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Abstract. We consider the question of adaptive security for two re-
lated cryptographic primitives: all-or-nothing transforms and exposure-
resilient functions. Both are concerned with retaining security when an
intruder learns some bits of a string which is supposed to be secret:
all-or-nothing transforms (AONT) protect their input even given partial
knowledge of the output; exposure-resilient functions (ERF) hide their
output even given partial exposure of their input. Both of these prim-
itives can be defined in the perfect, statistical and computational set-
tings and have a variety of applications in cryptography. In this paper,
we study how these notions fare against adaptive adversaries, who may
choose which positions of a secret string to observe on the fly.
In the perfect setting, we prove a new, strong lower bound on the con-
structibility of (perfect) AONT. This applies to both standard and adap-
tively secure AONT. In particular, to hide an input as short as log n
bits, the adversary must see no more than half of the n-bit output. This
bound also provides a new impossibility result on the existence of (ramp)
secret-sharing schemes [6] and relates to a combinatorial problem of in-
dependent interest: finding “balanced” colorings of the hypercube.
In the statistical setting, we show that adaptivity adds strictly more
power to the adversary. We relate and reduce the construction of adap-
tive ERF’s to that of almost-perfect resilient functions [19], for which
the adversary can actually set some of the input positions and still
learn nothing about the output. We give a probabilistic construction of
these functions which is essentially optimal and substantially improves
on previous constructions of [19, 5]. As a result, we get nearly optimal
adaptively secure ERF’s and AONT’s. Finally, extending the statistical
construction we obtain optimal computational adaptive ERF’s, “public-
value” AONT’s and resilient functions.

1 Introduction

Recently, there has been an explosion of work [23,9,10,20,18,7,1,26,14] surround-
ing an intriguing notion introduced by Rivest called the All-Or-Nothing Trans-
form (AONT) [23]. Roughly speaking, an AONT is a randomized mapping which
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can be efficiently inverted if given the output in full, but which leaks no informa-
tion about its input to an adversary even if the adversary obtains almost all the
bits of the output. The AONT has been shown to have important cryptographic
applications ranging from increasing the efficiency of block ciphers [20,18,7] to
protecting against almost complete exposure of secret keys [10]. The first formal-
ization and constructions for the AONT were given by Boyko [9] in the Random-
Oracle model. However, recently Canetti et al. [10] were able to formalize and ex-
hibit efficient constructions for the AONT in the standard computational model.
They accomplished this goal by reducing the task of constructing AONT’s to
constructing a related primitive which they called an Exposure-Resilient Func-
tion (ERF) [10]. An ERF is a deterministic function whose output looks random
to an adversary even if the adversary obtains almost all the bits of the input. A
salient feature of the work of [10] is the fact that they were able to achieve good
results for the computational (and most cryptographically applicable) versions
of these notions by first focusing on the perfect and statistical forms of AONT’s
and ERF’s.

1.1 Background

We first recall informally the definitions of the two main notions we examine in
this paper. An �-AONT [23,9,10] is an efficiently computable and invertible ran-
domized transformation T , which transforms any string x into a pair of strings
(ys, yp), respectively called the secret and the public part of T . While the inverta-
bility of T allows to reconstruct x from the entire T (x) = (ys, yp), we require that
any adversary learning all of yp and all but � bits of ys obtains “no information”
about x.

On the other hand, an �-ERF [10] is an efficiently computable deterministic
function f on strings such that even if an adversary learns all but � bits of
a randomly chosen input r, it still cannot distinguish the output f(r) from a
random string. As usual, we can define perfect, statistical, and computational
versions of these notions. It is easy to see that in the perfect or statistical settings,
the length of the output of an �-ERF can be at most �; whereas for perfect
or statistical �-AONT’s, the length of the input is at most �. To beat these
trivial bounds, one must examine the computational forms of ERF’s and AONT’s.
Indeed, if we are given a pseudorandom generator, it is easy to see that by
applying the generator to the output of a perfect or statistical ERF, we can
obtain ERF’s with arbitrary (polynomial) output size.

Canetti et al. [10] showed that the following simple construction suffices to
construct AONT’s from ERF’s. Given an �-ERF f mapping {0, 1}n to {0, 1}k,
we construct an �-AONT T transforming k bits to n bits of secret output and
k bits of public output: T (x) = 〈r, f(r) ⊕ x〉. Intuitively, if at least � bits of r
are missed, then f(r) “looks” random. Hence f(r) ⊕ x also looks random, thus
hiding all information about the input x.

Applications. The All-Or-Nothing Transform and its variants have been ap-
plied to a variety of problems. In the perfect setting, it is a special case of a ramp
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scheme [6], useful for sharing secrets efficiently. Its statistical variant can be used
to provide secure communication over the “wire-tap channel II”, a partly public
channel where the adversary can observe almost all the bits communicated (but
the sender and the receiver do not know which) [22,3]. In the computational
setting, it also has many uses. Rivest [23], and later Desai [14], use it to enhance
the security of block ciphers against brute-force key search. Matyas et al. [20]
propose to use AONT to increase the efficiency of block ciphers: rather than en-
crypt all blocks of the message, apply an AONT to the message and encrypt only
one or very few blocks. The same idea is used in various forms by Jackobson et
al. [18] and Blaze [7] to speed up remotely-keyed encryption. Similarly, it can
be combined with authentication to yield a novel encryption technique [24,1].
Several other applications have been suggested by [9,26].

Another class of applications for (computational) AONT’s was suggested by
Canetti et al. [10]. They considered a situation where one of our most basic
cryptographic assumptions breaks down — the secrecy of a key can become par-
tially compromised (a problem called partial key exposure). [10] point out that
most standard cryptographic definitions do not guarantee (and often violate)
security once even a small portion of the key has been exposed. The AONT of-
fers a solution to this problem. Namely, rather than store a secret key x, one
stores y = T (x) instead. Now the adversary gets no information about the secret
key even if he manages to get all but � bits of y. The problem of gradual key
exposure is also raised by [10], where information about a (random) private key
is slowly but steadily leaked to an adversary. In this situation, the private key
can be “renewed” using an ERF to protect it against discovery by the adversary,
while additionally providing forward security when the “current” key is totally
compromised.

1.2 Adaptive Security

In many of the applications above, the question of adaptive security arises nat-
urally. For example, in the problem of partial key exposure, it is natural to
consider an adversary that is able to first gain access to some fraction of the bits
of the secret, and then decides which bits to obtain next as a function of the bits
the adversary has already seen.

Perfect AONT’s and Adaptive Security. In the definition of a perfect
�-AONT, we demand that any subset of all but � bits of the output must be
completely independent of the input x.1 In this case, it is trivial to observe
that there is no difference between adaptive and non-adaptive security. Hence,
if we could construct good perfect AONT’s, this would also solve the problem of
constructing adaptively secure AONT’s.

Consider �-AONT’s that transform k bits to n bits. [10] show how to construct
perfect �-AONT’s where � = n( 12 + ε) for any ε > 0 (at the expense of smaller
k = Ω(n)), but were unable to construct perfect AONT’s with � < n/2 (i.e.
perfect AONT’s where the adversary could learn more than half of the output).
1 In the perfect setting, public output is not needed (e.g., can be fixed a-priori).
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Perfect AONT’s — Our Contribution. In our work, we show that un-
fortunately this limitation is inherent. More precisely, whenever n ≤ 2k, the
adversary must miss at least half of the output in order not to learn anything
about the input. We prove this bound by translating the question of constructing
perfect �-AONT’s to the question of finding “�-balanced” weighted colorings of
the hypercube, which is of independent combinatorial interest. Namely, we want
to color and weight the nodes of the n-dimensional hypercube H = {0, 1}n using
c = 2k colors, such that every �-dimensional subcube of H is “equi-colored” (i.e.
has the same total weight for each of the c colors). We prove our result by non-
trivially extending the beautiful lower bound argument of Friedman [15] (which
only worked for unweighted colorings) to our setting. Our bound also gives a
new bound on ramp secret sharing schemes [6]. In such schemes one divides the
secret of size k into n schares such that there are two thresholds t and (t − �)
such that any t shares suffice to reconstruct the secret but no (t− �) shares yield
any information. To our knowledge, the best known bound for ramp schemes
[8,17,21] was � ≥ k. Our results imply a much stronger bound of � ≥ t/2 (when
each share is a bit; over larger alphabets of size q we get � > t/q).

Therefore, we show that despite their very attractive perfect security, perfect
AONT’s are of limited use in most situations, and do not offer a compelling way
to achieve adaptive security.

Statistical ERF’s and Adaptive Security. The definition of a perfect �-
ERF (mapping n bits to k bits) states that the output, when considered jointly
with any subset of (n− �) bits of the input, must be truly uniform. In this case,
clearly once again adaptive and non-adaptive security collapse into one notion.
The definition of a (non-adaptive) statistical �-ERF, however, allows for the the
joint distribution above to be merely close to uniform. In this case, the non-
adaptive statistical definition does not imply adaptive security, and in particular
the construction given in [10] of statistical ERF’s fails to achieve adaptive secu-
rity.2 Intuitively, it could be that a small subset of the input bits S1 determines
some non-trivial boolean relation of another small subset of the input bits S2
with the output of the function (e.g., for a fixed value of the bits in S1, one
output bit might depend only on bits in S2). In the adaptive setting, reading S1
and then S2 would break an ERF. In the non-adaptive setting, however, any fixed
subset of the input bits is very unlikely to contain S1 ∪S2. (A similar discussion
applies to AONT’s.) In other words, statistical constructions of [10] were able to
produce statistical �-ERF’s (and �-AONT’s) with nearly optimal � = k+o(k), but
failed to achieve adaptive security, while perfect ERF’s achieve adaptive security,
but are limitted to � > n/2 [15].

Statistical ERF’s — Our Contribution. Thus, we seek to identify notions
lying somewhere in between perfect and statistical (non-adaptive) ERF’s that
would allow us to construct adaptively secure ERF’s (and AONT’s), and yet
achieve better parameters than those achievable by perfect ERF’s (and AONT’s).
In this task, we make use of resilient functions (RF’s). These were first defined

2 For more details, see Section 2.2.
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in the perfect setting by Vazirani [28] and first studied by Chor et al. [12] and
independently by Bennett et al. [3]. An �-RF is identical to an �-ERF except that
the adversary, instead of merely observing certain bits of the input, gets to set
all but � bits of the input.3 Note that the notions of ERF and RF are the same
when considered in the perfect setting. A statistical variant of resilient functions
(no longer equivalent to ERF’s) was first considered by Kurosawa et al. [19], who
also gave explicit constructions of such functions (improved by [5]).

We show that the strong notion of statistical RF’s introduced by Kurosawa
et al. [19] suffices to construct adaptively secure ERF’s (and AONT’s). While
the construction of Kurosawa et al. [19] already slightly beats the lower bound
for perfect ERF’s, it is very far from the trivial lower bound of � > k (in fact,
it is still limited to � > n/2). We present an efficient probabilistic construction
of such “almost-perfect” RF’s achieving optimal � = k + o(k). While not fully
deterministic, our construction has to be run only once and for all, after which
the resulting efficient function is “good” with probability exponentially close to
1, and can be deterministically used in all the subsequent applications. As a
result of this construction and its relation to adaptive ERF’s and AONT’s, we
achieve essentially optimal security parameters for adaptive security by focusing
on a stronger notion of almost-perfect RF’s.

We also take the opportunity to study several variants of statistical RF’s
and (static/adaptive) ERF’s, and give a complete classification of these notions,
which may be of additional, independent interest.

Computational Setting. As we pointed out, [10] used their statistical (non-
adaptive) constructions to get ERF’s and AONT’s in the computational setting.
We show that the same techniques work with our adaptive definitions. Coupled
with our statistical constructions, we get nearly optimal computational construc-
tions as well.

Larger alphabets. To simplify the presentation and the discussion of the
results in this paper, as well as to relate them more closely with the previous
work, we restrict ourselves to discussing exposure-resilient primitives over the
alphabet {0, 1}. However, all our notions and results can be easily generalized
to larger alphabets.

1.3 Organization

In Section 2, we define the central objects of study in our paper, and review
some of the relevant previous work of [10]. In Section 3 we study perfect AONT’s,
relate them to hypecube colorings and prove the strong lower bound on � (show-
ing the limitations of perfect AONT’s). Finally, in Section 4 we study variants
of statistical ERF’s will allow us to achieve adaptive security. We show that
“almost-rerfect” RF’s of [19] achieve this goal, and exhibit a simple and almost
optimal (probabilistic) construction of such functions. In particular, we show

3 In much of the literature about resilient functions, such a function would be called
an (n − �)-resilient function. We adopt our notation for consistency.
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the existence of adaptively secure AONT’s and ERF’s with essentially optimal
parameters.

2 Preliminaries

Let {n
� } denote the set of size-� subsets of [n] = {1 . . . n}. For L ∈ {n

� }, y ∈
{0, 1}n, let [y]L̄ denote y restricted to its (n− �) bits not in L. We say a function
ε(n) is negligible (denoted by ε = negl(n)) if for every constant c, ε(n) = O

( 1
nc

)
.

We denote an algorithm A which has oracle access to some string y (i.e., can
query individual bits of y) by Ay.

2.1 Definitions for Non-adaptive Adversaries

For static adversaries, the definitions of AONT and ERF can be stated quite effi-
ciently in terms of perfect, statistical or computational indistinguishability (see
[16]). For consistency we have also provided a definition of RF (where adaptivity
does not make sense, and hence the adversary can be seen as “static”).

Note that for full generality, we follow the suggestion of [10] and allow the
all-or-nothing transform to have two outputs: a public part which we assume the
adversary always sees; and a secret part, of which the adversary misses � bits.

Definition 1. A polynomial-time randomized transformation T : {0, 1}k →
{0, 1}s × {0, 1}p is an �-AONT (all-or-nothing transform) if

1. T is polynomial-time invertible, i.e. there exists efficient I such that for any
x ∈ {0, 1}k and any y = (y1, y2) ∈ T (x), we have I(y) = x. We call y1 is the
secret part and y2, the public part of T .

2. For any L ∈ { s
�}, x0, x1 ∈ {0, 1}k: 〈x0, x1, [T (x0)]L̄〉 ≈ 〈x0, x1, [T (x1)]L̄〉4

Here ≈ can refer to perfect, statistical or computational indistinguishability.

If p = 0, the resulting AONT is called secret-only.

Definition 2. A polynomial time function f : {0, 1}n → {0, 1}k is an �-ERF
(exposure-resilient function) if for any L ∈ {n

� } and for a randomly chosen
r ∈ {0, 1}n, R ∈ {0, 1}k, we have: 〈[r]L̄, f(r)〉 ≈ 〈[r]L̄, R〉.
Here ≈ can refer to perfect, statistical or computational indistinguishability.

Definition 3. A polynomial time function f : {0, 1}n → {0, 1}k is �-RF (re-
silient function) if for any L ∈ {n

� }, for any assignment w ∈ {0, 1}n−� to the
positions not in L, for a randomly chosen r ∈ {0, 1}n subject to [r]L̄ = w and
random R ∈ {0, 1}k, we have: 〈f(r) | [r]L̄ = w〉 ≈ 〈R〉.
Here ≈ can refer to perfect, statistical or computational indistinguishability.
4 Notice, for L ∈ { s

�
} we have notationally that [(y1, y2)]L̄ = ([y1]L̄, y2).
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As an obvious note, a �-RF is also a static �-ERF (as we shall see, this will no
longer hold for adaptive ERF; see Lemma 5).

Perfect primitives. It is clear that perfect ERF are the same as perfect
RF. Additionally, perfect AONT’s are easy to construct from perfect ERF’s. In
particular one could use the simple one-time pad construction of [10]: T (x) =
〈r, f(r) ⊕ x〉, where r is the secret part of the AONT. However, we observe that
(ignoring the issue of efficiency) there is no need for the public part in the perfect
AONT (i.e., we can fix it to any valid setting y2 and consider the restriction of the
AONT where the public part is always y2). Setting y2 = 0 in the one-time pad
construction implies an AONT where we output a random r subject to f(r) = x.
Thus, in the perfect setting the “inverse” of an �-ERF is an �-AONT, and we get:

Lemma 1. (Ignoring issues of efficiency) A perfect �-ERF f : {0, 1}n → {0, 1}k

implies the existence of a perfect (secret-only) �-AONT T : {0, 1}k → {0, 1}n.

While the reduction above does not work with statistical ERF (to produce
statistical AONT), we will show that it works with a stronger notion of almost-
perfect RF (to produce statistical AONT). See Lemma 7.

2.2 Definitions for Adaptive Adversaries

Adaptively Secure AONT. In the ordinary AONT’s the adversary has to
“decide in advance” which (s − �) bits of the (secret part of) the output it is
going to observe. This is captured by requiring the security for all fixed sets L
of cardinality �. While interesting and non-trivial to achieve, in many applica-
tions (e.g. partial key exposure, secret sharing, protecting against exhaustive
key search, etc.) the adversary potentially has the power to choose which bits to
observe adaptively. For example, at the very least it is natural to assume that
the adversary could decide which bits of the secret part to observe after it learns
the public part. Unfortunately, the constructions of [10] do not even achieve this
minimal adaptive security, invalidating their claim that “public part requires no
protection and can be given away for free”. More generally, the choice of which
bit(s) to observe next may partially depend on which bits the adversary has
already seen. Taken to the most extreme, we can allow the adaptive adversary
to read the bits of the secret part “one-bit-at-a-time”, as long as he misses at
least � of them.

Definition 4. A polynomial time randomized transformation T : {0, 1}k →
{0, 1}s × {0, 1}p is a (perfect, statistical or computational) adaptive �-AONT
(adaptive all-or-nothing transform) if

1. T is efficiently invertible, i.e. there is a polynomial time machine I such that
for any x ∈ {0, 1}k and any y = (y1, y2) ∈ T (x), we have I(y) = x.

2. For any adversary A who has oracle access to string y = (ys, yp) and is
required not to read at least � bits of ys, and for any x0, x1 ∈ {0, 1}k, we
have:

∣∣Pr(AT (x0)(x0, x1) = 1) − Pr(AT (x1)(x0, x1) = 1)
∣∣ ≤ ε, where
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– In the perfect setting ε = 0.
– In the statistical setting ε = negl(s+ p).
– In the computational setting ε = negl(s+ p) for any PPT A.

We stress that the adversary can base its queries on x0, x1, the public part of
the output, as well as those parts of the secret output that it has seen so far. We
also remark that in the perfect setting this definition is equivalent to that of an
ordinary perfect �-AONT. Thus, adaptivity does not help the adversary in the
perfect setting (because the definition of a perfect AONT is by itself very strong!).
In particular, good perfect AONT’s are good adaptive AONT’s. Unfortunately,
we will later show that very good perfect AONT’s do not exist.

Adaptively Secure ERF. In the original definition of ERF [10], the adversary
has to “decide in advance” which (n− �) input bits it is going to observe. This is
captured by requiring the security for all fixed sets L of cardinality �. However, in
many situations (e.g., the problem of gradual key exposure [10]), the adversary
has more power. Namely, it can decide which (n − �) bits of the secret to learn
adaptively based on the information that it has learned so far. In the most
extreme case, the adversary would decide which bits to observe “one-bit-at-a-
time”. Unfortunately, the definition and the construction of [10] do not satisfy
this notion.

There is one more particularity of adaptive security for ERF’s. Namely, in
some applications (like the construction of AONT’s using ERF’s [10]) the adver-
sary might observe some partial information about the secret output of the ERF,
f(r), before it starts to compromise the input r. Is it acceptable in this case that
the adversary can learn more partial information about f(r) than he already
has? For example, assume we use f(r) as a stream cipher and the adversary
learns the first few bits of f(r) before it chooses which (n− �) bits of r to read.
Ideally, we will not want the adversary to be able to learn some information
about the remaining bits of f(r) — the ones that would be used in the stream
cipher in the future. Taken to the extreme, even if the adversary sees either the
entire f(r) (i.e., has complete information on f(r)), or a random R, and only
then decides which (n− �) bits of r to read, it cannot distinguish the above two
cases.

As we argued, we believe that a good notion of adaptive ERF should satisfy
both of the properties above, which leads us to the following notion.

Definition 5. A polynomial time function f : {0, 1}n → {0, 1}k is a (perfect,
statistical or computational) adaptive �-ERF (adaptive exposure-resilient func-
tion) if for any adversary A who has access to a string r and is required not to
read at least � bits of r, when r is chosen at random from {0, 1}n and R is cho-
sen at random from {0, 1}k, we have: |Pr(Ar(f(r)) = 1) − Pr(Ar(R) = 1)| ≤ ε,
where

– In the perfect setting ε = 0.
– In the statistical setting ε = negl(n).
– In the computational setting ε = negl(n) for any PPT A.



On Perfect and Adaptive Security in Exposure-Resilient Cryptography 309

Notice that in the perfect setting this definition is equivalent to that of an
ordinary (static) perfect �-ERF, since for any L, the values [r]L̄ and f(r) are
uniform and independent. In the statistical setting, the notions are no longer
equivalent: indeed, the original constructions of [10] fail dramatically under an
adaptive attack. We briefly mention the reason. They used so-called randomness
extractors in their construction of statistical ERF’s (see [10] for the definitions).
Such extractors use a small number of truly random bits d to extract all the
randomness from any “reasonable” distribution X. However, it is crucial that
this randomness d is chosen independently from and after the distribution X
is specified. In their construction d was part of the input r, and reading upto
(n− �) of the remaining bits of r defined the distribution X that they extracted
randomness from. Unfortunately, an adaptive adversary can first read d, and
only then determine which other bits of r to read. This alters X depending on d,
and the notion of an extractor does not work in such a scenario. In fact, tracing
the particular extractors that they use, learning d first indeed allows an adaptive
adversary to break the resulting static ERF.

Also notice that once we have good adaptive statistical ERF’s, adaptive com-
putational ERF’s will be easy to construct in same same way as with regular
ERF [10]: simply apply a good pseudorandom generator to the output of an
adaptive statistical ERF. Finally, we notice that the generic one-time pad con-
struction of [10] of AONT’s from ERF’s extends to the adaptive setting, as long as
we use the strong adaptive definition of ERF given above. Namely, the challenge
has to be given first, since the adversary for the AONT may choose which bits
of the secret part r to read when having already read the entire public part —
either f(r) ⊕ x0 or f(r) ⊕ x1 (for known x0 and x1!). Thus, we get

Lemma 2. If f : {0, 1}n→{0, 1}k is an adaptive �-ERF, then T (x) = 〈r, x⊕f(r)〉
is an adaptive �-AONT with secret part r and public part x ⊕ f(r).

3 Lower Bound on Perfect AONT

In this section we study perfect AONT’s. We show that there exists a strong
limitation in constructing perfect AONT’s: the adversary must miss at least half
of the n-bit output, even if the input size k is as small as log n. Recall that perfect
AONT’s are more general than perfect ERF’s (Lemma 1), and thus our bound
non-trivially generalizes the lower bound of Friedman [15] (see also another proof
by [4]) on perfect ERF. As we will see, the proof will follow from the impossibility
of certain weighted “balanced” colorings of an n-dimensional hypercube, which
is of independent interest.

Theorem 1. If T : {0, 1}k → {0, 1}n is a perfect (secret-only) �-AONT, then

� ≥ 1 + n · 2
k−1 − 1
2k − 1

=
n

2
+
(
1 − n

2(2k − 1)

)
(1)

In particular, for n ≤ 2k we get � > n
2 , so at least half of the output of T has to

remain secret even if T exponentially expands its input! Moreover, the equality
can be achieved only by AONT’s constructed from ERF’s via Lemma 1.
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3.1 Balanced Colorings of the Hypercube

A coloring of the n-dimensional hypercube H = {0, 1}n with c colors is any map
which associates a color from {1, . . . , c} to each node in the graph. In a weighted
coloring, each node y is also assigned a non-negative real weight χ(y). We will
often call the nodes of weight 0 uncolored, despite them having an assigned
nominal color. For each color i, we define the weight vector χi of this color by
assigning χi(y) = χ(y) if y has color i, and 0 otherwise. We notice that for any
given y ∈ H, χi(y) > 0 for at most one color i, and also

∑
χi = χ. A coloring

where all the nodes are uncolored is called empty. Since we will never talk about
such colorings, we will assume that

∑
y∈H χ(y) = 1. A uniform coloring has all

the weights equal: χ(y) = 2−n for all y.
An �-dimensional subcube HL,a of the hypercube is given by a set of � “free”

positions L ∈ {n
� } and an assignment a ∈ {0, 1}n−� to the remaining positions,

and contains the resulting 2� nodes of the hypercube consistent with a.

Definition 6. We say a weighted coloring of the hypercube is �-balanced if,
within every subcube of dimension �, each color has the same weight. That is,
for each L and a,

∑
y∈HL,a

χi(y) is the same for all colors i.

Notice, �-balanced coloring is also �′-balanced for any �′ > �, since an �′ di-
mensional subcube is the disjoint union of �-dimensional ones. We study balanced
colorings since they exactly capture the combinatorial properties of �-AONT’s
and �-ERF’s. We get the following equivalences.
Lemma 3. Ignoring efficiency, the following equivalences hold in the perfect
setting:
1. �-AONT’s from k to n bits⇐⇒weighted �-balanced colorings of n-dimensional

hypercube with 2k colors.
2. �-ERF’s from n to k bits ⇐⇒ uniform �-balanced colorings of n-dimensional

hypercube with 2k colors.

Proof Sketch. For the first equivalence, the color of node y ∈ H corresponds to
the value if the inverse map I(y), and its weight corresponds to Prx,T (T (x) = y).
For the second equivalence, the color of node y ∈ H is simply f(y). ��

Notice, the lemma above also gives more insight into why perfect AONT’s are
more general than perfect ERF’s (and an alternative proof of Lemma 1). We now
restate our lower bound on perfect AONT’s in Theorem 1 in terms of weighted
�-balanced colorings of H with c = 2k colors (proving it for general c).

Theorem 2. Any (non-empty) �-balancedweighted coloring of then-dimensional
hypercube using c colors must have � ≥ n

2 +
(
1 − n

2(c−1)

)
. Moreover, equality can

hold only if the coloring is uniform and no two adjacent nodes of positive weight
have the same color.

We believe that the theorem above is interesting in its own right. It says that
once the number of colors is at least 3, it is impossible to find a c-coloring (even
weighted!) of the hypercube such that all �-dimensional subcubes are “equi-
colored”, unless � is very large (linear in n).
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3.2 Proof of the Lower Bound (Theorem 2)

In our proof of Theorem 2, we will consider the 2n-dimensional vector space
V consisting of real-valued (not boolean!) vectors with positions indexed by
the strings in H, and we will use facts about the Fourier decomposition of the
hypercube.

Fourier Decomposition of the Hypercube. Like the original proof of
Friedman [15] for the case of uniform colorings, we use the adjacency matrix
A of the hypercube. A is a 2n × 2n dimensional 0-1 matrix, where the entry
Ax,y = 1 iff x and y (both in {0, 1}n) differ in exactly one coordinate. Recall
that a non-zero vector v is an eigenvector of the matrix A corresponding to an
eigenvalue λ, if Av = λv. Since A is symmetric, there is an orthonormal basis
of R

2n

in which all 2n vectors are eigenvectors of A. For two strings in x, z in
{0, 1}n, let x · z denote their inner product modulo 2 and let weight(z) be the
number of positions of z which are equal to 1. Then:

Fact 1 A has an orthonormal basis of eigenvectors {vz : z ∈ {0, 1}n}, where
the eigenvalue of vz is λz = n− 2 ·weight(z), and the value of vz at position y
is vz(y) = 1√

2n
· (−1)z·y.

We will use the notation 〈u,v〉 = u�v =
∑

i uivi to denote the inner product
of u and v, and let ‖u‖2 = 〈u,u〉 =

∑
i u

2
i denote the square of the Euclidean

norm of u. We then get the following useful fact, which follows as an easy exercise
from Fact 1 (it is also a consequence of the Courant-Fischer inequality).

Fact 2 Assume {vz : z ∈ {0, 1}n} are the eigenvectors of A as above, and let
u be a vector orthogonal to all the vz’s corresponding to z with weight(z) <
t: 〈u,vz〉 = 0. Then we have: u�Au ≤ (n − 2t) · ‖u‖2. In particular, for any
u we have: u�Au ≤ n · ‖u‖2.

Exploiting Balancedness. Consider a non-empty �-balanced weighted col-
oring χ of the hypercube using c colors. Let χi be the characteristic weight vector
corresponding to color i (i.e. χi(y) is the weight of y when y has color i and 0
otherwise). As we will show, the χi’s have some nice properties which capture
the balancedness of the coloring χ. In particular, we know that for any colors i
and j and for any �-dimensional subcube of H, the sum of the components of
χi and of χj are the same in this subcube. Hence, if we consider the difference
(χi −χj), we get that the sum of its coordinates over any �-dimensional subcube
is 0.

To exploit the latter property analytically, we consider the quantity (χi −
χj)�A(χi−χj), where A is the adjacency matrix of the n-dimensional hypercube.
As suggested by Fact 2, we can bound this quantity by calculating the Fourier
coefficients of (χi − χj) corresponding to large eigenvalues. We get:

Lemma 4. For any i �= j, we have: (χi−χj)�A(χi−χj) ≤ (2�−n−2)·‖χi−χj‖2.
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We postpone the proof of this crucial lemma until the the end of this section,
and now just use it to prove our theorem. First, note that the lemma above only
gives us information on two colors. To simultaneously use the information from
all pairs, we consider the sum over all pairs i, j, that is

∆
def=
∑
i,j

(χi − χj)�A(χi − χj) (2)

We will give upper and lower bounds for this quantity (Equation (3) and
Equation (4), respectively), and use these bounds to prove our theorem. We first
give the upper bound, based on Lemma 4.

Claim.

∆ ≤ 2 (2� − n − 2) (c − 1) ·
∑

i

‖χi‖2 (3)

Proof. We can ignore the terms of ∆ when i = j since then (χi − χj) is the 0
vector. Using Lemma 4 we get an upper bound:∑

i,j

(χi − χj)�A(χi − χj) ≤ (2� − n − 2) ·
∑
i 	=j

‖χi − χj‖2

Now the vectors χi have disjoint supports (since each y ∈ H is assigned only one
color), so we have ‖χi − χj‖2 = ‖χi‖2 + ‖χj‖2. Substituting into the equation
above, we see that each ‖χi‖2 appears 2(c−1) times (recall that c is the number
of colors), which immediately gives the desired bound in Equation (3). ��
Second, we can expand the definition of ∆ to directly obtain a lower bound.

Claim.

∆ ≥ −2n ·
∑

i

‖χi‖2 (4)

Proof. Since A is symmetric we have χ�
i Aχj = χ�

j Aχi. Then:

∑
i,j

(χi − χj)�A(χi − χj) =
∑
i,j

(
χ�

i Aχi + χ�
j Aχj − 2χ�

i Aχj

)
= 2c ·

∑
i

χ�
i Aχi − 2 ·

∑
i,j

χ�
i Aχj

Let us try to bound this last expression. On the one hand, we know that χ�
i Aχi ≥

0 since it is a product of matrices and vectors with non-negative entries. On the
other hand, we can rewrite the last term as a product:

∑
i,j

χ�
i Aχj =

(∑
i

χi

)�
A

(∑
i

χi

)
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This quantity, however, we can bound using the fact that the maximum eigen-
value of A is n (see Fact 2). We get:

(∑
i

χi

)�
A

(∑
i

χi

)
≤ n ·

∥∥∥∥∥
∑

i

χi

∥∥∥∥∥
2

Since the vectors χi have disjoint support (again, each node y is assigned a
unique color), they are orthogonal and so ‖∑i χi‖2 =

∑
i ‖χi‖2. Combining

these results, we get the desired lower bound:∑
i,j

(χi − χj)�A(χi − χj) ≥ 0 − 2n ·
∑

i

‖χi‖2 = −2n ·
∑

i

‖χi‖2 ��

Combining the lower and the upper bounds of Equation (3) and Equation (4),
we notice that

∑
i ‖χi‖2 > 0 and can be cancelled out (since the coloring χ is

non-empty). This gives us 2(2�−n− 2)(c− 1) ≥ −2n, which exactly implies the
needed bound on �.

Proof of Lemma 4. It remains to prove Lemma 4, i.e. (χi −χj)�A(χi −χj) ≤
(2� − n − 2) · ‖χi − χj‖2. By Fact 2, it is sufficient show that all the Fourier
coefficients of (χi−χj) which correspond to eigenvalues λz ≥ 2�−n = n−2(n−�)
are 0. In other words, that (χi−χj) is orthogonal to all the eigenvectors vz whose
eigenvalues are at least (n − 2(n − �)), i.e. weight(z) ≤ n − �. But recall that
by the definition of balancedness, on any subcube of dimension at least �, the
components of (χi − χj) sum to 0! On the other hand, the eigenvectors vz are
constants on very large-dimensional subcubes of H when λz is large (see Fact 1).
These two facts turn out to be exactly what we need to in order to show that
〈vz, χi − χj〉 = 0 whenever λz ≥ 2� − n, and thus to prove Lemma 4.

Claim. For any z ∈ {0, 1}n with weight(z) ≤ n − � (i.e. λz ≥ 2� − n), we have:
〈vz, χi − χj〉 = 0.

Proof. Pick any vector z = (z1, . . . , zn) ∈ {0, 1}n with weight(z) ≤ n − �, and
let S be the support of z, i.e. S = {j : zj = 1}. Note that |S| ≤ n−�. Also, recall
that vz(y) = 1√

2n
· (−1)z·y (see Fact 1). Now consider any assignment a to the

variables of S. By letting the remaining variables take on all possible values, we
get some subcube of the hypercube, call it Ha.

One the one hand, note that vz is constant (either 1/
√
2n or −1/

√
2n) on

that subcube, since if y and y′ differ only on positions not in S, we will have
z ·y = z ·y′. Call this value Ca. On the other hand, since the coloring is �-balanced
and since |S| ≤ n− �, the subcube Ha has dimension at least � and so we know
that both colors i and j have equal weight on Ha. Thus summing the values of
(χi − χj) over this subcube gives 0.

Using the above two observations, we show that 〈χi − χj ,vz〉 = 0 by rewrit-
ing the inner product as a sum over all assignments to the variables in S:
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〈χi − χj ,vz〉 =
∑
y∈H

vz(y)[χi(y) − χj(y)] =
∑

a∈{0,1}|S|


∑

y∈Ha

vz(y)[χi(y) − χj(y)]




=
∑

a

Ca ·

∑

y∈Ha

χi(y) −
∑

y∈Ha

χj(y)


 =

∑
a

Ca · 0 = 0 ��

Equality Conditions. We now determine the conditions on the colorings so
that we can achieve equality in Theorem 2 (and also Theorem 1). Interestingly,
such colorings are very structured, as we can see by tracing through our proof.
Namely, consider the lower bound proved in Equation (4), i.e. that

∑
i,j(χi −

χj)�A(χi −χj) ≤ −2n
∑

i ‖χi‖2. Going over the proof, we see that equality can
occur only if two conditions occur.

On the one hand, we must have χ�
i Aχi = 0 for all colors i. An easy calculation

shows that χ�
i Aχi is 0 only when there is no edge of non-zero weight connecting

two nodes of color i. Thus, this condition implies that the coloring is in fact a
c-coloring in the traditional sense of complexity theory: no two adjacent nodes
will have the same color. On the other hand, the inequality (

∑
i χi)�A(

∑
i χi) ≤

n · ‖∑i χi‖2 must be tight. This can only hold if the vector χ =
∑

i χi is parallel
to (1, 1, . . . , 1) since that is the only eigenvector with the largest eigenvalue n.
But this means that all the weights χ(y) are the same, i.e. that the coloring must
be uniform.

We also remark that Chor et al. [12] showed (using the Hadamard code) that
our bound is tight for k ≤ log n.

3.3 Extension to Larger Alphabets

Although the problem of constructing AONT’s is usually stated in terms of bits, it
is natural in many applications (e.g., secret-sharing) to consider larger alphabets,
namely to consider T : {0, . . . , q − 1} → {0, . . . , q − 1}n. All the notions from
the “binary” case naturally extend to general alphabets as well, and so does our
lower bound. However, the lower bound we obtain is mostly interesting when the
alphabet size q is relatively small compared to n. In particular, the threshold
n/2, which is so crucial in the binary case (when we are trying to encode more
than logn bits), becomes n/q (recall, q is the size of the alphabet). Significantly,
this threshold becomes meaningless when q > n. This isn’t surprising, since in
this case we can use Shamir’s secret sharing [25] (provided q is a prime power)
and achieve � = k. We also remark that our bound is tight if qk ≤ n and can be
achieved similarly to the binary case by using the q-ary analog of the Hadamard
code.

Theorem 3. For any integer q ≥ 2, let T : {0, . . . , q − 1}k → {0, . . . , q − 1}n

be a perfect �-AONT. Then
� ≥ n

q
+
(
1 − q − 1

q
· n

qk − 1

)

In particular, � > n/q when qk > n.
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Similarly to the binary case, there is also a natural connection between �-AONT’s
and weighted �-balanced colorings of the “multi-grid” {0, . . . , q−1}n with c = qk

colors. And again, the bound of Theorem 2 extends here as well and becomes
� ≥ n

q +
(
1 − q−1

q · n
c−1

)
.

The proof techniques are essentially identical to those for the binary case. We
now work with the graph {0, . . . , q−1}n, which has an edge going between every
pair of words that differ in a single position. We think of vertices in this graph
as vectors in Z

n
q . If ω is a primitive q-th root of unity in C, then a orthonormal

basis of eigenvectors of the adjacency matrix is given by the qn-dimensional
complex vectors vz for z ∈ {0, . . . , q − 1}n, where vz(y) = 1√

qn · ωz·y (here, z · y
is the standard dot product modulo q). Constructing upper and lower bounds
as above, we eventually get (q� − n − q)(c − 1)

∑
i ‖χi‖2 ≥ −n(q − 1)

∑
i ‖χi‖2

which implies the desired inequality. Equality conditions are the same.

4 Adaptive Security in the Statistical Setting

We now address the question of adaptive security in the statistical setting. In-
deed, we saw that both perfect ERF’s and perfect AONT’s have strong limita-
tions. We also observed in Lemma 2 that we only need to concentrate on ERF’s
— we can use them to construct AONT’s. Finally, we know that applying a reg-
ular pseudorandom generator to a good adaptively secure statistical ERF will
result in a good adaptively secure computational ERF. This leaves with the need
to construct adaptive statistical ERF’s (recall that unfortunately, the construc-
tion of [10] for the static case is not adaptively secure). Hence, in this section
we discuss only the statistical setting, and mainly resilient functions (except for
Section 4.3; see below).

More specifically, in Section 4.1 we discuss several flavors of statistical re-
silient functions, and the relation among them, which should be of independent
interest. In particular, we argue that the notion of almost-perfect resilient func-
tions (APRF) [19] is the strongest one (in particular, stronger than adaptive
ERF). In Section 4.2 we show how to construct APRF’s. While seemingly only
slightly weaker than perfect RF’s, we show that we can achieve much smaller,
optimal resilience for such functions: � ≈ k (compare with � ≥ n/2 for perfect
RF’s). In particular, this will imply the existence of nearly optimal statistical
RF’s and adaptive statistical ERF’s with the same parameters. Finally, in Sec-
tion 4.3 we will show that APRF’s can also be used to show the existence of
optimal secret-only adaptive statistical AONT’s (which improves the one-time
pad construction from Lemma 2 and was not known even in the non-adaptive
setting of [10]).

4.1 Adaptive ERF and Other Flavors of Resilient Functions

The definition presented in section 2 for adaptive security of an ERF is only one
of several possible notions of adaptive security. Although it seems right for most
applications involving resilience to exposure, one can imagine stronger attacks
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in which the security of resilient functions (RF), which tolerate even partly fixed
inputs, would be desired. In this section we relate these various definitions, and
reduce them to the stronger notion of an almost-resilient function [19], which
are of independent combinatorial interest.

There are several parameters which one naturally wants to vary when con-
sidering “adaptive” security of an ERF, which is in its essence an extractor for
producing good random bits from a partially compromised input.

1. Does the adversary get to see the challenge (output vs. a random string)
before deciding how to “compromise” the input?

2. Does the adversary get to decide on input positions to “compromise” one at
a time or all at once?

3. Does the adversary get to fix (rather than learn) some of the positions?

Flavors of Resilient Functions. To address the above questions, we lay out
the following definitions. Unless stated otherwise, f denotes an efficient function
f : {0, 1}n → {0, 1}k, L ∈ {n

� }, r is chosen uniformly from {0, 1}n, R is chosen
uniformly from {0, 1}k. Finally, the adversary A is computationally unbounded,
and has to obtain a non-negligible advantage in the corresponding experiment.

1. (Weakly) Static ERF: (This is the original notion of [10].)
r ∈ {0, 1}n is chosen at random. The adversary A specifies L and learns
w = [r]L̄. A is then given the challenge Z which is either f(r) or R. A must
distinguish between these two cases.

2. Strongly Static ERF: (In this notion, the challenge is given first).
r ∈ {0, 1}n is chosen at random. The adversary A is then given the challenge
Z which is either f(r) or R. Based on Z, A specifies L, then learns w = [r]L̄,
and has to distinguish between Z = f(r) and Z = R.

3. Weakly Adaptive ERF: (This is a natural notion of adaptivity for ERF.)
r ∈ {0, 1}n is chosen at random. The adversary A learns up to (n− �) bits of
r, one at a time, basing each of his choices on what he has seen so far. A is
then given the challenge Z which is either f(r) or R, and has to distinguish
between these two cases.

4. (Strongly) Adaptive ERF: (This is the notion defined in Section 2.)
r ∈ {0, 1}n is chosen at random. The adversary A is then given the challenge
Z which is either f(r) or R. Based on Z, A learns up to (n − �) bits of r,
one at a time, and has to distinguish between Z = f(r) and Z = R.

5. Statistical RF: (This is the extension of resilient functions [12,3] to the
statistical model, also defined in Section 2.)
A chooses any set L ∈ {n

� } and any w ∈ {0, 1}n−�. A requests that [r]L̄ is
set to w. The remaining � bits of r in L are set at random. A is then given
a challenge Z which is either f(r) or R, and has to distinguish between
these two cases. (Put another way, A loses if for any L ∈ {n

� } and any
w ∈ {0, 1}n−�, the distribution induced by f(r) when [r]L̄ = w and the
other � bits of r chosen at random, is statistically close to the uniform on
{0, 1}k.)
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6. Almost-Perfect RF (APRF): (This is the notion of [19].)
A chooses any set L ∈ {n

� } and any w ∈ {0, 1}n−�. A requests that [r]L̄ is
set to w. The remaining � bits of r in L are set at random and Z = f(r)
is evaluated. A wins if there exists y ∈ {0, 1}k such that Pr(Z = y) in this
experiment does not lie within 2−k(1 ± ε), where ε is negligible.5

Note that for each of the first five notions above, we can define the “error pa-
rameter” ε as the advantage of the adversary in the given experiment (for the
sixth notion, ε is already explicit).

Let us begin by discussing the notion we started with — adaptive ERF. First,
it might seem initially like the notion of weakly adaptive ERF is all that we need.
Unfortunately, we have seen that to construct adaptive AONT’s from ERF’s via
Lemma 2, we need strong adaptive ERF’s. Second, the “algorithmic” adaptive
behavior of the adversary is difficult to deal with, so it seems easier to deal with
a more combinatorial notion. For example, one might hope that a statistical RF
is by itself an adaptive ERF (notice, such RF is clearly a static ERF), and then
concentrate on constructing statistical RF’s. Unfortunately, this hope is false, as
stated in the following lemma.

Lemma 5. There are functions which are statistical RF but not statistical adap-
tive (or even strongly static!) ERF.

Proof Sketch. Let n be the input size. Let f ′ be an statistical RF from n′ = n
2 bits

to k′ = n
6 bits such that �′ = n

4 . Such functions exist, as we prove in Section 4.2.
Define f as follows: on an n-bit input string r, break r into two parts r1 and

r2 both of length n
2 . Apply f ′ to r1 to get a string s of length n

6 . Now divide s
into n

6(log n−1) blocks of size log n
2 , which can be interpreted as a random subset

S from {1, . . . , n
2 } with n

6(log n−1) elements. Let
⊕

S be the parity of the bits in
[r2]S . The output of f is the pair 〈s,⊕S〉. Thus k ≈ n

6 .
Now let � = n − n

6(log n−1) . Clearly, an adversary who sees the challenge
first, can (non-adaptively) read the bits [r2]S and check the parity (giving him
advantage at least 1/2 over the random string). Thus, f is not an adaptively
secure ERF. On the other hand, an adversary who can fix only (n−�) ≈ n/6 log(n)
input bits can still not learn anything about the output of f ′ and thus is unlikely
to know the value of all the bits in S. Such an adversary will always have
negligible advantage. Hence f is a statistical RF. ��

Since the opposite direction (from adaptive ERF’s to statistical RF’s) is obvi-
ously false as well, we ask if some notion actually can simultaneously achieve both
adaptive security for ERF, and statistical security for RF. Fortunately, it turns
that by satisfying the stronger condition of an almost-perfect resilient function
(APRF) [19], one obtains an adaptive ERF. Since APRF’s will play such a crucial
role in our study, we give a separate, more formal definition.
5 Note that in [19] the error parameter was measured slightly differently: they define

ε as the maximum absolute deviation. Our convention makes sense in the crypto-
graphic setting since then the adversary’s advantage at distinguishing f(r) from
random in any of the above experiments is comparable ε, as opposed to ε2k.
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Definition 7. A polynomial time function f : {0, 1}n → {0, 1}k is �-APRF
(almost-perfect resilient function) if for any L ∈ {n

� }, for any assignment w ∈
{0, 1}n−� to the positions not in L, for a randomly chosen r ∈ {0, 1}n and for
some negligible ε = negl(n), we have:

Pr(f(r) = y
∣∣∣ [r]L̄ = w) = (1 ± ε)2−k (5)

While it is obvious that any APRF is a statistical RF (by summing over 2k

values of y), the fact that it is also an adaptive ERF is less clear (especially
considering Lemma 5), and is shown below.

Theorem 4. If f is an APRF, then f is a statistical adaptive ERF.

Proof. By assumption, f is an �-APRF with error ε: for every set L ∈ {n
� } and

every assignment w to the variables not in L, Equation (5) above holds when
r is chosen at random. Now suppose that we have an adaptive adversary A
who, given either Z = f(r) or Z = R and (limited) access to r, can distinguish
between the two cases with advantage ε′. We will show that ε′ ≤ ε.

At first glance, this may appear trivial: It is tempting to attempt to prove
it by conditioning on the adversary’s view at the end of the experiment, and
concluding that there must be some subset L and appropriate fixing w which
always leads to a good chance of distinguishing. However, this argument fails
since the adversary A may base his choice of L on the particular challenge he
receives, and on the bits he considers.

So we use a more sophisticated argument, although based on a similar intu-
ition. First, we can assume w.l.o.g. that the adversary A is deterministic, because
there is some setting of his random coins conditioned on which he will distin-
guish with advantage at least ε′, and so we may as well assume that he always
uses those coins.

Following the intuition above, we consider the adversary’s view at the end of
the experiment, just before he outputs his answer. This view consists of two com-
ponents: the input challenge Z and the (n − �) observed bits w = w1, . . . , wn−�

(which equal [r]L̄ for some set L of size at least �). Significantly, L need not be
explicitly part of the view: since A is deterministic, L is a function of Z and w.

Denote by View(Z)
A the view of A on challenge Z. When Z = R, it is easy to

evaluate the probability that A will get a given view. Since the values r ∈ {0, 1}n

and R ∈ {0, 1}k are independent, we have

Pr
[
View(R)

A = (y, w)
]
= 2−(n−�+k)

On the other hand, when Z = f(r), we have to be careful. If L is the subset
corresponding to A’s choices on view (y, w), then we do indeed have:

Pr
[
View(f(r))

A = (y, w)
]
= Pr

[
f(r) = y ∧ [r]L̄ = w

]
This last equality holds even though the choice of L may depend on y. In-

deed, A is deterministic and so he will always choose the subset L when [r]L̄ = w,
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regardless of the other values in r. Thus, we can in some sense remove the adver-
sary from the discussion entirely. Now this last probability can be approximated
by conditioning and using Equation (5):

Pr
[
f(r) = y ∧ [r]L̄ = w

]
= Pr

[
f(r) = y

∣∣∣ w = [r]L̄
]
Pr
[
w = [r]L̄

]
= (1 ± ε)2−k · 2−(n−�)

= (1 ± ε)2−(n−�+k)

We can now explicitly compute the adversary’s probability of success in each
of the two experiments we are comparing. Let A(y, w) = 1 if A accepts on view
(y, w) and 0 otherwise. Then:

ε′ =
∣∣∣Pr [Ar(f(r)) = 1

]
− Pr

[
Ar(R) = 1

]∣∣∣
=

∣∣∣∣∣
∑
y,w

(
Pr
[
View(f(r))

A = (y, w)
]

− Pr
[
View(R)

A = (y, w)
])

· A(y, w)
∣∣∣∣∣

≤
∑
y,w

∣∣∣(1 ± ε)2−(n−�+k) − 2−(n−�+k)
∣∣∣ ≤ ε

Thus ε′ ≤ ε, and so f is a statistical adaptive ERF. ��
Classification of Resilient Functions. In fact, we can completely relate

all the six notions of resilient functions that we introduced:

Almost−Perfect RFStatic ERF
Static ERF
Strongly

Weakly

Adaptive ERF

Statistical RFAdaptive ERF

This diagram is complete: if there is no path from notion A to notion B, then
there is a function which satisfies A but not B. We notice that except for the
two proofs above, only one non-trivial proof is needed in order to complete the
diagram: the separation between weakly adaptive ERF’s and static ERF’s (other
implications and separations are easy exercises). However, this separation follows
from the static construction of Canetti et al. [10], which, as we mentioned, need
not yield a weakly adaptive ERF.

We also remark that while the diagram above is useful from a structural point
of view, in the next section we show how to build APRF’s — the strongest of the
above notions — achieving l ≈ k, which is nearly optimal even for static ERF’s
— the weakest of the above notions. Thus, all the above notions are almost
the “same” in terms of the optimal parameters they achieve (which are also
substantially better than those possible in the perfect setting).



320 Yevgeniy Dodis, Amit Sahai, and Adam Smith

4.2 Obtaining Nearly Optimal Almost-Resilient Functions

Given the discussion of the previous section, it is natural to try to construct
good APRF’s. These were first defined and studied by Kurosawa et al. [19].
Using techniques from coding theory, they construct6 �-APRF such that � ≥
n+k
2 +2 log

( 1
ε

)
. Although this beats the lower bound on perfect ERF of [15,4], it

is very far from the trivial lower bound � ≥ k, especially when k = o(n). Thus, it
is natural to ask whether this is a fundamental limitation on APRF’s, or whether
indeed one can approach this simplistic lower bound.

As a first step, we can show that if f is picked at random from all the
functions from {0, 1}n to {0, 1}k, it is very likely to be a good APRF (we omit
the proof since we subsume it later). However, this result is of little practical
value: storing such a function requires k ·2n bits. Instead, we replace the random
function with a function from a t-wise independent hash family [11] for t roughly
on the order of n. Functions in some such families (e.g., the set of all degree t−1
polynomials over the field GF (2n)) require as little as tn bits of storage, and are
easy to evaluate.

Using tail-bounds for t-wise independent random variables, one can show
that with very high probability we will obtain a good APRF:

Theorem 5. Fix any n, � and ε. Let F be a family of t-wise independent func-
tions from n bits to k bits, where t = n/ log n and

k = � − 2 log
(
1
ε

)
− O(log n)

Then with probability at least (1 − 2−n) a random function f sampled from F
will be an �-APRF (and hence adaptive �-ERF and statistical �-RF) with error ε.

Corollary 1. For any � = ω(log n), there exists an efficient statistical adaptive
�-ERF f : {0, 1}n → {0, 1}k with k = � − o(�).

The proof of Theorem 5 uses the following lemma, which is used (implicitly)
in the constructions of deterministic extractors of [27]. Recall that a distribution
X over {0, 1}n has min-entropy m, if for all x, Pr(X = x) ≤ 2−m.

Lemma 6. Let F be a family of t-wise independent functions (for even t ≥ 8)
from n to k bits, let X be a distribution over {0, 1}n of min-entropy m, and let
y ∈ {0, 1}k. Assume for some α > 0

k ≤ m −
(
2 log

1
ε
+ log t+ 2α

)
. (6)

Let f be chosen at random from F and x be chosen according to X. Then

Pr
f∈F

(∣∣∣∣Prx (f(x) = y) − 1
2k

∣∣∣∣ ≥ ε · 1
2k

)
≤ 2−αt (7)

6 This result looks (but is not) different from the one stated in [19] since we measure
ε differently.
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In other words, for any y ∈ {0, 1}k, if f is chosen from F then with overwhelming
probability we have that the probability that f(X) = y is 1

2k (1 ± ε).

Theorem 5 follows trivially from this lemma. Indeed, set α = 3 logn, t =
n/ log n. Notice that for any L ∈ {n

� } and any setting w of bits not in L, the
random variable X = 〈r | [r]L̄ = w〉 has min-entropy m = �. Then k given in
Theorem 5 indeed satisfies Equation (6). Now we apply Lemma 6 and take the
union bound in Equation (7) over all possible fixings of some (n− �) input bits,
and over all y ∈ {0, 1}n. Overall, there are at most

(
n
�

)
2n−�2k ≤ 22n terms

in the union bound, and each is less than 2−αt = 2−3n, finishing the proof of
Theorem 5.

For completeness, we give a simple proof of Lemma 6. We will make use of
the following “tail inequality” for sums of t-wise independent random variables
proven by Bellare and Rompel [2]. There they estimate Pr[|Y − Exp[Y ]| > A],
where Y is a sum of t-wise independent variables. We will only be interested in
A = ε · Exp[Y ], where ε ≤ 1. In this case, tracing the proof of Lemma 2.3 (and
Lemma A.5 that is used to prove it) of [2], we get the following:

Theorem 6 ([2]). Let t be an even integer, and assume Y1, . . . , YN are t-wise
independent random variables in the interval [0, 1]. Let Y = Y1 + . . . + YN ,
µ = Exp[Y ] and ε < 1. Then

Pr(|Y − µ| ≥ εµ) ≤ Ct ·
(

t

ε2µ

)t/2

(8)

where the constant Ct < 3 and in fact Ct < 1 for t ≥ 8.

Now we can prove Lemma 6:

Proof. Let px denote the probability that X = x, and let q denote the random
variable (only over the choice of f) which equals to the probability (over the
choice of x given f) that f(x) = y, i.e.

q =
∑

x∈{0,1}n

px · I{f(x)=y}

where I{f(x)=y} is an indicator variable which is 1 if f(x) = y and 0 other-
wise. Since for any x the value of f(x) is uniform over {0, 1}k, we get that
Expf [I{f(x)=y}] = 2−k, and thus Expf [q] = 2−k. Notice also that the variables
I{f(x)=y} are t-wise independent, since f is chosen at random from a family of
t-wise independent functions. And finally notice that since X has min-entropy
m, we have that all px ≤ 2−m.

Thus, if we let Qx = 2m · px · I{f(x)=y}, and Q =
∑

x∈{0,1}n Qx = 2mq, we
get that the variables Qx are t-wise independent, all reside in the interval [0, 1],
and Exp[Q] = 2mExp[q] = 2m−k. Now we can apply the tail inequality given in
Theorem 6 and obtain:



322 Yevgeniy Dodis, Amit Sahai, and Adam Smith

Pr
f

[∣∣∣∣q − 1
2k

∣∣∣∣ ≥ ε · 1
2k

]
= Pr

f

[∣∣Q − 2m−k
∣∣ ≥ ε · 2m−k

]

≤
(

t

ε2 · 2m−k

)t/2

=
(

1
2m−k−2 log 1

ε −log t

)t/2

≤ 2−αt

where the last inequality follows from Equation (6). ��

4.3 Adaptively Secure AONT

We already remarked that that the construction of optimal adaptive statistical
ERF’s implies the construction of adaptive computational ERF’s. Combined with
Lemma 2, we get optimal constructions of AONT’s as well. We notice also that
the public part of these AONT construction is k. In the statistical setting, where
we achieved optimal � = k+o(k), we could then combine the public and the secret
part of the AONT to obtain a secret-only adaptive AONT with � = 2k + o(k).
One may wonder if there exist statistical secret-only AONT’s with � = k+ o(k),
which would be optimal as well. Using our construction of almost-perfect resilient
functions, we give an affirmative answer to this question. Our construction is not
efficient, but the existential result is interesting because it was not known even
in the static setting.

Lemma 7. Ignoring the issue of efficiency, there exist adaptive statistical secret-
only �-AONT T : {0, 1}k → {0, 1}n with � = k + o(k).

Proof. Recall, Lemma 1 used an inverse of a perfect RF (or ERF, which is the
same) to construct perfect secret-only AONT. We now show that the same con-
struction can be made to work in the statistical setting provided we use APRF
rather than weaker statistical RF. In particular, let f : {0, 1}n → {0, 1}k be an
�-APRF. We know that we can achieve � = k + o(k). We define T (x) to be a
random r ∈ {0, 1}n such that f(r) = x. (This is well-defined since APRF’s are
surjective.)

Now take any distingusher A, any x ∈ {0, 1}k and any possible view of A
having oracle access to T (x) = r. Since we can assume that A is deterministic,
this view can be specified by the (n−�) values w that A read from r (in particular,
the subset L is also determined from w). Now, we use Bayes law to estimate
Pr(View(T (x))

A = w). Notice, since r = T (x) is a random preimage of x, we
could assume that r was chosen at random from {0, 1}n, and use conditioning
on f(r) = x. This gives us:

Pr(View(T (x))
A = w) = Pr(View(r)

A = w
∣∣∣ f(r) = x) = Pr([r]L̄ = w

∣∣∣ f(r) = x)

=
Pr(f(r) = x

∣∣∣ [r]L̄ = w) · Pr([r]L̄ = w)

Pr(f(r) = x)

=
(1 ± ε) · 2−k · 2�−n

(1 ± ε) · 2−k
= (1 ± 2ε) · 2�−n
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Notice that this bound is independent on A, x and w. Hence, for any x0, x1
and any adversary A, View(T (x0))

A and View(T (x1))
A are within statistical distance

4ε from each other, implying that T is an adaptive statistical AONT. ��
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