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Abstract. We show that finding an efficiently computable injective ho-
momorphism from the XTR subgroup into the group of points over
GF(p2) of a particular type of supersingular elliptic curve is at least as
hard as solving the Diffie-Hellman problem in the XTR subgroup. This
provides strong evidence for a negative answer to the question posed
by S. Vanstone and A. Menezes at the Crypto 2000 Rump Session on
the possibility of efficiently inverting the MOV embedding into the XTR
subgroup. As a side result we show that the Decision Diffie-Hellman prob-
lem in the group of points on this type of supersingular elliptic curves
is efficiently computable, which provides an example of a group where
the Decision Diffie-Hellman problem is simple, while the Diffie-Hellman
and discrete logarithm problem are presumably not. The cryptanalytical
tools we use also lead to cryptographic applications of independent inter-
est. These applications are an improvement of Joux’s one round protocol
for tripartite Diffie-Hellman key exchange and a non refutable digital
signature scheme that supports escrowable encryption. We also discuss
the applicability of our methods to general elliptic curves defined over
finite fields.

1 Introduction

XTR is an efficient and compact method to work with order p2−p+1 subgroups
of the multiplicative group GF(p6)∗ of the finite field GF(p6). It was introduced
in [10], followed by several practical improvements in [11] and [12].

Throughout this paper we let p, q > 3 denote prime numbers. In the context of
XTR we further demand that p ≡ 2 mod 3 and that q divides p2−p+1. Let g be a
generator of the order q subgroup µq of GF(p6)∗. In [10] it is shown that elements
of µq, the XTR subgroup, can conveniently be represented by their so-called trace
over GF(p2), and it is shown in [10] how this representation can efficiently be
computed. Any familiar cryptosystem based on the XTR subgroup (like Diffie-
Hellman, ElGamal, DSA) can be easily transformed using this representation,
yielding both efficient and compact cryptosystems. Moreover, it is shown in [10]
that the security of these transformed systems is equivalent to the ones started
with, that is, the security of the discrete logarithm problem in the multiplicative
group of the finite field GF(p6)∗. We refer to the group of order p2 − p + 1 of
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GF(p6)∗ as the XTR supergroup. It is widely believed that the Diffie-Hellman
and discrete logarithm problem in these XTR groups is hard.

At the Crypto 2000 Rump Session, [16], the following comparison was pre-
sented, suggesting that XTR is nothing else than an elliptic curve cryptosystem
in disguise. As is well known, the number of points over GF(p2) (including the
point at infinity) on an elliptic curve defined over GF(p2) takes the form p2−t+1
for some integer called the Frobenius trace number t ∈ [−2p, 2p]. There exist el-
liptic curves over GF(p2) of such order equal to p2 − p + 1. These curves are
actually characterized in [14] as Class Three supersingular elliptic curves over
GF(p2) with Positive parameter t, namely t = p (as opposed to t = −p). This
is why we call these curves simply the CTP curves for short. Moreover, there
exist efficiently computable (i.e., in polynomial time and space in length of in-
put), injective homomorphisms of such curves onto the XTR supergroup. The
Menezes-Okamoto-Vanstone (MOV) imbedding [15], provides an example of such
a homomorphism.

It seems like a plausible hypothesis (cf. [16]) that the inverses of such homo-
morphisms might be efficiently computable too. Under this hypothesis the XTR
(sub)group is just an instance of an elliptic curve (sub)group and so an attack
affecting the security of elliptic curve cryptosystems would affect the security of
the XTR cryptosystem. Or in other words, under this hypothesis the security of
XTR cryptosystems is not better than that of elliptic curve cryptosystems.

In this paper we show that the hypothesis mentioned above is unlikely to be
correct, as we show that under this hypothesis, we can solve several problems
that are widely believed to be hard. The Diffie-Hellman problem in the XTR
subgroup is an example of such a problem. As a side result we show that the De-
cision Diffie-Hellman problem in many supersingular elliptic curves is efficiently
computable. The results presented in this paper are specifically geared towards
XTR, to counter the suggestion that XTR is nothing else than an elliptic curve
cryptosystem in disguise. We did not attempt to fully generalize them to other
classes of (supersingular) elliptic curves, although we expect they can be (cf.
Section 4). The results in this paper should therefore be interpreted in a broader
context. Namely, they provide evidence that the multiplicative group of a finite
field provides essentially more, and in any case not less, security than the group
of points of a supersingular elliptic curve of comparable size.

The CTP curves take the form y2 = x3 + a where a ∈ GF(p2) is a square
but not a cube in GF(p2), cf. [8]. We denote the CTP curves by Ca. Actually,
in the category of elliptic curves over GF(p2) only two such curves exist; all
others are isomorphic under an efficiently computable isomorphism. Compare
Lemma 1. The set of points over GF(p2) (including the point at infinity) on Ca

is denoted by Ca,p2 and the subgroup thereof of order l is denoted by Ca,p2 [l].
It is important to consider the elliptic curve y2 = x3+ a over the extension field
GF(p6) as well, respectively subgroups of order l therein. These are denoted by
respectively Ca,p6 and Ca,p6 [l]. For further reference, we formulate the hypothesis
mentioned above as follows:
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X2C There exists an efficiently computable element s ∈ GF(p2) and an effi-
ciently computable, injective group homomorphism from the XTR subgroup
into Cs,p2 [q].

A similar problem is posed by N. Koblitz in [9, p.328]. Note that X2C is
more general than only assuming that (a restriction of) an MOV embedding
is efficiently invertible. It actually follows from our results (Theorem 10) that
under the X2C hypothesis, (restrictions of) MOV embeddings are efficiently
invertible.

Outline of the paper
In Section 2 we explore the structure of CTP curves. We introduce a so-called
distortion map on CTP curves which is of crucial importance for our results,
and we prove a more convenient formulation of the X2C hypothesis. In Sec-
tion 3 we present and prove our main results and in Section 4 we briefly discuss
some possible extensions of our results. In Section 5 we discuss some practical
applications of distortion maps, including a more computational and communi-
cational efficient variant of the one round protocol for tripartite Diffie-Hellman
key exchange described in [5] and a non refutable digital signature scheme that
supports escrowable encryption. Finally, we summarize our results in Section 6.

2 Group Isomorphisms between CTP Curves

We recall that any isomorphism between two elliptic curves defined over a field
K induces a group isomorphism between the points on the elliptic curves over K,
but not vice versa. See [14], [18]. This distinction is important in the following
lemma.

Lemma 1 Let Ca and Cb be CTP curves (in particular, a, b are squares in
GF(p2) but not cubes), then the following hold:

1. The map S : Ca,p2 → Cap,p2 : (x, y) → (xp, yp) is an efficiently computable
group isomorphism.

2. The equation u6 = b/a has its solutions in GF(p6) and for any such solution
u, the map Ru : Ca → Cb : (x, y) → (u2x, u3y) is an isomorphism
in the category of elliptic curves over GF(p6) and induces in particular an
efficiently computable group isomorphism Ca,p6 → Cb,p6 .

3. The map Ru is an isomorphism in the category of elliptic curves over GF(p2)
iff b/a is a cube in GF(p2).

4. If b/a is not a cube in GF(p2), then b/ap is a cube in GF(p2). Also the
equation w6 = b/ap has its solutions w in GF(p2) and the composite map
Rw ◦ S is an efficiently computable group isomorphism from Ca,p2 to Cb,p2 .

Proof: The first part of the lemma is well known and easily verified. That
the equation mentioned in the second part of the lemma has a solution in GF(p6)
follows as b/a is a square in GF(p2). The remainder of the second part of the
lemma follows for instance from [14, Theorem 2.2]. The third part also follows



198 Eric R. Verheul

from this result combined with the observation that u6 = b/a has all its solutions
u in GF(p2) iff b/a is a cube in GF(p2). For a proof of the fourth part, let α
be a generator of the multiplicative group of GF(p2). As p > 3 it follows that
p2 − 1 ≡ 0 mod 3, so the element x = αj is a cube in GF(p2)∗ iff j is divisible by
three. Now write a = αk and b = αl. If b/a is not a cube in GF(p2), then k mod 3
and l mod 3 are different. As k, l mod 3 are non-zero, it follows from p ≡ 2 mod 3
that k · p mod 3 and l mod 3 are equal. That is, b/ap is a cube in GF(p2). The
remainder of the proof of the fourth part of the lemma now follows from the first
and third part. ��

From Lemma 1 it follows that the CTP curves split into two equivalence
classes under the equivalence relation Ca 	 Cb iff b/a is a third power in GF(p2).
From [14, Theorem 3.2] it follows that there are exactly two isomorphism classes
of supersingular elliptic curves over GF(p2) of order p2−p+1. We conclude that
the CTP curves provide a complete representation of such curves.

From the previous result we immediately deduce the following.

Theorem 2 All CTP groups Ca,p2 are efficiently computable group isomorphic.
Moreover, we can reformulate X2C as:

X2C For each CTP subgroup Ca,p2 [q] there exists an efficiently computable,
injective homomorphism from the XTR subgroup into Ca,p2 [q].

Let Ca be a CTP curve. We recall some facts on elliptic curves which can
all be found in [14]. For a divisor l of p2 − p + 1, the l-th torsion group of Ca

is the collection of all points of order dividing l on the curve y2 = x3 + a over
the algebraic closure of the field GF(p2). The torsion group is isomorphic to
Zl ⊕ Zl, which is a non-cyclic, abelian group. In addition, as Ca is a so-called
Class III supersingular curve, the l-th torsion group of Ca is just the collection
of all points of order dividing l over GF(p6) (including the point at infinity) on
the curve y2 = x3 + a. That is, the l-th torsion group of Ca is equal to Ca,p6 [l]
and is hence a subset of GF(p6)×GF(p6).

Before formulating the theorem that is crucial to our results, we need a
definition.

Definition 3 Let H be an abelian group, then two elements g1, g2 are called
independent, provided that g1 �∈ 〈g2〉 and g2 �∈ 〈g1〉.

This definition becomes relevant when the group H is not cyclic itself, which
is typically the situation in torsion groups. Before coming to our next result we
remark that it is easily verified that the two points in Ca,p2 that have a zero
first coordinate, augmented with the point at infinity, that is {(0, w), (0,−w),O}
with w2 = a, constitutes a subgroup of order three. We denote this group by G3.

Theorem 4 Let Ca be a CTP curve and let P �= O be a point on Ca,p2 . Then,
using the notation from Lemma 1, the following hold:

1. The equation u6 = a/ap has its solutions u in GF(p6) \GF(p2) and for any
such solution u, the map D : Ca,p6

S→ Cap,p6
Ru→ Ca,p6 is a group automor-

phism which takes the form (x, y) → (u2xp, u3yp).
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2. 〈P 〉∩ 〈D(P )〉 = O if the order of P is not divisible by 3 and 〈P 〉∩ 〈D(P )〉 =
G3 otherwise.

3. The point P is independent from its image under D(.) iff P has an order
different from 1 or 3.

Proof: For a proof of the first part of the theorem, it easily follows (cf. the
proof of Lemma 1) that a/ap is not a cube in GF(p2). Now the proof follows
from the last part of Lemma 1. For a proof of the second part of the theorem:
the first coordinate of the value (u2xp, u3yp) under D(.) of a point Q = (x, y)
is clearly not an element of GF(p2) when x is non-zero. That is, apart from the
point at infinity, the only points that can belong to 〈P 〉 ∩ 〈D(P )〉 have a zero
first coordinate. As 〈P 〉 ∩ 〈D(P )〉 is a group it is either equal to {O} or G3. In
the latter case it follows that the order of P must be divisible by 3. For a proof
of the last part, as D(.) is a group automorphism, the orders of P and D(P )
coincide. So if these points are dependent it follows from the second part that
either P or D(P ) is an element of G3, i.e., of order 1 or 3. ��

For convenience we refer to the map D(.) introduced in Theorem 4 as the
distortion map. In Figure 1 a few pages below we have depicted the property of
D(.) with K = GF(p2) and K ′ = GF(p6). Related to the l-th torsion group of
Ca, i.e., Ca,p6 [l], is the Weil pairing, a function

el : Ca,p6 [l]× Ca,p6 [l] → µl,

where µl is the subgroup of GF(p6)∗ of order l. Hence, µq is equal to the XTR
subgroup. In the setting of supersingular curves, the Weil pairing can be com-
puted efficiently. The Weil pairing satisfies the Identity rule, i.e., el(P, P ) = 1,
and is bilinear. From the latter property it follows that el(a∗P, b∗Q) = el(P,Q)ab.
This formula is particularly useful when el(P,Q) is a generator of µl, as the map
< P >→ µl : x → el(x,Q) is then a group isomorphism. Actually, this is the
MOV embedding mentioned in the introduction. We finally mention that two
points P,Q in the torsion group Ca,p6 [l] are dependent, iff el(P,Q) = 1, see [14,
p.70].

The following corollary describes the order of a value of the Weil pairing.

Corollary 5 Let l dividing p2 − p + 1 be a power of a prime number r and let
P be a point on Ca,p2 of order l. Then, letting D(.) denote the distortion map
from Theorem 4, the following hold:

1. If r �= 3, then the element el(P,D(P )) is of order l in GF(p6)∗.
2. If r = 3, then the element el(P,D(P )) is of order at least l/3 in GF(p6)∗.

Proof: First note that the point D(P ) is of order l as D(.) is a group auto-
morphism. For a proof of the first statement, suppose to the contrary that we
have el(P,D(P ))l/r = 1. Then it follows that el(P, l/r · D(P )) = 1, that is, P
and l/r ·D(P ) are dependent. Hence either, P ∈ 〈l/r · D(P )〉 or l/r ·D(P ) ∈ 〈P 〉.
The first option is ruled out as it implies that the order of P is divisible by l/r.
So,

l/r · D(P ) ∈ 〈P 〉 ∩ 〈D(P )〉 = {O},
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where the last equality follows from Theorem 4. That is, l/r ·D(P ) = O contra-
dicting that the order of D(P ) is equal to l. For a proof of the second statement,
we may assume without loss of generality that l ≥ 32. If we assume to the con-
trary that el(P,D(P ))l/9 = 1 and reasoning in a similar way as in the proof of
the first part, we conclude that

l/9 · D(P ) ∈ 〈P 〉 ∩ 〈D(P )〉 = G3,

where the last equality follows from Theorem 4. This contradicts that the order
of l/9 · D(P ) is nine. ��

3 Hardness of the X2C Hypothesis

Before coming to our main results, we recall some general notions. Let G = 〈γ〉
be any cyclic, multiplicative group of order l, generated by an element γ. The
security of the Diffie-Hellman key agreement protocol with respect to γ lies in the
Diffie-Hellman problem of computing the values of the function DH(γx, γy) =
γxy. Two other problems are related to the DH problem. The first one is the
Decision Diffie-Hellman (DDH) problem with respect to γ: given α, β, δ ∈ G
decide whether δ = DH(α, β) or not. The DH problem is at least as difficult as
the DDH problem. The second related problem is the discrete logarithm (DL)
problem in G with respect to γ: given α = γx ∈ G, with 0 ≤ x < l then
find x = DL(α). The DL problem is at least as difficult as the DH problem. It
is widely assumed that if the DL problem G is hard, then so are the other two.
In [5], Joux notes that Decision Diffie-Hellman type of problems in extensions
of supersingular elliptic curves are often efficiently computable. We use Joux’s
reasoning in the proof of the next result, which in particular provides an example
of a supersingular elliptic curve where the Decision Diffie-Hellman problem is
efficiently computable, while the discrete logarithm problem is presumably hard.

Theorem 6 The Decision Diffie-Hellman problem in any supersingular elliptic
curve over GF(p2) of order p2 − p+ 1 is efficiently computable.

Proof:We can restrict ourselves to curves of type Ca. Write p2−p+1 = t ·v
where t is a power of three and v is relatively prime with three. By virtue of
the Pohlig-Hellman algorithm [17], the DDH problem in Ca,p2 can be reduced to
the DDH problem in the subgroups of order t and v. As one can easily solve the
discrete logarithm related to the first subgroup, one can efficiently the Decision
Diffie-Hellman problem for this subgroup too.

Now, let P be a generator of the subgroup Ca,p2 [v] and suppose that points
X = x∗P, Y = y∗P,Z = z ∗P in Ca,p2 [v] are given. To solve the Decision Diffie-
Hellman problem in Ca,p2 [v], we need to determine whether z = x ∗ y mod v.
By the Identity property of the Weil pairing, its bilinearity and Corollary 5,
the Weil pairing ev(P,D(P )) is a v-th root of unity of GF(p6). So on the one
hand, ev(X,D(Y )) = ev(P,D(P ))xy and on the other hand ev(P,D(Z)) =
ev(P,D(P ))z. That is z = x ∗ y mod v iff ev(X,D(Y )) is equal to ev(P,D(Z)),
which is an efficiently computable condition. ��
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There are several cryptographic protocols whose security depends on the dif-
ficulty of the Decision Diffie-Hellman problem, like the publicly verifiable voting
system in [2] and the Cramer-Shoup [3] public key cryptosystem that is provable
secure against adaptive chosen ciphertext attacks. Theorem 6 shows that these
protocols should not be based on (CTP) supersingular elliptic curves, even with
the “appropriate” key sizes. We now obtain our first evidence that the X2C
hypothesis is not valid.

Corollary 7 Under the X2C hypothesis, the Decision Diffie-Hellman problem
in the XTR subgroup is efficiently computable.

Proof: This follows immediately from Theorem 6. ��
Next we show an even stronger consequence of the X2C hypothesis, namely

that the Diffie-Hellman problem in the XTR subgroup is efficiently computable.
It is convenient to first introduce three variants of the Diffie-Hellman problem. To
this end, again let G = 〈γ〉 be any cyclic, multiplicative group of (known) order l,
generated by the (known) element γ. Then the weak DH problem with respect
to γ is the problem of finding any generator κ, such that for all 0 ≤ x, y < l
determining κxy can be efficiently done on basis of γx and γy. That is, κ is only
dependent of γ and not of x, y. The strong DH problem with respect to γ is the
problem of efficiently determining ξxy on basis of γx and γy, for all 0 ≤ x, y < l
and any generator ξ of G. Finally, the DH problem with respect to the group
G is the problem of efficiently determining ξxy on basis of αx and αy for all
0 ≤ x, y < l and any generators ξ, α of G. Note that this notion is independent
of the choice of a particular generator γ of G.

Lemma 8 In the setting above, the weak, conventional and strong Diffie-Hell-
man problem w.r.t. γ and the Diffie-Hellman problem w.r.t. G are equivalent.

Proof: We first show equivalence of the first three problems. Clearly, if
one can solve the strong Diffie-Hellman problem, one can solve the conven-
tional Diffie-Hellman problem. Moreover, if one can solve the conventional Diffie-
Hellman problem then by taking κ = γ one can solve the weak Diffie-Hellman
problem. To show that these three problems are equivalent, it suffices to show
that if one can solve the weak Diffie-Hellman problem, one can solve the strong
Diffie-Hellman problem. To this end, let γ, κ be as described in the definition
of weak Diffie-Hellman problem and let ξ be any generator of G. Also, let the
function WDH(., .) be defined by κxy = WDH(γx, γy). Then by hypothesis
WDH(., .) is efficiently computable. We only prove the lemma in the case that
l is a prime number which is important to us and leave the general case to the
reader.

We can write κ = γs and ξ = γt for some 0 ≤ s, t < l, which are unknown.
We first claim that we can efficiently compute γ(s

n) for any n ≥ 1. To this end,
for any i ≥ 1 define

T (i) = (γ(s
i−1), γ(s

i)).



202 Eric R. Verheul

Note that T (1) = (γ, κ) is efficiently computable. Also note that if T (i) =
(A,B) is given, then T (2i) is equal to (WDH(A,A),WDH(A,B)) and T (2i +
1) is equal to (WDH(A,B),WDH(B,B)). This means that we can compute
T (n) in 2 · log2(n) calls to the function WDH(., .) using repeated squaring and
multiplication (cf. [10, Algorithm 2.3.7]). That is, we can efficiently compute
γ(s

n) for any n ≥ 1. In particular, we can efficiently compute the element D =
γ(s

l−4).
We now are ready to prove that we can solve the strong Diffie-Hellman prob-

lem with respect to γ. To this end, let A = γx and B = γy be given. Then, first
of all,

E = WDH(D,WDH(A,B)) = WDH(γ(s
l−4),WDH(γx, γy))

= WDH(γ(s
l−4), κxy)

= WDH(γ(s
l−4), γxys)

= κ(s
l−4xys) = κ(xysl−3)

= γs(xysl−3) = γ(xysl−2)

= γ(xys−1)

Here we have used that sl−1 ≡ 1 mod l for any prime number l (i.e., Fermat’s
little theorem). Now,

WDH(E, ξ) = WDH(γ(xys−1), γt) = κxys−1t = γs(xyts−1) = γxyt = ξxy.

As we can efficiently compute E = WDH(D,WDH(A,B)) andWDH(E, ξ)
we can efficiently compute ξxy on basis on γx and γy. That is, we have solved
the strong Diffie-Hellman problem with respect to γ.

We are left with showing the equivalence between the first three properties
mentioned in the lemma and the last one. To this end, let ξ, α be generators of G
and suppose that αx, αy are given for some 0 ≤ x, y < l. Write α = γa and ξ = γt

for some 0 ≤ a, t < l. First of all, we can efficiently determine γ(a
2) from α, which

is a conventional Diffie-Hellman problem w.r.t. γ. Secondly, from the latter result
one can efficiently determine γ(a

−2) by using the techniques described above.
Finally, from the latter result and ξ, we can efficiently determine δ = γ(a

−2t)

which is again a conventional Diffie-Hellman problem w.r.t. γ. Now, if we present
αx, αy to the efficient algorithm solving the strong Diffie-Hellman problem with
respect to γ and δ it returns δ(a

2xy) which is equal to γ(a
−2ta2xy) = γtxy = ξxy.

We conclude that we have solved the Diffie-Hellman problem with respect to α
and ξ. ��
Lemma 9 Let G,Γ be two isomorphic, cyclic groups and let i : G → Γ and
j : Γ → G be two efficiently computable, injective homomorphisms. We assume
that the order l of G and Γ and some generators are known. Then, the Diffie-
Hellman problem with respect to G is efficiently computable iff it is with respect
to Γ . Moreover, under this condition, the inverses of i(.) and j(.) are efficiently
computable too.
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Proof: It easily follows that if one can solve the Diffie-Hellman problem in one
of G or Γ , then one can solve the weak Diffie-Hellman problem in the other one.
So the first part of the lemma follows from Lemma 8. For a proof of the second
part of the lemma, we show that i−1(.) is efficiently computable by efficiently
computing i−1(ω) for any element ω of Γ . To this end, let g be a generator of
G and let γ = i(g) and g2 = j(γ). One can easily verify that the algorithm
solving the Diffie-Hellman problem with respect to g2 and g yields i−1(ω) when
presented g2 and j(ω). ��

Theorem 10 Under the X2C hypothesis, the following problems are efficiently
computable:

1. The Diffie-Hellman problem in the XTR subgroup.
2. The Diffie-Hellman problem in the group of points of order q on a supersin-

gular elliptic curve over GF(p2) of order p2 − p+ 1.
3. Inverting any efficiently computable embedding (e.g., based on the MOV em-

bedding) from the group of points of order q on a supersingular elliptic curves
over GF(p2) of order p2 − p+ 1 into the XTR subgroup.

Proof: Suppose that H(.) is an efficiently computable injective homomor-
phism from the XTR subgroup into some Ca,p2 [q]. We first prove the first part
of the theorem. Consider any generator g of the XTR subgroup. We construct
another generator h in the XTR subgroup satisfying the definition of the weak
DH problem. To this end, let h = eq(H(g), D(H(g)) where eq(., .) denotes the
Weil pairing on the q-th torsion group of Ca,p2 and D(.) denotes the distortion
map from Theorem 4. It also follows from this theorem that the order of h is
equal to q.

To break the weak Decision Diffie-Hellman problem, with respect to g, h,
suppose that X = gx, Y = gy are given. Then:

eq(H(X), D(H(Y ))) = eq(x ∗ H(g), y ∗ D(H(g))) = eq(H(g), D(H(g))xy = hxy.

That is, by computing eq(H(X), D(H(Y ))), which can be done efficiently, we
have solved the weak DH problem with respect to g, h. The result now follows
from Lemma 8. The second and third part of the theorem follow from the first
part and Lemma 9. ��

The last part of Theorem 10 states that to prove the validity of the X2C
hypothesis, one can concentrate on efficiently inverting any MOV embedding
into the XTR subgroup.

4 Extensions

4.1 Other Extension Field Based Public Key Systems

Two other public key cryptosystems exist that are based on the discrete loga-
rithm problem in the extension field GF(p6)∗, or actually subfields thereof. The
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LUC cryptosystem, [19] and [13], is based on the order p+1 subgroup of GF(p2)∗.
The variant by Gong & Harn of LUC is based on the p2 + p + 1 subgroup of
GF(p3)∗, where as in the XTR setting p = 2 mod 3. For both subgroups one can
find supersingular elliptic curves (cf. [14]) and efficiently computable, isomor-
phisms from these curves onto these subgroups, based on the Weil pairing. That
is, for each of the two cryptosystems one can formulate an hypothesis similar
to X2C. We remark that there do not exist elliptic curves defined over GF(p2)
with p2+p+1 or p2 −p+1 points over GF(p2) if p = 1 mod 3, as the number of
isomorphism classes is equal to 1−

(
−3
p

)
(cf. [14, Theorem 3.2]), which is equal

to zero if p = 1 mod 3 and equal to two if p = 2 mod 3.
With respect to the Gong and Harn variant of LUC, one could call the

related curves CTN curves: Class Three supersingular elliptic curves defined
over GF(p2) with Negative parameter t, namely t = −p (as opposed to t = p).
Provided p ≡ 2 mod 3, it follows that these elliptic curves take the form y2 =
x3 + a where a ∈ GF(p2) is neither a square nor a cube in GF(p2). This means
that the difference with CTP curves lies in the fact that a is a non-quadratic
residue. However, it easily follows that this property is not of significance in the
proofs in this paper and all results for CTP curves generalize to CTN elliptic
curves. More in particular, the map (x, y) → (u2xp, u3yp) where u is a solution
of u6 = a/ap is an appropriate distortion map on these types of curves. As
there exists no point on such curves with first coordinates equal to zero, all
points different from the point at infinity on the curve over GF(p2) are mapped
to points outside the curve over GF(p2). It follows that the existence of any
efficiently computable, injective homomorphism from the Gong & Harn group
in any supersingular elliptic curve over GF(p2) of order p2+p+1 implies that we
can solve the Diffie-Hellman problem in the Gong & Harn subgroup of GF(p3)∗ as
well as in the related elliptic curve group of points. Moreover, it follows that the
Decision Diffie-Hellman problem in these elliptic curve groups is always efficiently
computable, irrespective of additional hypotheses.

Our techniques do not completely generalize, at least not in a straightforward
fashion, to disprove this hypothesis for the LUC cryptosystem. This is partly due
to the fact that we are not aware of a full representation of all isomorphism classes
of the corresponding supersingular elliptic curves, i.e., curves over GF(p) of trace
zero. However, our techniques do generalize to two particular subclasses of such
elliptic curves over GF(p), as one can easily find the appropriate distortion maps.
These classes of curves and distortion maps are:

1. y2 = x3 − bx with p = 3 mod 4 and a any non-zero element in GF(p).
Here an appropriate distortion map is given by (x, y) → (−x, i · y) where
i ∈ GF(p2) \GF(p) satisfies i2 = −1.

2. y2 = x3 + a with p = 2 mod 3 and a any non-zero element in GF(p). Here
an appropriate distortion map is given by (x, y) → (x,w · y) where w ∈
GF(p2) \GF(p) satisfies w3 = 1.

It follows in particular that the Decision Diffie-Hellman problem in the group of
points over GF(p2) on these curves is efficiently computable. Recently, A. Joux



Evidence that XTR Is More Secure than Supersingular EC Cryptosystems 205

and K. Nguyen, [6], have constructed examples of supersingular elliptic curves,
of the type described above that have the additional property that the Diffie-
Hellman problem and the discrete logarithm problem are equivalently difficult.

4.2 Possible Generalizations

In this section we discuss the applicability our techniques to general elliptic
curves, e.g., non-supersingular ones. To this end, let E : y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6 be an elliptic curve defined over a finite field K = GF(pn)
and let P be a point on E over K of prime order q. As usual, we refer to the
points on the curve E over a field L (including the point at infinity) as E(L).
Now, a distortion map with respect to P is an endomorphism defined over the
completion K of K that maps P to a point D(P ) independent from P (cf.
Figure 1). As D(.) is a group homomorphism, it follows that D(P ) is an element

Curve over K  Subgroup  <P>

C
urve over the

extension field K
’ Torsion

Group

D(P)

P

F(Q)

Q

O

Fig. 1. Distortion maps

of the q-th torsion points E[q] of E. Suppose that the set of q-th torsion points
E[q] of E is contained in E(K ′) for some extension field K ′ = GF(pnk) of K of
degree k, the so-called MOV degree. It it known (cf., [14]) that if the degree k is
of polynomial size in log2(#(K)) then computing the Weil pairing Eq(., .) can
be done in probabilistic polynomial time in log2(#(K)) too.

Under this condition it directly follows from the techniques employed in Sec-
tion 3 that the existence of a distortion map implies that the Decision Diffie-
Hellman problem in the group 〈P 〉 is efficiently computable then. Now the follow-
ing question arises: under what conditions can we expect that distortion maps
exist? As pointed out to us by A. Joux, it is a consequence of [18, Ch. III, Th.9.5]
that the endomorphism group of a supersingular elliptic curve is so large, that
distortion maps always exist in these circumstances, with only a finite number of
exceptions. As in this situation the degree k is either 1, 2, 3, 4 or 6, it also follows
that the Decision Diffie-Hellman problem is efficiently computable in subgroups
on such curves.
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With respect to the case of “ordinary”, i.e., non supersingular elliptic curves
there is one prominent example of a distortion map, namely the Frobenius map
with respect toK F : (x, y) → (x(p

n), y(p
n)). The Frobenius map acts as a GF(q)-

linear mapping on E[q] (considered as a two dimensional linear space over GF(q))
and its characteristic equation is λ2−tλ+pn (cf. [14]). The eigenvalues of F with
respect to E[q] are one (with corresponding eigenspace 〈P 〉) and t − 1 mod q. If
t �= 2 mod q, then the eigenvectors corresponding with the eigenvalue t−1 mod q
are not elements of the curve over K. That is, they are outside the original
curve and really lie on the extension of the curve over K ′. Now if we consider
any subgroup 〈Q〉 of the q-th torsion group different from these eigenspaces,
we see that Q and F (Q) are independent. Compare Figure 1 above. So if the
MOV degree k is polynomial in log2(#(K)) then the Decision Diffie-Hellman
problem is efficiently computable in such subgroups. In [1] it is shown that for
general elliptic curves over basic fields K it is unlikely that k < log2(#(K))2.
We are not aware of general results concerning the case that k is not polynomial
in log2(#(K)). Moreover, we observe that our techniques do not really require
to actually compute values of Weil pairings: only the ability to compare them
suffices. For this the efficient calculation of a one bit predicate of a Weil pairing
is probably sufficient. It is not a priori clear that it can be excluded that this is
possible in polynomial time even if k is not polynomially bounded.

Of course, this does not settle the existence of distortion maps in the original
group 〈P 〉. This is very relevant from a practical, cryptographic point of view,
as such existence would make the Decision Diffie-Hellman problem in practically
used elliptic curve subgroups (possibly) efficiently computable. In discussions
with numerous knowledgeable colleagues, it emerged that distortion maps in
such elliptic curve subgroups do not exist. The following elegant proof of this
was presented to us by Ruud Pellikaan.

Theorem 11 Let E be a non-supersingular curve and let P ∈ E(K) be of or-
der q. If q is relatively prime to p and the q-th torsion group is not contained
in E(K) then there can not exist a distortion map D(.) w.r.t. P . Moreover, the
second condition is implied by the condition that q2 does not divide #(E(K)).

Proof: Suppose, at the contrary, that such a distortion map D exists. Notice
that Q = D(P ) is not a point on E(K) as this implies that the q-th torsion
group is contained in E(K). The crux of the proof is that the endomorphism
ring of a non-supersingular elliptic curve is abelian. This follows for instance
from the fact that this ring is an order in a quadratic imaginary field (cf. [18,
Ch. V, Theorem 3.1]). As before, let F be the K Frobenius map. Now,

Q = D(P ) = D(F (P )) = F (D(P )) = F (Q),

where the second equality follows as P ∈ E(K). But this means that Q is an
element of E(K) and we arrive at a contradiction. The last part of the result
easily follows. ��

As elliptic curve subgroups used in practical cryptosystems, satisfy the con-
ditions of Theorem 11, we conclude that in such circumstances distortion maps
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do not exist. It seems like an interesting problem to find out if distortion maps
can exist in the situation that the q-torsion group is contained in E(K), but that
no point of order q is contained in E(K0) for any genuine subfield K0 of K.

5 Applications

Distortion maps on (supersingular) elliptic curves can not only be used as crypt-
analytical tools, but also as building blocks in actual applications.

5.1 A One Round Protocol
for Tripartite Diffie-Hellman Key Exchange

In [5] A. Joux proposes schemes for a three participants variation of the Diffie-
Hellman protocol. One of his schemes is based on a subgroup of prime order q of
a supersingular elliptic curve over a field GF(pn). Two points P,Q of order q are
chosen, such that P is an element of the elliptic curve over GF(pn) and Q is an
element of the q-th torsion group that is independent from P . A simple way to
establish this, is to choose the element Q of order q so that it is not on the curve
itself, but it is is on the curve over the extension field GF(pnk) of GF(pn). Here
k is called the MOV degree, which is either 1, 2, 3, 4 or 6. It follows in particular
that the Weil pairing eq(P,Q) is a q-th root of unity in GF(pnk). It is assumed
that taking discrete logarithms in the groups 〈P 〉 and 〈Q〉 is not practically
possible.

Now in the tripartite Diffie-Hellman protocol, three parties A, B, C want to
establish a shared key, whereby each party only exchanges one message with an-
other party. That is, at most 6 messages are exchanged. Joux proposes the follow-
ing protocol. Each i-th participant (i = 1, 2, 3) generates a random 0 ≤ xi < q,
forms (Ai, Bi) = (xi ·P, xi ·Q), and sends this to the other participants. Now the
shared key is the element eq(P,Q)x1·x2·x3 . To illustrate that each participant
can compute the shared key, the first participant can do so by determining:

eq(A2, B3)x1 = eq(x2 · P, x3 · Q)x1 = eq(P,Q)x1·x2·x3 .

We now describe the possible application of distortion maps. To this end, let
P be a point on an elliptic curve E of order q such that taking discrete logarithms
in 〈P 〉 is not practically possible and assume there exists a distortion map D(.)
on the curve that maps P to a point D(P ) independent from P .

Now if, in our variant of the tripartite Diffie-Hellman protocol, three parties
A, B, C want to establish a shared key then, each i-th participant (i = 1, 2, 3)
generates a random 0 ≤ xi < q, forms the point xi ·P , and sends this to the other
participants. The shared key is the element eq(P,D(P ))x1·x2·x3 . It is a simple
verification to see that each participant can compute this key. Compared with
the original tripartite Diffie-Hellman protocol in the curve E, this variant only
requires two thirds of the number of exponentiations and half the number of bits
exchanged.

If one can solve the Diffie-Hellman problem with respect to P or eq(P,Q)
then one can break this protocol. We are not aware of reverse results.
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5.2 Supporting Non-repudiation and Escrowable Encryption
with Only Public Key

To fully support non-repudiation of digital signatures it is common practice
not to escrow the related private keys. To prevent loss of information resulting
from loss of private key material, or to comply with legal requirements end-users
will typically be issued two (or even three) certificates: one for non-repudiation
services and others for different services.

The use of distortion mappings make it possible to employ one public key
(and hence certificate) for a non-repudiation service as well as for an encryption
service, in such a way that the private signing key is not escrowed, while the
encryption service is recoverable. To describe this scheme, once again let P be a
point on an elliptic curve E over a finite field GF(pn) such that taking discrete
logarithms in 〈P 〉 is not practically possible. Assume there exists a distortion
mapD(.) on the curve that maps P to a pointD(P ) independent from P in the q-
th torsion group contained in the elliptic curve over the extension field GF(pnk).
We assume that the Weil pairing is efficiently computable on 〈P 〉 × 〈D(P )〉.
Denote the q-th root of unity eq(P,D(P )) in GF(pnk) by g.

In our scheme an end-user A chooses its private signing key 0 ≤ x < q ran-
domly. Its public key (for both the non-repudiation and the encryption service)
is the element y = gx in GF(pnk)∗. The user’s certificate is based on this public
key and also references to (or contains) the system parameters, e.g., the elliptic
curve E, the group order q, the point P on it and the element g. To make the
encryption service recoverable, the user also forms the point Y = x · P and es-
crows this at a trusted third party. Now, the end-user could employ any discrete
logarithm based digital signature scheme, like Schnorr, ElGamal or DSA thereby
using the g, y and the private key x. The encryption service supported, is the
following variant of the ElGamal [4] encryption scheme:

1. The sender generates a random 0 ≤ k < q and symmetrically encrypts the
information for end-user A using yk as a session key.

2. The sender forms the point K = k · P on the curve E and sends both the
encrypted information and the point K to end-user A.

Now, there are essentially two ways for the end-user A to decrypt information
encrypted this way. The first way is to first calculate eq(K,D(P )) = eq(k ·
P,D(P )) = eq(P,D(P ))k = gk and then secondly calculate (gk)x = yk which
enables the end-user to decrypt the symmetrically encrypted information. Note
that no secret information is required to determine gk, so this information could
in fact be sent along by the sender, avoiding that the end-user needs to calculate a
Weil pairing. The second way to decrypt this information is to directly calculate
eq(K,D(Y )) = eq(k · P,D(x · P )) = eq(k · P, x · D(P )) = gkx = yk on basis
of Y . Note that this operation does not require the private key x but that the
escrowed value Y suffices. Hence, if the end-user retrieves a copy of Y from his
escrow agent then he is able to decrypt his messages when he loses his private x.
However, the end-user is not able to make new digital signatures as determining
the private key x from Y = x · P requires one to solve a discrete logarithm
problem in the elliptic curve, which we assumed is not practically possible.
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For an indication of security, suppose that an attacker can compute Y on ba-
sis of y, then as y is chosen randomly by the end-user, the attacker has found an
computable injective homomorphism from 〈g〉 to 〈P 〉. It follows from the argu-
ments in Section 3 that the attacker is then also able to solve the Diffie-Hellman
problem in both these groups. We are not aware of more rigorous security proofs.
We finally remark that there exists a more general but less efficient variant of
this scheme that does not require a distortion map and whereby one uses two
independent points P,Q. We leave the details, which are straightforward, to the
reader.

6 Conclusion

We have shown that the existence of any efficiently computable, injective ho-
momorphism from the XTR subgroup in the group of points over GF(p2) on a
supersingular elliptic curve over GF(p2) of order p2 − p+ 1 implies that we can
solve several problems that are widely believed to be hard. The Diffie-Hellman
problem in the XTR subgroup is an example of such a problem. We have also
shown that the Decision Diffie-Hellman problem in such elliptic curve groups is
efficiently computable and that our results can be extended to other supersingu-
lar elliptic curve groups. The results in this paper therefore provide evidence that
the multiplicative group of a finite field provides essentially more, and in any case
not less, security than the group of points of a supersingular elliptic curve of com-
parable size. In addition to this, we have discussed generalizations to tackle the
Decision Diffie-Hellman problem in certain groups of points on non-supersingular
elliptic curves over finite fields. Finally, we have shown that the tools we used
in our cryptanalysis (distortion maps) can also be used as building blocks in
new cryptographic applications. We have illustrated that with two examples:
an improvement of Joux’s one round protocol for tripartite Diffie-Hellman key
exchange and a non refutable digital signature scheme that supports escrowable
encryption.
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