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Abstract. This paper studies the upper bounds of the maximum differ-
ential and linear characteristic probabilities of Feistel ciphers with SPN
round function. In the same way as for SPN ciphers, we consider the
minimum number of differential and linear active s-boxes, which pro-
vides a measure of the upper bounds of these probabilities, in order to
evaluate the security against differential and linear cryptanalyses. The
purpose of this work is to clarify the (lower bound of) minimum numbers
of active s-boxes in some consecutive rounds of Feistel ciphers, i.e., in
three, four, six, eight, and twelve consecutive rounds, using differential
and linear branch numbers Pd, Pl, respectively. Furthermore, we inves-
tigate the necessary condition for desirable P -functions, which means
that the round functions are invulnerable to both differential and linear
cryptanalyses. As an example, we show the round function of Camellia,
which satisfies the condition.

1 Introduction and Motivation

The best known attacks are differential cryptanalysis [6] proposed by Biham and
Shamir and linear cryptanalysis [13] proposed by Matsui. Since these cryptanal-
yses are the most powerful approaches known for attacking many symmetric
block ciphers, designers should evaluate the security of any new proposed ci-
phers against differential and linear cryptanalyses. To do this it is necessary to
determine the maximum differential and linear probabilities by a useful (and
acceptable) method. Feistel ciphers are commonly analyzed by (a) the upper
bounds of the maximum average of differential and linear hull probabilities or
(b) the maximum differential and linear characteristic probabilities. SPN ciphers,
on the other hand, are commonly analyzed by (c) the upper bounds of the max-
imum differential and linear characteristic probabilities. Recently, Hong et al.
showed (a) the upper bounds of the maximum average of differential and linear
hull probabilities of SPN ciphers [9].

With reference to method (a), Nyberg and Knudsen showed that the max-
imum average of differential and linear hull probabilities for r-round (r ≥ 4)
Feistel ciphers are bounded by 2p2, 2q2 if the maximum differential and linear
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probabilities of the round function are p, q, respectively1 [18]. They stated that
Feistel ciphers are provably secure against differential and linear cryptanalyses
if these probabilities are sufficiently low. This means that they are theoretically
invulnerable to differential and linear cryptanalyses, since these probabilities
are the upper bounds of the average of differential and linear hull probabilities.
However, this approach has one fatal disadvantage. That is, these probabilities
settle at some constant value even if the number of rounds increases. Therefore,
a round function has to yield extremely low maximum differential and linear
probabilities. This imposes a hard restriction on designing the round function.
As a matter of fact, for a commercial cipher, MISTY [15] is provably secure with
respect to differential and linear cryptanalyses.

Method (b) has been used to estimate many (extended) Feistel ciphers such
as DES [6,13] and FEAL [16,2]. Biham and Shamir claimed that the higher the
differential characteristic probability is, the higher the success rate of differen-
tial cryptanalysis is. This is because they exploited a single path between plain-
texts and ciphertexts which holds significant differential characteristic probabil-
ity. Matsui also claimed the same for linear cryptanalysis. Thus, Feistel ciphers
are sufficiently secure against differential and linear cryptanalyses if these prob-
abilities are less than the security threshold. Strictly speaking, however, these
probabilities only give the lower bounds of the maximum average of differential
and linear hull probabilities, since this method does not consider multiple paths
between the same plaintexts and ciphertexts [12,17].

For SPN ciphers, Rijmen et al. introduced the branch number B [19]. The
number B is the minimum number of active s-boxes in two consecutive rounds
of a non-trivial differential characteristic or a non-trivial linear trail. Since each
active s-box reduces the differential and linear characteristic probabilities, the
number B provides the upper bounds of the maximum differential and linear
characteristic probabilities in two consecutive rounds. The security against dif-
ferential and linear cryptanalyses is evaluated by piling up the number B every
two rounds. It is noted that Knudsen proposed a very similar concept for Feistel
ciphers [10]. He noted that Feistel ciphers are practically secure against differ-
ential and linear cryptanalyses if the upper bounds of the maximum differential
and linear characteristic probabilities are less than the security threshold.

It is obvious that the upper bounds of the maximum differential and linear
characteristic probabilities by method (c) lie between the upper bounds of the
maximum average of differential and linear hull probabilities by method (a) and
the maximum differential and linear characteristic probabilities by method (b).
Moreover, for most ciphers, the maximum averages of differential and linear hull
probabilities, which provide the actual invulnerability to differential and linear
cryptanalyses, are much lower than the upper bounds of these probabilities if
the number of rounds increases. Therefore, it is worth investigating the upper
bounds of the maximum differential and linear characteristic probabilities.

1 Aoki and Ohta showed that these probabilities are bounded by p2, q2 if the round
function is bijective and r ≥ 3 [3]
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Knudsen discussed the upper bounds of the maximum differential and lin-
ear characteristic probabilities of general Feistel ciphers [10]. He showed that
the upper bounds of these probabilities for 2r-round Feistel ciphers are pr, qr if
p, q are the maximum differential and linear probabilities of the round function,
respectively2. His evaluation, unfortunately, did not take the interrelation be-
tween input and output data in consecutive rounds into consideration. That is,
it is not always useful to evaluate the upper bounds of the maximum differential
and linear characteristic probabilities, if the maximum differential and linear
probabilities of the round function p, q are relatively high while those of some
consecutive rounds are (sufficiently) low, such as DES [7].

On the other hand, in this paper, we would like to focus attention on the
upper bounds of the maximum differential and linear characteristic probabilities
for Feistel ciphers with SPN round function. Like SPN ciphers, Feistel ciphers
with SPN round function only consist of s-boxes and bitwise exclusive-ORs. This
means that the (lower bound of) minimum number of active s-boxes determines
the upper bounds of the maximum differential and linear characteristic probabil-
ities for not only SPN ciphers but also Feistel ciphers with SPN round function.
This evaluation takes the interrelation between input and output data in some
consecutive rounds into consideration, while Knudsen’s evaluation doesn’t. Ac-
cordingly, our motivation is to clarify the (lower bound of) minimum number of
active s-boxes in some consecutive rounds of Feistel ciphers.

This paper is organized as follows. Section 2 introduces some notations and
definitions. Previous works are shown in Sect. 3. In Sect. 4 and Sect. 5, the lower
bounds of the minimum number of active s-boxes for differential and linear
cryptanalyses are given, respectively, i.e., the upper bounds of the maximum
differential and linear characteristic probabilities. The necessary condition for
desirable P -functions is discussed in Sect. 6. Finally, we conclude in Sect. 7.

2 Preliminaries

2.1 Notations

X = (x1, . . . , xn), xi ∈ ZZm
2 (1 ≤ i ≤ n) :

vector X over GF(2m)n and element xi of X over GF(2m).
∆X, ΓY : difference of X and mask value of Y , respectively.
X · ΓX : parity of bitwise product X and ΓX.
X ⊕ Y : bitwise exclusive-OR (XOR).
X|Y : concatenation between X and Y .
{S}, #{S} : elements in set S and the number of elements in set S.

2.2 Model

Throughout this paper we consider Feistel ciphers with mn-bit SPN round func-
tion (See Fig. 1). Note that we neglect the effect of the round key hereafter
2 Kanda et al. showed that the upper bounds of these probabilities for 3r-round Feistel
ciphers are p2r, q2r if the round function is bijective [11]
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Fig. 1. SPN round function

since we assume that the round key, which is used within one round, consists of
independent and uniformly random bits, and is bitwise XORed with data.

Notations describe the model as below.
S-function is a non-linear transformation layer with n parallel m-bit bijective

s-boxes. That is,

S : (ZZm
2 )n −→ (ZZm

2 )n

X = (x1, . . . , xn) �−→ Z = S(X) = (s1(x1), . . . , sn(xn))

P -function is a linear transformation layer, i.e.,

P : (ZZm
2 )n −→ (ZZm

2 )n

Z = (z1, . . . , zn) �−→ Y = P (Z) = (y1, . . . , yn)

Finally, the SPN round function can be described as follows.

F : (ZZm
2 )n −→ (ZZm

2 )n

X = (x1, . . . , xn) �−→ Y = F (X) = P (S(X)) = (y1, . . . , yn)

Let X(i) be the input data to the i-th round function, and Y (i) be the i-round
output data. The Feistel cipher is defined as:

X(i+1) = X(i−1) ⊕ Y (i) (1 ≤ i ≤ r),

where (X(1)|X(0)) is a plaintext and (X(r)|X(r+1)) is a ciphertext.

2.3 Definitions

We use the following definitions in this paper.

Definition 1. For any given ∆x, ∆z, Γx, Γz ∈ ZZm
2 , the differential and linear

probabilities of each s-box si are defined as:

DP si(∆x → ∆z) =
#{x ∈ ZZm

2 |si(x) ⊕ si(x⊕∆x) = ∆z}
2m

LP si(Γz → Γx) =
(

2 × #{x ∈ ZZm
2 |x · Γx = si(x) · Γz}

2m
− 1
)2
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Definition 2. The maximum differential and linear probabilities of s-boxes are
defined as:

ps = max
i

max
∆x �=0,∆z

DP si(∆x → ∆z)

qs = max
i

max
Γx,Γz �=0

LP si(Γz → Γx)

This means that ps, qs are the upper bounds of the maximum differential and
linear probabilities for all s-boxes.

Definition 3. A differential active s-box is defined as an s-box given a non-zero
input difference, while a linear active s-box is defined as an s-box given a non-
zero output mask value [11].
Note: When an s-box is bijective, s-boxes given a non-zero output difference
and a non-zero input mask value are also differential and linear active s-boxes,
respectively.

Definition 4. Let X = (x1, . . . , xn) ∈ GF(2m)n then the Hamming weight of
X is denoted by

Hw(X) = #{i|xi �= 0}.
This means that the Hamming weight of X equals the number of non-zero m-bit
characters from GF(2m) of X.

3 Previous Works – the Security of SPN Ciphers

As mentioned above, the security of most SPN ciphers against differential and
linear cryptanalyses is evaluated using the (lower bound of) minimum number of
differential and linear active s-boxes, which are a measure of the upper bounds
of differential and linear characteristic probabilities [19,8,5]. To determine the
(lower bound of) minimum number of active s-boxes, Rijmen et al. defined the
branch number B [19].

Definition 5. In SPN ciphers, the differential branch number Bd is defined as:

Bd = min
∆X �=0

(Hw(∆X) +Hw(θ(∆X))),

where ∆X is an input difference into the diffusion layer and θ(∆X) is an output
difference from the layer.

Note that ∆X is also an output difference from a substitution layer and
θ(∆X) is also an input difference to the next substitution layer. Since s-boxes
are bijective, Hw(∆X) equals the number of differential active s-boxes in the
substitution layer and Hw(θ(∆X)) equals that in the next substitution layer.
That is, if nd is the minimum number of differential active s-boxes in two con-
secutive rounds, then nd = Bd. Thus, it turns out that the minimum number
of differential active s-boxes in 2r-round SPN ciphers is lower bounded by rBd,
and the following theorem is obtained.
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Theorem 1. The maximum differential characteristic probability for 2r-round
SPN cipher, p(2r)

d , is upper bounded by p(rBd)
s .

From the duality between differential characteristics and linear approxima-
tions [4,14], the following definition and theorem also are established.

Definition 6. The linear branch number Bl is defined as:

Bl = min
ΓY �=0

(Hw(θ∗(ΓY )) +Hw(ΓY )),

where ΓY is an output mask value of the diffusion layer θ and θ∗(ΓY ) is an input
mask value of the layer. θ∗ is the diffusion function of mask values concerning
the layer.

Theorem 2. The maximum linear characteristic probability for 2r-round SPN
cipher, q(2r)

l , is upper bounded by q(rBl)
s .

4 Upper Bound of Differential Characteristic Probability

In this section, we investigate the upper bound of differential characteristic prob-
ability of Feistel cipher with SPN round function. In the same way as in the
previous section, our goal is to clarify the (lower bound of) minimum number of
differential active s-boxes in some consecutive rounds of Feistel cipher.

First, we show the useful lemma concerning the hamming weight for Feistel
ciphers.

Lemma 1. In Feistel ciphers, the following relationship holds.

Hw(∆Y (i)) = Hw(∆X(i−1) ⊕∆X(i+1)) ≤ Hw(∆X(i−1)) +Hw(∆X(i+1))

Proof.

Hw(∆Y (i)) = Hw(∆X(i−1) ⊕∆X(i+1))
= #{s|∆x(i−1)

s �= 0 and ∆x(i+1)
s = 0}

+#{t|∆x(i−1)
t = 0 and ∆x(i+1)

t �= 0}
+#{u|∆x(i−1)

u �= 0 and ∆x(i+1)
u �= 0 and x(i−1)

u �= x(i+1)
u }

≤ Hw(∆X(i−1)) + #{t|∆x(i−1)
t = 0 and ∆x(i+1)

t �= 0}
≤ Hw(∆X(i−1)) +Hw(∆X(i+1))

Q.E.D.

Since there is a linear transformation layer (P -function) in the SPN round
function, we will define the differential branch number Pd in the same way as
in the previous section. Note that it is obvious that if S-function is bijective
then Hw(∆X) = Hw(∆Z), since ∆zi also becomes a non-zero output difference
through the differential active si-box.
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Definition 7. If S-function is bijective, the differential branch number Pd is
defined as follows.

Pd = min
∆X �=0

(Hw(∆X) +Hw(∆Y ))

Here, we will define the upper bound of the maximum differential character-
istic probability of Feistel cipher with SPN round function in the same way as
used for the SPN cipher. That is, the upper bound of the probability is shown
by the (lower bound of) minimum number of differential active s-boxes.

Definition 8. Assume Feistel cipher with SPN round function. Let Hw(∆X(i))
be the number of the ith-round differential active s-boxes, then the differential
characteristic probability of the r-round Feistel cipher, p(r)d , satisfies the following
relationship.

p
(r)
d ≤ p

min
(∆X(0),∆X(1),...,∆X(r+1))�=(0,0,...)

∑r

i=1
Hw(∆X(i))

s

From this definition, clarifying the upper bound of the maximum differential
characteristic probability becomes equivalent to showing the (lower bound of)
minimum number of differential active s-boxes. To discuss the minimum number
easily after this, it is denoted as follows.

D(r) = min
(∆X(0),∆X(1),...,∆X(r+1)) �=(0,0,...)

r∑
i=1

Hw(∆X(i))

Hereafter, because of limitations of space, we assume P -function is bijective.
Note that this leads to Pd ≥ 2.

Lemma 2. The minimum number of differential active s-boxes in any three
consecutive rounds satisfies D(3) ≥ 2.

Proof. If ∆X(i) = 0, then ∆Y (i) = 0 and ∆X(i−1) = ∆X(i+1) �= 0. This leads to
D(3)
1 = 2 ×Hw(∆X(i−1)) ≥ 2. On the other hand, If ∆X(i) �= 0, it follows that

D(3)
2 ≥ Hw(∆X(i)) + Hw(∆Y (i)) ≥ Pd, since Lemma 1 shows Hw(∆X(i−1)) +

Hw(∆X(i+1)) ≥ Hw(∆Y (i)).
Q.E.D.

Lemma 3. The minimum number of differential active s-boxes in any four con-
secutive rounds satisfies D(4) ≥ Pd.

Proof. Without loss of generality, we assume that the four consecutive rounds
run from the first round to the fourth round.

At no time do both input differences into any consecutive two rounds equal
zero. In addition, by the assumption, at no time also do both input differences
of every two rounds equal zero. Thus we only consider the six following cases
concerning input differences into the consecutive four rounds.

(1) ∆X(1) �= 0, ∆X(2) �= 0, ∆X(3) �= 0, ∆X(4) �= 0
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(2) ∆X(1) = 0, ∆X(2) �= 0, ∆X(3) �= 0, ∆X(4) �= 0
(3) ∆X(1) �= 0, ∆X(2) = 0, ∆X(3) �= 0, ∆X(4) �= 0
(4) ∆X(1) �= 0, ∆X(2) �= 0, ∆X(3) = 0, ∆X(4) �= 0
(5) ∆X(1) �= 0, ∆X(2) �= 0, ∆X(3) �= 0, ∆X(4) = 0
(6) ∆X(1) = 0, ∆X(2) �= 0, ∆X(3) �= 0, ∆X(4) = 0

In case (1), by Lemma 2, D(4)
1 = D(3)

2 +Hw(∆X(4)) ≥ Pd +Hw(∆X(4)) ≥
Pd + 1.

In case (2), ∆X(1) = 0 leads to ∆Y (2) = ∆X(3). Thus, D(4)
2 = Hw(∆X(2))+

Hw(∆Y (2)) +Hw(∆X(4)) ≥ Pd +Hw(∆X(4)) ≥ Pd + 1.
Similarly, in cases (3), (4), and (5), we get D(4) ≥ Pd + 1.
In case (6), by Lemma 2, D(4)

6 = D(3)
2 ≥ Pd.

Q.E.D.

From the above proof, the following corollary is obtained.

Corollary 1. The minimum number of differential active s-boxes in any four
consecutive rounds satisfies
(i) D(4) ≥ Pd, if and only if the input differences in both the first round and the
fourth round are zero.
(ii) D(4) ≥ Pd + 1 in the other cases.

Lemma 4. The minimum number of differential active s-boxes in any six con-
secutive rounds satisfies D(6) ≥ Pd + 2.

Proof. – If ∆X(2) �= 0 and ∆X(5) �= 0, by Lemma 2, D(6)
1 = D(3)

2 + D(3)
2 ≥

2 × Pd.
– If ∆X(2) = ∆X(5) = 0, we get ∆X(1) = ∆X(3) and ∆Y (3) = ∆X(4) =
∆X(6). Thus, D(6)

2 = 2 × (Hw(∆X(3)) +Hw(∆X(4))) = 2 × (Hw(∆X(3)) +
Hw(∆Y (3))) ≥ 2 × Pd

– If ∆X(2) = 0 and ∆X(5) �= 0, or ∆X(2) �= 0 and ∆X(5) = 0, then D(6)
3 =

D(3)
1 + D(3)

2 ≥ Pd + 2 by Lemma 2.
Q.E.D.

Lemma 5. The minimum number of differential active s-boxes in any eight
consecutive rounds satisfies D(8) ≥ 2 × Pd + 1.

Proof. Again, corollary 1 shows that, in any four consecutive rounds, the mini-
mum number of differential active s-boxes satisfies (i) D(4) ≥ Pd, if and only if
the input differences in both the first round and the fourth round are zero, and
D(4) ≥ Pd + 1 in the other cases.

Since there is no case in which both input differences into any two consecutive
rounds are zero at the same time, the input differences in both the fourth and
fifth rounds cannot be zero. That is, the eight consecutive rounds cannot be
divided into two cases (i). Thus, D(8) ≥ Pd + (Pd + 1) ≥ 2 × Pd + 1.

Q.E.D.
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Lemma 6. The minimum number of differential active s-boxes in any twelve
consecutive rounds satisfies D(12) ≥ 3 × Pd + 1.

Proof. D(12) can be converted to three expressions, i.e., 4 × D(3), 2 × D(6), and
D(8) +D(4). Since D(12) satisfies the three evaluations at the same time, D(12) =
max{4 × D(3), 2 × D(6),D(8) + D(4)} ≥ D(8) + D(4) ≥ 3 × Pd + 1.

Q.E.D.

From the proofs of above-mentioned lemmas, the useful theorem for the 4r-
round Feistel ciphers is established as follows.

Theorem 3. The minimum number of differential active s-boxes D(4r) for 4r-
round Feistel ciphers with SPN round function satisfies D(4r) ≥ r × Pd + �r/2�.

Knudsen argued that for a Feistel cipher to be practically secure against dif-
ferential and linear cryptanalyses, the upper bounds of the maximum differential
and linear characteristic probabilities must be less than the security threshold.
Generally speaking, the security threshold is equated to the inverse of the num-
ber of all plaintext blocks, i.e., 2−64 for 64-bit ciphers and 2−128 for 128-bit
ciphers.

For example, let the maximum differential probability of an 8-bit s-box be
ps = 2−6 and the differential branch number be Pd = 5. It follows that 18-round
Feistel ciphers, such as Camellia [1], are practically secure against differential
cryptanalysis because of the following corollary.

Corollary 2. Assuming that the round function consists of s-boxes yielding the
maximum differential probability ps = 2−6 and P -function yielding the differ-
ential branch number Pd = 5, then a 128-bit Feistel cipher with more than
16-rounds has no effective differential characteristic.

Proof. By Definition 8 and Theorem 3, p(16)d ≤ (2−6)4×5+2 = 2−132 < 2−128.
Q.E.D.

5 Upper Bound of Linear Characteristic Probability

In this section, the upper bound of linear characteristic probability is derived
in the same way as in the previous section. That is, our goal is to clarify the
(lower bound of) minimum number of linear active s-boxes in some consecutive
rounds of Feistel cipher using the duality of differential characteristic and linear
approximation.

First, the following theorem is established.

Theorem 4. Consider a Feistel cipher with SPN round function. If the linear
transformation layer P (P -function) is bijective, the cipher can be transformed
into a Feistel cipher with the PSN round function.
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Proof. From the assumption that P -function is bijective, let describe P (Z) as
the transformation of Z by the P -function, and P−1(Z) as that by the inverse
function of the P -function.

As mentioned above, in a Feistel cipher with SPN round function, the equa-
tion, X(i+1) = X(i−1) ⊕P (S(X(i))), is satisfied. Now, let V (i) = P−1(X(i)). The
above equation can be transformed as follows, since C = A ⊕ P (B) ⇔ C =
P (P−1(A) ⊕B) for any (A,B,C).

X(i+1) = X(i−1) ⊕ P (S(X(i))) ⇔ X(i+1) = P (P−1(X(i−1)) ⊕ S(X(i)))
⇔ P (V (i+1)) = P (V (i−1) ⊕ S(P (V (i))))
⇔ V (i+1) = V (i−1) ⊕ S(P (V (i)))

The equation, V (i+1) = V (i−1) ⊕ S(P (V (i))), denotes a Feistel cipher with
the PSN round function. Accordingly, the ciphertext (X(r), X(r+1)) obtained by
applying a Feistel cipher with SPN round function to a plaintext (X(1), X(0))
is equivalent to the result of changing the plaintext (X(1), X(0)) to (V (1), V (0))
by the P−1-function first, then getting (V (r), V (r+1)) from (V (1), V (0)) from the
Feistel cipher with PSN round function, and finally transforming it into the
ciphertext (X(r), X(r+1)) by the P -function.

Q.E.D.

Starting with the duality between differential characteristic and linear ap-
proximation, we will define the linear branch number Pl, which is similar to the
differential branch number Pd. Hereafter, we assume P -function is bijective.

Definition 9. The linear branch number Pl is defined as:

Pl = min
ΓY �=0

(Hw(P ∗(ΓY )) +Hw(ΓY )) = min
ΓY �=0

(Hw(ΓZ) +Hw(ΓY )),

where ΓY, ΓZ is an output mask value and an input mask value of the P -
function, respectively, and P ∗ is a diffusion function of mask values concerning
the P -function.

Next, we will define the upper bound of the linear characteristic probability
of a Feistel cipher with SPN round function. That is, the upper bound of the
probability is shown by the (lower bound of) minimum number of linear active
s-boxes.

Definition 10. Assume a Feistel cipher with SPN round function. If Hw(ΓZ(i))
is the number of the ith-round linear active s-boxes, then the linear characteristic
probability of the r-round Feistel cipher satisfies the following relationship.

p
(r)
l ≤ p

min
(Γ Y (0),...,Γ Y (r),Γ Y (r+1))�=(...,0,0)

∑r

i=1
Hw(ΓZ(i))

s ,

where ΓZ(i) = P ∗(ΓY (i)) and P ∗ is the diffusion function of mask values con-
cerning the P -function.
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From this definition, clarifying the upper bound of the linear characteristic
probability becomes equivalent to determining the (lower bound of) minimum
number of linear active s-boxes. To discuss the minimum number easily after
this, we denote it as follows.

L(r) = min
(ΓY (0),...,ΓY (r),ΓY (r+1)) �=(...,0,0)

r∑
i=1

Hw(ΓZ(i))

Theorem 5. Assume a Feistel cipher with SPN round function. If both S-
function and P -function are bijective, then L(r) and Pl also satisfy Lemma 2
to Lemma 6 and Theorem 3.

Proof. Because of the bijective P -function, a Feistel cipher with SPN round
function is transformed into one with PSN round function by Theorem 4. The
cipher can be described as:

V (i+1) = V (i−1) ⊕ S(P (V (i))) = V (i−1) ⊕ S(X(i)) = V (i−1) ⊕ Z(i),

where V (i) = P−1(X(i)), Z(i) = S(X(i)).
From the duality between differential characteristic and linear approximation,

the linear approximation of the round function of the transformed cipher can be
expressed as follows using the concatenation rules [4,14].

ΓV (i) = ΓZ(i−1) ⊕ ΓZ(i+1) = P ∗(ΓX(i))

By the way, since S-function is bijective, Hw(ΓX) = Hw(ΓZ) because Γxi

is a non-zero input mask value of a linear active si-box. Therefore, the linear
branch number Pl is redefined as:

Pl = min
ΓX �=0

(Hw(P ∗(ΓX)) +Hw(ΓX)) = min
ΓZ �=0

(Hw(ΓV ) +Hw(ΓZ))

Accordingly, if ∆X(i) and ∆Y (i) are exchanged for ΓZ(i) and ΓV (i), respec-
tively, it turns out that all proofs are satisfied in the same way as for Lemma 2
to Lemma 6 and Theorem 3.

Q.E.D.

For example, the P ∗-function of Camellia can be expressed as:

P ∗
Camellia =




0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1




Thus, it is easily seen that Pl = 5, and the following corollary is obtained.
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Corollary 3. Camellia with reduced to 16-rounds (without FL- and FL−1-
functions) has no effective linear approximation.

Proof. The maximum linear probability of Camellia’s s-boxes is qs = 2−6. From
Theorem 5 and Pl = 5, the maximum linear characteristic probability of Camel-
lia with reduced to 16-rounds is also upper bounded by 2−132.

Q.E.D.

6 Necessary Condition for Desirable P -Functions

In this section, we consider the necessary condition for desirable P -functions.
Here, “desirable” means that the round functions are invulnerable to linear
cryptanalysis as well as differential cryptanalysis.

Obviously, the condition is Pd = Pl from Sect. 4 and Sect. 5. Thus, we
investigate P -functions wherein Pd = Pl.

Theorem 6. Assume that P -function is bijective and is expressed as an n ×
n matrix P over GF(2)m. When the P -function satisfies [yi]t = [pij ][zj ]t, the
following relations are satisfied.

[∆yi]t = [pij ][∆zj ]t, [Γzi]t = [pij ]t[Γyj ]t = [pji][Γyj ]t,

where [xi] denotes the vector (or matrix) of X and [xi]t denotes the transposed
vector (or matrix) of X.

Proof. First, since yi =
⊕n

j=1(pij · zj),

∆yi = yi ⊕ y′
i =


 n⊕

j=1

(pij · zj)

⊕


 n⊕

j=1

(pij · z′
j)




=
n⊕

j=1

(pij · zj ⊕ pij · z′
j)

=
n⊕

j=1

(pij · (zj ⊕ z′
j)) =

n⊕
j=1

(pij ·∆zj)

Thus, [∆yi]t = [pij ][∆zj ]t is satisfied.
Second, since the P -function is bijective, Z · ΓZ = Y · ΓY. Then,

Y · ΓY =
n⊕

j=1

((
n⊕

i=1

(pji · zi)
)

· Γyj

)
=

n⊕
j=1

(
n⊕

i=1

(pji · zi · Γyj)

)

=
n⊕

i=1


 n⊕

j=1

((pji · Γyj) · zi)

 =

n⊕
i=1




 n⊕

j=1

(pji · Γyj)


 · zi



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On the other hand, since Z · ΓZ =
⊕n

i=1 (zi · Γzi), it is obvious that Γzi =⊕n
j=1(pji · Γyj) =

⊕n
j=1(p

t
ij · Γyj). Thus, [Γzi]t = [pji][Γyj ]t = [pij ]t[Γyj ]t is

satisfied.
Q.E.D.

Theorem 7. Assume that I ′ is a set of matrices that consist of only one 1-
element and (m−1) 0-elements in each line and row, i.e., the matrices generated
by only interchanging lines and/or rows of unit matrix.
If a bijective P -function can be expressed as an n×n matrix P over GF(2)m

such that P t · P ∈ I ′ or P t = I2 · P · I1 where I1, I2 ∈ I ′, then the P -function
satisfies Pd = Pl.

Proof. By Theorem 6, if the P -function can be expressed as an n× n matrix P
over GF(2)m, then

Pd = min
∆Z �=0

(Hw(∆Z) +Hw(P (∆Z))), Pl = min
ΓY �=0

(Hw(P t(ΓY )) +Hw(ΓY ))

(i) In the case of P t · P = I∗ ∈ I ′, let ΓY = P (ΓW ).
Since the P -function is bijective, it is guaranteed that {ΓY } = {ΓW}. Thus,

Pl = min
ΓW �=0

(Hw(P t(P (ΓW ))) +Hw(P (ΓW )))

= min
ΓW �=0

(Hw(I∗ · ΓW )) +Hw(P (ΓW ))).

Here, because I∗ ∈ I ′, I∗ · ΓW leads to another vector simply by interchanging
the elements of ΓW . Thus, Hw(ΓW ) = Hw(I∗ · ΓW ). As a result, ∃(∆Z,ΓW ),
s.t. Pd = Pl.

(ii) In the case of P t = I2 ·P ·I1 where I1, I2 ∈ I ′, as mentioned above, since I1
and I2 lead to another vector simply by interchanging the elements, Hw(∆X) =
Hw(I1(∆X)) and Hw(I2(ΓW )) = Hw(ΓW ). Now, let ∆Z = I1(∆X). Since I1
is bijective, it is guaranteed that {∆X} = {∆Z}. Thus,

Pd = min
∆X �=0

(Hw(I1(∆X)) +Hw(P · I1(∆X)))

= min
∆X �=0

(Hw(∆X) +Hw(P · I1(∆X))).

On the other hand,

Pl = min
ΓY �=0

(Hw(I2 · P · I1(ΓY )) +Hw(ΓY ))

= min
ΓY �=0

(Hw(P · I1(ΓY )) +Hw(ΓY )).

As a result, ∃(∆X,ΓY ), s.t. Pd = Pl.
Q.E.D.

For example, the relationship between P -function and P ∗-function of Camel-
lia is shown as follows. Thus Theorem 7 indicates that the P -function of Camellia
is “desirable.”

P ∗
Camellia = P t

Camellia = I∗ · PCamellia · I∗,
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because

PCamellia =




0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
1 1 0 1 0 1 1 0
1 1 1 0 0 0 1 1
0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1


 , P

∗
Camellia =




0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1


 , I

∗ =




0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0




7 Conclusion

This paper studied the upper bounds of the maximum differential and linear
characteristic probabilities of Feistel ciphers with SPN round function. In the
same way as for SPN ciphers, we considered the minimum number of differ-
ential and linear active s-boxes, which are a measure of the upper bounds of
these probabilities, in order to evaluate security against differential and linear
cryptanalyses. The advantage of this method is that it considers the interre-
lation between input and output data in consecutive rounds, unlike Knudsen’s
estimation.

We focused on the minimum number of active s-boxes in some consecutive
rounds of Feistel ciphers, i.e., in three, four, six, eight, and twelve consecutive
rounds, since they can determine the upper bounds of the maximum differential
and linear probabilities using the differential and linear branch numbers Pd, Pl,
respectively. These numbers provide the avalanche effects of P -functions with
regard to differential and linear characteristics. As a result, we clarified that
the lower bounds of the minimum number of differential (resp. linear) active
s-boxes are 2, Pd (Pl),Pd +2 (Pl +2), 2Pd +1 (2Pl +1), and 3Pd +1 (3Pl +1),
respectively. The interesting result is that the lower bound of the minimum
number of active s-boxes is proportional to the branch number every fourth
round, while it seems to be every third round at first glance. Furthermore, this
means that, if the branch number is the same, a 2r-round Feistel cipher has
almost same invulnerability to differential and linear cryptanalyses as a r-round
SPN cipher in terms of the upper bounds of the maximum differential and linear
probabilities.

Finally, we investigated the necessary condition for desirable P -functions,
which means that the round functions are invulnerable to both differential and
linear cryptanalyses. In addition, we showed the example of the round function
of Camellia, which satisfies the condition.
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