
Efficient Amplification of the Security
of Weak Pseudo-random Function Generators

Steven Myers

Department of Computer Science
University of Toronto

Toronto, Ontario, Canada
myers@cs.toronto.edu

Abstract. We show that given a PRFG (pseudo-random function gen-
erator) G which is 1

c
-partially secure, the construction g1(x ⊕ r1)⊕ · · · ⊕

glog2 n(x⊕rlog2 n) produces a strongly secure PRFG, where gi ∈ G and ri

are strings of random bits. Thus we present the first “natural” construc-
tion of a (totally secure) PRFG from a partially secure PRFG. Using
results of Luby and Rackoff, this result also demonstrates how to “nat-
urally” construct a PRPG from partially secure PRPG.

1 Introduction

Cryptographers have noted that the Data Encryption Standard (DES) is effec-
tively the composition of 16 insecure permutation generators. Because DES has
withstood much cryptanalysis it is often both considered to be secure (given
its small key size) and conjectured to be a Pseudo-Random Permutation Gen-
erator(PRPG). This construction has led some cryptographers to attempt to
provide evidence that supports the apparent observation that the composition
of permutation generators can amplify security.

Following this line of research, Luby and Rackoff [8] defined the notion of a
partially secure PRPG to be a permutation generator which produces permu-
tations that cannot be efficiently distinguished from random permutations by
small circuits with a probability better than 1

c , for some constant c > 1. They
proved that the composition of a constant number of partially secure PRPGs
results in a partially secure PRPG with stronger security then any of its con-
stituent components. Unfortunately, Luby and Rackoff’s result did not permit
the construction of a PRPG from a partially secure PRPG.

It was known that a partially secure PRPG implied a totally secure PRPG.
The construction used the following chain of results. It is possible to construct
a weak one-way function from a partially secure PRPG; then, using [13,7],
construct a one-way function; then, using Yao’s XOR Lemma [4], construct a
Pseudo-random number generator (PRNG); then, using [2], construct a PRFG;
and then finally, using [9,12], construct a PRPG. However, this construction is
obviously neither “natural” nor efficient.

In this paper we give a natural, efficient and parallelizable construction for
generating a Pseudo-Random Function Generator(PRFG) from a partially se-

B. Pfitzmann (Ed.): EUROCRYPT 2001, LNCS 2045, pp. 358–372, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Amplification of the Security of Weak Pseudo-random Function Generators 359

cure PRFG. Our proof follows from the ideas of Luby and Rackoff [8]. Further,
since partially secure PRPG are a special case of partially secure PRFG, we can
use a partially secure PRPG to construct a PRFG. Then, using a previous result
by Luby and Rackoff [9], or more recent work by Naor and Reingold [12], we can
“naturally” and efficiently construct a PRPG from the PRFG. If F = {Fn} is a
“partially secure” pseudo-random function generator, then our construction is
as follows:

fn1 (x ⊕ r1)⊕ · · · ⊕ fnm(x ⊕ rm),

where the fni ’s are randomly chosen from Fn, and the ri’s are randomly chosen
from {0, 1}n. The key for this new generator consists of all the keys for the
functions (fi’s), and all of the strings of random bits (ri’s).

Our construction is similar to an XOR product, and in this light, our proof
might be considered an XOR lemma for PRFG. Further support for this this
view is found in the fact that our proof closely follows that of Levin’s in [7].

Given the relatively few number of proofs showing security amplification in
an unrestricted adversarial model, we think this result will be of interest to those
researchers interested in security amplification.

Further, we believe that this result can be viewed as one step in the long
journey to developing a good theory for the development of block-ciphers. Cur-
rently, block-ciphers are developed primarily using heuristics, with little theory
to guide the development of their underlying architecture. Thus, while there are
no natural examples of partially secure PRFG that the author is aware of, should
cipher-designers develop efficient function generators which they have reason to
believe are partially secure, then they can use the construction suggested in this
paper, and have good reason to believe that the resulting cipher has stronger
security properties than its constituents.

For the purposes of example only, suppose block-cipher designers had rea-
son to believe that an 8-round version of DES was a “partially” secure PRFG1.
Then designers could have some faith that the suggested construction could be
used amplify the security of this “partially” secure generator. Further, the paral-
lelizability of the construction might allow designers to make certain time/space
trade-offs. For example, the designers might trade-off the time required for more
rounds of DES, with the circuit size required to implement the above construc-
tion with a version of DES with fewer rounds.

1.1 Related Work

There are very few results in cryptography which demonstrate the amplification
of security in a general, non-restrictive adversarial model. The first such result
was Yao’s XOR Lemma [13], which now has several proofs ([7,5,3]). All of these
results apply to the security amplification of weak one-way functions and pred-
icates. In a domain closer to that of PRFG, Luby and Rackoff [8] give a direct
product lemma for PRPG where the direct product is taken via the composition
of weak PRPG. Unfortunately, their proof falls short of demonstrating that the
1 We use the quotes around “partially” as DES in not an asymptotic notion

360 Steven Myers

direct product of a sufficient number of weak PRPG yields a a strongly secure
PRPG. The reason for this is explained in further detail in the sequel. A direct
product theorem for PRFG is given by Myers [11], where the direct product is
based on the composition and exclusive-or of PRFG. Unfortunately, this result
also fails to achieve a strongly secure PRFG for reasons similar to those of [8].
Further complicating the matters with the result in [11] is the fact that the size
of the constructed generator is super-polynomial after ω(log n) applications of
the direct product.

Therefore, our result presents the first efficient and natural direct product
theorem achieving strongly secure PRFG from weakly secure PRFG in a general
adversarial model.

Since Luby and Rackoff proposed their partial security model in [8], cryp-
tographers have developed other models where it is possible to demonstrate
some manner of security amplification. Kilian and Rogaway [6] propose a model
where component permutation generators are replaced with completely random
permutation generators. Constructions using the generators are then analyzed,
and their security compared to that of a random permutation generator. Note
that in this model, since the permutation generators are random, attacks can
only be performed on the construction, and not the underlying component gen-
erators. Kilian and Rogaway call such attacks generic, as they do not make use
of the underlying structure of the permutation generator.

As previously alluded to, under this model Kilian and Rogaway [6] have
shown that the DESX construction increases the effective key length of DES.
Also under the same model, Aiello et al. [1] have shown that the composition
of multiple random permutation generators results in a permutation generator
which is more secure than a random generator.

2 Notation, Definitions & the Model

Below we introduce some notation and terminology which will be used in the
paper.

Notation 1. For µ, ν ∈ {0, 1}∗, let µ • ν denote their concatenation.

Notation 2. Let F l→p denote the set of all functions f : {0, 1}l → {0, 1}p,
and let Fn be the set Fn→n.

Notation 3. For α, β ∈ {0, 1}n, let α ⊕ β denote the bit-by-bit exclusive-or of
α and β. For f, g ∈ Fn, let (f ⊕ g)(α) denote f(α)⊕ g(α).

Notation 4. For any set A, let x ∈ A be the action of uniformly at random
choosing an element x from A. For any distribution D, let x ∈ D be the action
of randomly choosing an element according to D.
It will be clear from context when ∈ is used to refer to an element in a set,

and when it refers to choosing from a distribution.

Amplification of the Security of Weak Pseudo-random Function Generators 361

Definition 1. Let D1, D2, be a sequence of distributions, and let e represent
a series of events e1, e2, such that for all i, ei is an event of Di. We say that
e occurs with significant probability if for some constant c > 0 and for infinitely
many n the PrDn(en) ≥ 1

nc . We say that an event e occurs with negligible prob-
ability if, for all constants c > 0 and for all sufficiently large n, PrDn

(en) < 1
nc .

2.1 Circuits

In the definition of each cryptographic primitive there exists the notion of an
adversary. Abstractly, its purpose is to break an effect that a primitive is trying
to achieve. Resource bounds are imposed on the adversaries, so that they model
the computational power “real world” adversaries might feasibly have access to.
There are two standard computational models which are used to define resource
bounded adversaries: uniform and non-uniform. In this paper we will consider
only non-uniform adversaries.

A non-uniform adversary is a sequence of circuits (C1, C2, ...), where circuit
Ci is used on inputs of size i. We wish to model efficient computation on the
part of the adversary, so we assume that the size of each circuit Ci is bounded by
p(i), for some polynomial p. The size of a circuit is defined to be the number of
gates, and the number of connections between gates in the circuit. For simplicity
we assume we have gates for all 16 binary and 4 unary functions.

In order to model the adversaries of certain primitives, we allow the circuits
to have access to an oracle. This is modeled by defining oracle gates to be gates
of unit size which compute a specified function. The gates are otherwise treated
like normal gates. An oracle function will normally be considered an input to
the circuit.

We stress that the description of the circuit family need not be efficiently
computable, even though each circuit is of small size relative to the size of its
input.

Definition 2. Let C be a circuit whose outputs are in the range {0, 1}. Then
we say C is a decision circuit. Let x be an input to C. Then we say C accepts
x if C(x) = 1, and we say that C rejects x if C(x) = 0.

Definition 3. We say a circuit C is probabilistic, if it requires as input a se-
quence of random bits.

Notation 5. Let D be a distribution over the inputs of a decision circuit C.
Then we use as a shorthand Prd∈D(C(d)) to represent Prd∈D[C(d) = 1].

Definition 4. Let D be a distribution over the inputs of a decision circuit C. We
say that C accepts a fraction Prd∈D(C(d)) of its inputs, and rejects a fraction
1− Prd∈D(C(d)) of its inputs.

362 Steven Myers

Notation 6. We write Cf to represent a circuit C that has oracle gates which
compute the function f in unit time. We wish to consider these gates as “input”
to the circuit, and therefore if f is of the form {0, 1}n → {0, 1}m(n), for a
polynomial m, then we say that f is part of C’s input and it has size n.

Notation 7. Let C be a circuit with access to the oracle function f . Then let
QC denote the number of oracle gates in C (Note: Q is short for query).

In the remainder of the paper we shall assume that all circuits are standard-
ized in the following manner: no circuit will ever repeat oracle queries, and all
circuits Cn in a circuit family {Cn} will perform exactly m(n) queries, for some
polynomial m (ie. QCn = m(n)). Any polynomial sized family of circuits can
easily be modified to satisfy the above two requirements.

2.2 Function Generators

Definition 5. We call G : {0, 1}κ × {0, 1}n → {0, 1}m a function generator.
We say that k ∈ {0, 1}κ is a key of G, and we write G(k, ·) as gk(·), and say
that key k chooses the function gk. Let g ∈ G represent the act of uniformly at
random choosing a key k from {0, 1}κ, and then using the key k to choose the
function gk.
Let m and � be polynomials, and let N ⊆ N be an infinitely large set. For each

n ∈ N , let Gn : {0, 1}�(n) × {0, 1}n → {0, 1}m(n) be a function generator.
We call G = {Gn|n ∈ N} a function generator ensemble.

In an abuse of notation, we will often refer to both specific function generators
and function generator ensembles as function generators. We hope it will be clear
from the context which term is actually being referred to.

Definition 6 (ε-Distinguishing Adversary). Let ε : N → [0, 1], and let D1 =
{D1

i |i ∈ Z
+} and D2 = {D2

i |i ∈ Z
+} be two sequence of distributions over oracle

gates, where Dj
i is a distribution over oracle gates of input size i, for j ∈ {1, 2}.

If {Cn} is an adversary with access to oracle gates, then we say it is capable of
ε distinguishing D1 from D2 if, for some polynomial p and infinitely many n:∣∣∣∣ Pr

d1∈D1

[
Cd1
n = 1

] − Pr
d2∈D2

[
Cd2
n = 1

]∣∣∣∣ ≥ ε(n) +
1

p(n)
.

Definition 7 (Pseudo-Random Function Generator Ensembles). Let m
and � be polynomials. For each n let Gn : {0, 1}�(n) × {0, 1}n → {0, 1}m(n) be a
function generator, computable in time bounded by a polynomial in n. Define G =
{Gn|n ∈ N} to be the function generator ensemble. Define F = {Fn→m(n)|n ∈
N}.
We say that G is (1− ε(n)) secure if there exists no adversary {Cn}, bound

in size to be polynomial in n, which can ε distinguish G from F .
We say that G is a pseudo-random function generator (PRFG) if it is 1

secure.

Amplification of the Security of Weak Pseudo-random Function Generators 363

Definition 8. If G is a 1-secure generator, we say it is strongly secure. If G is
1

p(n) secure, for some polynomial p, then we say that it is partially secure. If G

is not partially secure, then we say it is insecure.

2.3 Previously Known Lemmas

Below is a well known form of the Chernoff bound. For a proof of this result
refer to [10] or any standard book on probabilistic computation.

Lemma 1 (Chernoff Bound). Let x1, .., xnt be i.i.d.r.v. which take the values
0 or 1 with probabilities q or p = 1− q respectively. Let Xnt = 1

nt

∑nt

i=1 xi. Then
for any k and l, there exists a t such that:

Pr
[
|Xnt − p| ≥ 1

nk

]
≤ 1
2nl .

The following lemma is a generalization of standard derandomization proofs
in the non-uniform computation model. Before stating the lemma, we give the
following intuition of its statement. LetD1 and D2 be two distribution over oracle
functions, and P be a predicate with a domain over functions. Then if C is a
probabilistic circuit such that CD1 approximates P (D1) and CD2 approximates
P (D2), then there exists a derandomized version of C which approximates both
P (D1) and P (D2).

Lemma 2 (Derandomization Lemma). Let Cw(r) be a probabilistic oracle-
circuit, where w is an oracle function, and r is a string of random input bits.
Let D1 and D2 be two distributions over Fn, and let R be the distribution over
C’s random bits. Let P : Fn × R → {0, 1} be a predicate. Then, If

Pr
w∈D1, r∈R

[P (w, Cw(r)) = 1] ≥ 1−p and Pr
w∈D2, r∈R

[P (w, Cw(r)) = 1] ≥ 1−p,

then there exists an r̃ ∈ R such that Prw∈Di [P (w, Cw(r̃)) = 1] ≥ 1 − 2p, for
i ∈ {1, 2}.
Proof. This result is a generalization of standard derandomization techniques
for non-uniform circuits. The details are left to the full version of the paper. ��

3 Result

We will show that there is a “natural” construction which constructs strongly
secure PRFGs from 1 − δ secure PRFGs. The construction we present uses
function generators that generate functions of the form f : {0, 1}n → {0, 1}n,
this is done to simplify the presentation. The result can easily be modified to
generate functions of the form f : {0, 1}n → {0, 1}m(n), for any polynomial m.
The construction is based on the operator generator described below.

Let f1 and f2 be two functions such that fi : {0, 1}n → {0, 1}n, for i ∈
{1, 2}. For each r1, r2 ∈ {0, 1}n we define the operator ✸n

r1•r2 , which acts on the

364 Steven Myers

functions f1 and f2 and produces a function of type {0, 1}n → {0, 1}n as defined
below:

(f1✸n
r1•r2f2)(x) = f1(x ⊕ r1)⊕ f2(x ⊕ r2).

We define the ✸ operator generator (read Diamond) as ✸ = {✸n
r1,r2 |n ∈

N ∧ r1, r2 ∈ {0, 1}n}.
Before describing the construction, we will formally describe how to combine

two function generators using the ✸ operator generator.

Definition 9. Let G = {Gn : {0, 1}�(n)×{0, 1}n → {0, 1}n|n ∈ N} be a function
generator ensemble. Let H = {Hn : {0, 1}κ(n) × {0, 1}n → {0, 1}n|n ∈ N} be a
function generator ensemble. Let ✸ be the operator generator defined previously.
Then let F = {Fn : {0, 1}�(n)+κ(n)+2·n×{0, 1}n → {0, 1}n|n ∈ N} be the function
generator defined by Fn(k1 • k2 • k3 • k4, x) =

(
gnk1 ✸n

k3•k4 hnk2
)
(x), where |k1| =

�(n), |k2| = κ(n) and |k3| = |k4| = n. This is written in shorthand as F = G ✸ H.
Similarly, if g : {0, 1}n → {0, 1}n, then we write g ✸ H as short-hand for

the function generator defined by Fn(k2 • k3 • k4, x) =
(
g ✸n

k3•k4 hnk2
)
(x), where

|k2| = κ(n) and |k3| = |k4| = n.

3.1 The Construction

Let p be a polynomial. We construct the generator F from the generator G as
follows:

F = G✸ · · ·✸G︸ ︷︷ ︸
p(n)

.

Note that in order to compute a random function fn ∈ F it is sufficient to
compute (

g1(x ⊕ r1)⊕ · · · gp(n)(x ⊕ rn)
)

,

where gi ∈ G and ri ∈ {0, 1}n.
Observe that the key for F includes p(n) keys for G and p(n) random strings.

The random strings are necessary for the security amplification, and a counter
example to our security amplification claims can easily be constructed if they are
omitted. For further discussion on this construction and several other plausible
candidates see [11].

In order to prove the security of the construction we use the Diamond Iso-
lation Lemma (the name for this lemma comes from the stylistically similar
Isolation Lemma used by Levin [7] in proving Yao’s XOR Lemma [13]) stated
below. Intuitively, the lemma shows that the function generator which results
from the combination of two partially secure function generators by the ✸ oper-
ator generator is more secure than either of the two constituent generators. The
majority of the work in this paper goes towards proving this lemma correct.

Lemma 3 (Diamond Isolation Lemma). There exists a fixed polynomial p
(which is retrievable form the proof of this lemma) such that the following hold.
Let ε, δ : Z → [0, 1] be functions. Let H and G be function generators, where

Amplification of the Security of Weak Pseudo-random Function Generators 365

cG(n) and cH(n) are polynomials which bound from above the size of the circuits
which compute the function generators respectively.
Hypothesis: There exists a family of decision-circuits {Cn}, where for each n
the circuit Cn is of size bounded above by the polynomial sC(n), and for some
c > 0 and infinitely many n:∣∣∣∣ Pr

g∈Gn✸Hn
(Cg

n)− Pr
f∈Fn

(Cf
n)

∣∣∣∣ ≥ ε(n)δ(n) +
1
nc

.

Conclusion: For infinitely many n there exists either a decision-circuit Υn of
size p(nc · cG(n))sC(n) for which:∣∣∣∣ Prh∈Hn

(Υhn)− Pr
f∈Fn

(Υ fn)
∣∣∣∣ ≥ ε(n) +

1
n3c ;

or a decision-circuit Ξn of size ≤ (2QCn
cH(n) + sC(n)), where QΞn

= QCn
, and

for which: ∣∣∣∣ Prg∈Gn
(Ξg

n)− Pr
f∈Fn

(Ξf
n)

∣∣∣∣ ≥ δ(n) +
1

n2c .

Luby and Rackoff prove a similar lemma in [8]. It shows that the composition
of two partially secure PRPGs results in a generator which is more secure than
either of the constituents. Excluding the fact that their lemma is restricted to
permutation generators instead of function generators, our lemma is stronger in
two senses. First, the security requirement in the hypothesis is strictly weaker (ie.
the improvement in security from combining the two generators is stronger in our
result). Second, the size of the distinguishing circuit for G is only additively larger
than the distinguishing circuit for G✸H. In the Luby and Rackoff construction,
the distinguishing circuits for G and H are both multiplicatively larger than the
circuit which distinguishes G◦H. It is this second fact that permits us to achieve
PRFGs in our construction. Furthermore, this proof is simpler than that of Luby
and Rackoff. Their proof contains a corollary which corresponds to Corollary 5
in our proof. However, unlike Corollary 5, their corollary is only proven true with
respect to the computational security of G ◦ H. This restriction is necessary for
their construction, but increases the difficulty of the proof. We now prove that
our construction produces a PRFG from a 1− ε secure PRFG.

Theorem 1 (Diamond Composition Theorem). Let 0 < ε < 1 be a con-
stant. Let G be a 1− ε secure PRFG. Then for each p ∈ Ω(log2 n)∩(∪∞

i=1O(ni)
)

the generator F = G✸ · · ·✸G︸ ︷︷ ︸
p(n)

is a secure PRFG.

Proof. (sketch) The intuition for this argument is as follows. We assume that F
is not secure, and thus there is a family of distinguishing circuits for F. We apply
the Isolation Lemma to the generator F. The result is either that the generator
G is not 1 − ε secure as claimed, or we have a family of distinguishing circuits
(slightly larger than the original circuit family) for a generator smaller than F.
We apply the Isolation Lemma inductively to this smaller generator until we

366 Steven Myers

are only left with an ε + 1
nc family of distinguishing circuits for the generator

G, which contradicts its assumed 1 − ε security. The theorem follows. The full
details are left to the full version of the paper. ��

Before presenting a proof of the Diamond Isolation Lemma (Lemma 3), we
first present two important technical lemmas. A complete proof of the Diamond
Isolation Lemma follows.

3.2 Two Technical Lemmas

The first lemma and corollary demonstrate that the acceptance probability of an
oracle-decision-circuit is the same whether the circuit is given an oracle chosen
uniformly at random from the set of all functions; or given an oracle chosen
uniformly at random from the set of all functions combined with any specific
function using the ✸ operator generator.

Lemma 4. Given any decision-circuit C, for each h ∈ Fn and for each r1, r2 ∈
{0, 1}n:

Pr
φ∈h✸n

r1•r2
Fn
(Cφ) = Pr

f∈Fn
(Cf).

Proof. First observe that for each r2 ∈ {0, 1}n the distribution {h′(x ⊕ r2)|h′ ∈
Fn} = Fn. Then let g(x) = h(x⊕r1), and observe that the distribution g⊕Fn =
Fn, proving the result.

Corollary 1. Given any decision-circuit C, for each h ∈ Fn: Prφ∈h✸Fn(Cφ) =
Prf∈Fn(Cf).

The next lemma demonstrates that the probability of acceptance by a poly-
nomial sized oracle-decision-circuit is “almost” the same whether given access to
an oracle chosen uniformly at random from the set of all functions; or given an
oracle chosen randomly from the set of functions specified by combining, via the
✸ operator generator, any distribution of functions with “almost” any specific
function.

Lemma 5. Let {Cn} be a polynomial sized family of decision-circuits. Then for
every constant c, for sufficiently large n, for each s ∈ Fn, for all but 1

2n/4 of the
w ∈ Fn: ∣∣∣∣ Pr

g∈s✸w(C
g
n)− Pr

f∈Fn
(Cf

n)
∣∣∣∣ <

1
nc

.

Proof. (sketch) Below we outline the high-level ideas behind the proof of the
lemma. We leave the detailed proof for the full version of the paper.

In the remainder of this proof sketch, when we say a value has a good approx-
imation, we imply it approximates the value to within a 1

poly(n)
-additive factor,

where poly(n) can be any polynomial. Further, when we say an approximation
is good it is implicit that we mean that it is good with very high probability
(greater than (1− 1

2cn) for some c > 0).

Amplification of the Security of Weak Pseudo-random Function Generators 367

We define an experiment that has a random variable that is a good approx-
imation to both Prg∈s✸w(Cg

n) and Prf∈Fn(Cf
n). A direct result is that for most

w ∈ Fn the value |Prg∈s✸w(Cg
n)−Prf∈Fn(Cf

n)| is small, and the result follows.
The major work involved in proving this lemma involves showing that the

random variable in the experiment approximates both of the aforementioned
values.

We define an experiment in which we draw uniformly at random a function
w ∈ Fn and a set of p(n) keys from {0, 1}2n for the ✸ operator, {(k1i • k2i)},
where p is a polynomial. We define the random variable:

1
p(n)

p(n)∑
i=1

C
(s✸

k1
i

•k2
i
w)

n (1)

It is clear, by the Chernoff bound, that p can be chosen so that (1) is a good
approximation of Prg∈s✸w(Cg

n).
In order to demonstrate that (1) also approximates Prf∈Fn(Cf

n), we show
that it is a good approximation of a second random variable, which itself closely
approximates Prf∈Fn(Cf

n).
We define a second experiment as choosing uniformly at random q(n) func-

tions from Fn, where q is a polynomial. We define the second random variable
as:

1
q(n)

q(n)∑
i=1

Cfi
n . (2)

By the Chernoff bound, for an appropriate q , the random variable (2) is a good
approximation for Prf∈Fn(Cf

n). Therefore, it suffices to show that the random
variable (1) is a good approximation for (2).

We show that (1) and (2) are good approximations of each other by defin-
ing a third experiment in which both random variables can be calculated. In
this experiment, with very high probability the random variables are equal, and
therefore they are good approximations of each other.

In the third experiment we draw uniformly at random a polynomial (in n)
number of random strings, {ri}, from {0, 1}n and a polynomial number of keys
from {0, 1}2n for the ✸ operator, {k1i • k2i }.

Observe that the random variable (2) can be calculated in this experiment:
any call to an oracle-gate during the computation of Cfi can be answered with
a random bit-string rj . (Recall C is of a special form: it never makes the same
oracle query twice.)

Unfortunately, it’s not as easy to calculate (1) in the third experiment. As w
was chosen at random in the first experiment, for any i we can calculate the value
C
(s✸

k1
i

•k2
i
w)
by replacing the outputs of the oracle gates with random bit-strings.

Unfortunately, the calculation of (1) requires the evaluation of C
(s✸

k1
i

•k2
i
w)
for a

polynomial number of values of i. These evaluations are not independent, and
therefore the scheme used to calculate (2) is not a valid method for computing
(1). The problem is that during the evaluations of C

(s✸k1
a•k2

a
w) and C

(s✸
k1

b
•k2

b
w)

368 Steven Myers

the respective queries x and y could be made to oracle gates, where x ⊕ k2a =
y ⊕ k2b , and in such cases the outputs of the gates are dependent on each other.
Fortunately, we can show that the probability of such an event occurring is
negligible and that this is the only case in which we cannot replace the output of
the oracle gates with random strings to simulate the calculation of (1). Therefore,
with high probability, the values of (1) and (2) are equal in third experiment.
The lemma follows. ��

3.3 Proof of the Isolation Lemma

Assume that there exists a polynomial-sized decision-circuit family {Cn} which
for some constant c>0 and infinitely many n,

∣∣Prg∈Gn✸Hn(Cg
n)− Prf∈Fn(Cf

n)
∣∣ ≥

ε(n)δ(n)+ 1
nc . WLOG we assume that Prg∈Gn✸Hn(Cg

n)−Prf∈Fn(Cf
n)≥ε(n)δ(n)+

1
nc , as otherwise we can simply flip the output bit of Cn.

Lemma 6. For i > 0 and for each n let

Kn(i) = Pr
f∈Fn

(Cf
n) +

1
ni

and let Sn(i) =
{

w ∈ Fn

∣∣∣∣ Pr
g∈Gn✸w

(Cg
n) ≥ Kn(i)

}
.

Then for all i,j: Prw∈Fn(w ∈ Sn(i)) ≤ 1
nj , for sufficiently large n.

Proof. Suppose for contradiction that there exists an i and j such that for
infinitely many n Prw∈Fn(w ∈ Sn(i)) ≥ 1

nj . We will show this contradicts
Lemma 5. We first note that since Prφ∈Gn✸Sn(i)(Cφ

n) ≥ Prf∈Fn(Cf
n) +

1
ni , then

by an averaging argument we can fix a g ∈ Gn such that Prh∈g✸Sn(i)(Ch
n) ≥

Prf∈Fn(Cf
n) +

1
ni . Then using the first moment method we note that given g,

there must be a fraction 1
n2i of w ∈ Sn(i) which have the “good” property

that Prψ∈g✸w(Cψ
n) ≥ Prf∈Fn(Cf

n)+
1
n2i . Since Sn(i) is also a “significant” (1

nj)-
fraction of Fn, the probability that a random w has the “good” property is

1
n2i+j , and this contradicts Lemma 5. ��
Lemma 7. Either there exists a family of decision-circuits {Ξn}, where for each
n the circuit Ξn is of size ≤ QCn

2cH(n) + sC(n); QΞn
= QCn

; and for infinitely
many n: ∣∣∣∣ Prg∈Gn

(Ξg
n)− Pr

f∈Fn
(Ξf

n)
∣∣∣∣ ≥ δ(n) +

1
n2c ;

or for all sufficiently large n and all hn ∈ Hn:∣∣∣∣ Pr
g∈G✸hn

(Cg
n)− Pr

f∈Fn
(Cf

n)
∣∣∣∣ < δ(n) +

1
n2c .

Proof. Suppose it is the case that for infinitely many n there exists an hn ∈ Hn

such that
∣∣Prg∈G✸hn(Cg

n)− Prf∈Fn(Cf
n)

∣∣ ≥ δ(n)+ 1
n2c . For each such n we create

a decision circuit Ξn, where Ξw
n = C

(w✸hn)
n . We observe that:

| Pr
ψ∈Gn

(Ξψ
n)− Pr

f∈Fn
(Ξf

n)| = | Pr
ψ∈Gn✸hn

(Cψ
n)− Pr

f∈Fn✸hn
(Cf

n)|

Amplification of the Security of Weak Pseudo-random Function Generators 369

= | Pr
ψ∈Gn✸hn

(Cψ
n)− Pr

f∈Fn
(Cf

n)| (Corollary 1)

≥ δ(n) +
1

n2c

It is easy to see that Cn can be modified, in a straightforward manner, by
adding QCn(CH(n)+ 10n) gates and wires to compute Ξn, while still using QCn

oracle gates. For simplicity of presentation in this paper we have assumed that
7n ≤ CH(n), giving us a circuit of size ≤ sC(n) +QCn

(2CH(n)). ��

Main Argument. We now present the main argument for proving the Diamond
Isolation Lemma. WLOG, we assume that

Pr
g∈Gn✸Hn

(Cg
n)− Pr

f∈Fn
(Cf

n) ≥ ε(n)δ(n) +
1
nc

, (3)

if this is not the case flip the output bit of Cn.
We assume that there exists no family of circuits {Ξn}, where each circuit

Ξn is of size cH(n) + sC(n), such that for infinitely many n:∣∣∣∣ Prg∈Hn
(Ξg

n)− Pr
f∈Fn

(Ξf
n)

∣∣∣∣ ≥ δ(n) +
1

n2c .

From the above assumption and Lemma 7, we know that for all sufficiently
large n and all hn ∈ Hn:∣∣∣∣ Pr

ψ∈G✸hn
(Cψ

n)− Pr
f∈Fn

(Cf
n)

∣∣∣∣ < δ(n) +
1

n2c . (4)

We now outline the argument. By (3), Cn accepts a fraction of Gn✸Hn which
is “significantly larger” than ε(n)δ(n) + PrCn(Fn). However, by (4), for each
h ∈ Hn not much more than a δ(n) + PrCn(Fn) fraction of the functions in
Gn✸h are accepted by Cn. As Prφ∈G✸H(Cφ

n) is the expected value of Prφ∈G✸h(Cφ
n)

over the distribution Hn, it must be the case that Prφ∈G✸h(Cφ
n) is “significantly

larger” than Prf∈Fn(Cf
n) for at least an ε(n) fraction of the h ∈ Hn. Given a

function ω our distinguishing circuit will approximate Prψ∈G✸ω(Cψ
n) and accept

if it is “significantly larger” than Prf∈Fn(Cf
n). By the above argument this will

accept an ε(n) fraction of the functions in Hn and, by Lemma 6, the same circuit
will accept almost no random functions in Fn. We now give the details of the
proof outlined above.

Since we cannot compute Prφ∈Gn✸ω(Cφ
n) in polynomial time, we approximate

it with the probabilistic circuit An:

Aw
n =

1
nb

nb∑
i=1

C
(gi✸

n

k1
i

•k2
i
w)

n ,

where g1, ..., gnb ∈ Gn and k11, k21, .., k1nb , k2nb ∈ {0, 1}n are randomly chosen. Let
κ(n) be the length of the key of Hn, and set (with foresight) α > 1 so that

370 Steven Myers

nα > κ(n). Using the Chernoff Bound, b is chosen large enough such that:

Pr
w∈Fn

[∣∣∣∣Aw
n − Pr

φ∈Gn✸w
(Cφ

n)
∣∣∣∣ ≥ 1

n3c

]
≤ 1
2n2α ,

and

Pr
h∈Hn

[∣∣∣∣Ah
n − Pr

φ∈Gn✸hn
(Cφ

n)
∣∣∣∣ ≥ 1

n3c

]
≤ 1
2n2α .

Since we want a deterministic circuit we derandomize An, by Lemma 2, to get
the circuit Bn, such that for all but 1

2nα of the w ∈ Fn:∣∣∣∣Bw
n − Pr

φ∈Gn✸w
(Cφ

n)
∣∣∣∣ <

1
n3c , (5)

and for all of the h ∈ Hn: ∣∣∣∣Bh
n − Pr

φ∈Gn✸h
(Cφ

n)
∣∣∣∣ <

1
n3c , (6)

since for each k ∈ {0, 1}κ(n) the probability of picking hnk from Hn is at least
1

2κ(n) > 1
2nα .

Claim.
Pr
h∈Hn

[Bh
n ≥ Pr

f∈Fn
(Cf

n) +
1

n2c] ≥ ε(n) +
1

n2c .

Proof. Assume for contradiction that Prh∈Hn [Bh
n ≥ Prf∈Fn(Cf

n)+
1
n2c] < ε(n)+

1
n2c . Let Kn ⊆ Hn be the set of functions h ∈ Hn, for which Bh

n ≥ Prf∈Fn(Cf
n)+

1
n2c , and let Kn be its complement.

Pr
φ∈G✸H

(Cφ
n)− Pr

f∈Fn
(Cf

n) =
∑
h∈Kn

((
Pr

φ∈G✸h
(Cφ

n)− Pr
f∈Fn

(Cf
n)

)
Pr
ψ∈Hn

[ψ = g]
)
+

∑
h∈Kn

((
Pr

φ∈G✸h
(Cφ

n)− Pr
f∈Fn

(Cf
n)

)
Pr
ψ∈Hn

[ψ = h]
)

≤
∑
h∈Kn

((
Pr

φ∈G✸h
(Cφ

n)− Pr
f∈Fn

(Cf
n)

)
Pr
ψ∈Hn

[ψ = h]
)
+

∑
h∈Kn

(((
Bh
n − Pr

f∈Fn
(Cf

n)
)
+

1
n2c

)
Pr
ψ∈Hn

[ψ = h]
)

≤
∑
h∈Kn

((
Pr

φ∈G✸h
(Cφ

n)− Pr
f∈Fn

(Cf
n)

)
Pr
ψ∈Hn

[ψ = h]
)
+

(
1− ε(n)− 1

n2c

)
1

n2c (7)

≤
(

ε(n) +
1

n2c

) (
δ(n) +

1
n2c

)
+

1
n2c (8)

< ε(n)δ(n) +
1
nc

. (contradiction) (9)

Amplification of the Security of Weak Pseudo-random Function Generators 371

Equation (7) follows from two facts. First, by assumption, the probability that
a random h ∈ Hn is in Kn is 1 − ε(n) − 1

n2c . Second, for each h ∈ Kn, Bh
n −

Prf∈Fn(Cf
n) < 1

n2c . Equation (8) follows from two facts. First, by assumption,
Prh∈Hn [h ∈ Kn] < ε(n) + 1

n2c . Second, by (4), for each h ∈ Hn, Prφ∈G✸h(Cφ
n)−

Prf∈Fn(Cf
n) < δ(n)+ 1

n2c . Equation (9) contradicts the fact that Prφ∈G✸H(Cφ
n)−

Prf∈Fn(Cf
n) ≥ ε(n)δ(n) + 1

nc . ��
We create the decision circuit Υwn which accepts w iffBw

n ≥ Prf∈Fn(Cf
n)+

1
n2c .

Pr
h∈Hn

(Υhn)− Pr
f∈Fn

(Υ fn) ≥ ε(n) +
1

n2c − Pr
f∈Fn

(Υ fn)

≥ ε(n) +
1

n2c − 1
2nα −

Pr
w∈Fn

[
Pr

g∈Gn�w
(Cg

n) ≥ Pr
f∈Fn

(Cf
n) +

1
n2c − 1

n3c

]
(10)

≥ ε(n) +
1

n2c − 1
n3c − 1

2nα (11)

≥ ε(n) +
1

n3c (For sufficiently large n)

Equation (10) follows as Bω
n approximates Prg∈Gn✸ω(Cg

n) to within a factor
of 1

n3c for all but 1
2nα of the ω ∈ Fn. Equation (11) follows by a direct application

of Lemma 6.
By performing the straightforward construction of Υn, we see that there does

exist a fixed polynomial p mentioned in the statement of the lemma for which
the size of Υn is bound by p(nc · cG(n))sC(n). ��

4 Discussion and Further Research

We have presented a relatively simple and efficient construction for transforming
a partially secure PRFG into a strongly secure PRFG. We believe this construc-
tion could possibly be used to guide the development of block-ciphers in the
future. However, as described in the introduction, the construction may be use-
ful only in outer layers of the cipher, after a certain minimal amount of security
has been achieved by other means – possibly by the time proven method of using
composition.

Further, as one of the anonymous referees pointed out, it appears possible
to show in the Kilian Rogaway model [6] that the construction can be used
to increase the effective key-length of a block-cipher. This would appear to give
further evidence of the benefit of using the construction in practice. Further, since
the construction is parallelizable it may be preferable to 3-DES for extending the
key-lengths of DES. However, since the resulting generator is a function generator
and not a permutation generator, there will be systems and applications where
this is an infeasible approach.

372 Steven Myers

Acknowledgments

The author would like to thank Charles Rackoff for suggesting the problem and
for many valuable discussions and suggestions.

References

1. W. Aiello, M. Bellare, G. Di Crescenzo, and R. Vekatesan. Security amplification
by composition: The case of doubly-iterated, ideal ciphers. In H. Krawczyk, ed-
itor, Advances in Cryptology - Crypto 98, volume 1462 of LNCS, pages 390–407.
Springer-Verlag, 1998.

2. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986.

3. O. Goldreich, N. Nisan, and A. Wigderson. On yao’s xor-lemma.
http://theory.lcs.mit.edu/˜oded/, 1995.

4. J. Hastad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudo-
random generator from any one-way function. Accepted to the SIAM Journal of
Computing, 28(4):1364–1396, 1998.

5. R. Impagliazzo. Hard core distributions for somewhat hard problems.
http://www-cse.ucsd.edu/˜russell/, 1994.

6. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search. In
N. Koblitz, editor, Advances in Cryptology – Crypto 96, volume 1109 of LNCS,
pages 252–267. Springer-Verlag, 1996.

7. L.A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

8. M. Luby and C. Rackoff. Pseudo-random permutation generators and crypto-
graphic composition. In Proceedings of the 18th Annual Symposium on Theory of
Computing, pages 353–363. ACM, 1986.

9. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17:373–386, 1988.

10. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

11. Steven Myers. On the Development of Pseudo-Random Function Generators and
Block-Ciphers using the XOR and Composition Operators. M.Sc. Thesis. University
of Toronto, Canada, 1999.

12. Moni Naor and Omer Reingold. On the construction of pseudo-random permuta-
tions: Luby-Rackoff revisited. Journal of Cryptology, 12(1):29–66, 1999.

13. Andrew Yao. Theory and applications of trapdoor functions (extended abstract).
In Proceedings of the 23rd Symposium on Foundations of Computer Science, pages
80–91. IEEE, 1982.

	Introduction
	Related Work

	Notation, Definitions & the Model
	Circuits
	Function Generators
	Previously Known Lemmas

	Result
	The Construction
	Two Technical Lemmas
	Proof of the Isolation Lemma

	Discussion and Further Research
	References

