the future directions can be summarized as follows;

1. Refining a technique for modeling and defining metrics. In this paper, we use
usual mathematical expressions to define the metrics. Like [2], the usage of
Object Constraint Language (OCL)[20] is one of the promising approaches
to express wide varieties of metrics easily and to interchange their definitions
among different development organizations.

388 M. Saeki

2. Collecting metrics definitions. To assess our technique, we need various kinds
of metrics and apply our technique to them. We are exploring the metrics
for quantifying different quality characteristics on wide varieties of artifacts
and are trying to formalize both of metrics and methods.

3. Usage of metrics. Since our technique includes defining development meth-
ods, we should consider how to use the defined metrics in order to improve
the quality of artifacts during development processes. More concretely, we
should clarify what activities improve the artifacts by using the metrics in
the method, like GQM[3].

4. Support of activities for identifying semantic information (attributes). To get
the precise quality characteristics, a developer identifies semantic informa-
tion of product elements. In the example of the measurable use case modeling
method, a developer identifies use case types and it is a problem how to set
up a set of use case types in advance according to problem domain. This type
of semantic information is closely related to domain ontology[19] and the on-
tology is helpful to develop metrics to measure artifact quality in a semantic
level. MEL has another level of an ontology system for method concepts[9].
The usage of method ontology included in MEL is also a promising approach.

Acknowledgements. The author would like to thank Sjaak Brinkkemper and
Frank Harmsen for their insightful suggestions to Method Engineering Language.

References

1. IEEE Recommended Practice for Software Requirements Specifications. Technical
report, IEEE Std. 830-1998, 1998.

2. F. B. Abreu. Using OCL to Formalize Object Oriented Metrics Definitions. In
Tutorial in 5th International ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE 2001), 2001.

3. V. Basili. Software Modeling and Measurement: The Goal/Question/Metric
Paradigm. Technical Report UMIACS-TR-92-96, University of Maryland, 1992.

4. S. Brinkkemper. Method Engineering: Engineering of Information Systems Devel-
opment Methods and Tools. Information and Software Technology, 37(11), 1995.

5. S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-Modelling Based Assembly
Techniques for Situational Method Engineering. Information Systems, 24(3):209
–228, 1999.

6. S. Brinkkemper, M. Saeki, and F. Harmsen. A Method Engineering Language for
the Description of Systems Development Methods (Extended Abstract). In Lecture
Notes in Computer Science (Proc. of CAiSE’2001), volume 2068, pages 473–476,
2001.

7. J.P. Cavano and J.A. McCall. A Framework for the Measurement of Software
Quality. In Proc. of ACM Software Quality Assurance Workshop, pages 133–139,
1978.

8. S. Chidamber and C. Kemerer. A Metrics Suite for Object-Oriented Design. IEEE
Trans. on Software Engineering, 20(6):476–492, 1994.

9. F. Harmsen. Situational Method Engineering. Moret Ernst & Young Management
Consultants, 1997.

Embedding Metrics into Information Systems Development Methods 389

10. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison Wesley, 1999.

11. M. Jarke, M. Jeusfeld, C. Quix, and P. Vassiliadis. Architecture and Quality in
Data Warehouses. In Lecture Notes in Computer Science (CAiSE’98), pages 93–
113. Springer-Verlag, 1998.

12. S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ : A Fully Configurable Multi-User
and Multi-Tool CASE and CAME Environment. In Lecture Notes in Computer
Science (CAiSE’96), volume 1080, pages 1–21, 1996.

13. T. McCabe and C. Butler. Design Complexity Measurement and Testing. CACM,
32(12):1415–1425, 1989.

14. J. Ralyte and C. Rolland. An Assembly Process Model for Method Engineering.
In Lecture Notes in Computer Science (Proc. of CAiSE’2001), volume 2068, pages
267–283, 2001.

15. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 1999.

16. M. Saeki. Reusing Use Case Descriptions for Requirements Specification : Towards
Use Case Patterns. In Proc. of 6th Aisa-Pacific Softwrae Engineering Conference
(APSEC’99), pages 309–316, 1999.

17. M. Saeki. Role of Model Transformation in Method Engineering. In Lecture Notes
in Computer Science (Proc. of CAiSE’2002), volume 2348, pages 626–642, 2002.

18. S. Si-Said, Rolland C., and G. Grosz. MENTOR : A Computer Aided Requirements
Engineering Environment. In Lecture Notes in Comupter Science (CAiSE’96),
volume 1080, pages 22–43, 1996.

19. Y. Wand. Ontology as a Foundation for Meta-Modelling and Method Engineering.
Information and Software Technology, 38(4):281–288, 1996.

20. J. Warmer and A. Kleppe. The Object Constraint Language. Addison Wesley,
1999.

	Introduction
	Meta Modeling Technique and MEL
	Method Assembly for Measurable Methods
	Defining Metrics with MEL: An Example of Measurable Use Case Modeling Method
	Modifiability on Use Case Diagrams
	Defining Measurable Methods by Method Assembly

	Conclusion and Research Agenda

