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Abstract. Hash functions play an essential role in many areas of cryp-
tographic applications such as digital signature, authentication, and key
derivation. In this paper, we propose a new hash function with variable
output length, namely HAS-V, to meet the needs of various security lev-
els desired among different applications. A great deal of attention was
paid to balance the characteristics of security and performance. The use
of message expansion, 4-variable Boolean functions, variable and fixed
amounts of shifts, and interrelated parallel lines provide a high level of
security for HAS-V. Experiments show that HAS-V is about 19% faster
than SHA-1, 31% faster than RIPEMD-160, and 26% faster than HAVAL
on a Pentium PC.

1 Introduction

A hash function is a function that maps an input with an arbitrary length to
an output with a specific length, referred to as a hash-code. A one-way hash
function must obey the preimage and second preimage resistance properties.
Furthermore, most cryptographic applications require the hash function to sat-
isfy the collision resistance property, which is a stronger constraint than the
former two properties.

The collision of a hash function can be found by the birthday paradox or
square root attack with 2"/2 operations where n is the length of the hash-code
[18]. In order to prevent such attacks, the length of the hash-code should be
no less than 128 bits. However, the works of van Oorschot and Wiener [12], on
special-purpose hardware design for parallel collision search, suggest that the
minimum length of the hash-code should be 160 bits. Ever since Damgard [6]
established the design principles of a hash function, which included the fact that
the collision resistance of the compression function is sufficient for the collision
resistance of the hash function, almost all hash functions follow these principles.

There are three main categories of hash functions, namely hash functions
based on block ciphers, hash functions based on modular arithmetic, and ded-
icated hash functions [I3]. Most early hash functions were based on block ci-
phers. However, the modification of block ciphers into hash functions resulted
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in security weaknesses in collision search as well as performance deterioration.
The slow performance problem is even more serious for hash functions based on
modular arithmetic and serious doubts have been raised about their security.
Consequently, the need for fast and secure hash functions resulted in dedicated
hash functions. These functions are custom designed to achieve the goals of
a cryptographic hash function. Among the numerous dedicated hash functions
that are in use today, the MD4-family hash functions are the most widely used
and analyzed family of hash functions. MD4 [14], MD5 [15], and RIPEMD-160
[9] are popular examples of MD4-family hash functions.

There have been several attacks on the MD4-family hash functions [TJ2J57].
Among these attacks, a series of Dobbertin’s attacks are becoming a real threat
on practical applications. Fortunately, SHA-1 [I1] and RIPEMD-160 are consid-
ered to be secure against these attacks [§]. The main distinction of SHA-1 is the
message expansion process, where the message words used in the different rounds
are computed as the sum of the previous message words and circular shift by
1-bit. This prevents making local changes, which is confined to a few bits, and
accordingly individual message bits influence the calculations at large number
of places. RIPEMD-160 is an enhanced version, in a way to be resistant against
Dobbertin’s attacks, of RIPEMD. Its main improvements are the increase in the
number of rounds from 3 to 5 and the two parallel lines were modified to have
a different message ordering, Boolean functions, and shift amounts.

Recently, much progress has been made in the software implementation of
MD4-family hash functions [3l4]. Analyses show that the structures of MD4-
family hash functions possess a higher instruction-level parallelism than cur-
rent general-purpose computer architecture can provide. Among the MD4-family
hash functions, it is known that the critical path to compute the step function
of SHA-1 is shorter than any other MD4-family hash functions and the organi-
zation of RIPEMD-160 in two independent lines will become much useful in the
near future.

In the remainder of this paper, we propose a new MD4-family hash function
that produces a variable length hash-code, namely HAS-V. In Section 2, we
present details on why a hash function with variable length hash-code is needed.
In Section 3, the terminologies and notations used are defined. In Section 4, a
description of the newly proposed hash function is given. In Section 5, we discuss
the underlying design principles of HAS-V based on performance and security
aspects. Performance comparison is given in Section 6, and concluding remarks
are given in Section 7. The pseudo-code and the test values of HAS-V are given
in the Appendix.

2 Motivation

The length of the hash-code is an important factor directly connected to the
security of the hash function. Assuming that there are no unexpected design
flaws known in a hash function, the complexity of finding a collision is heavily
dependent on the length of the hash-code. The length of the hash-code must
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be long enough to provide explicit security, but it must not be unnecessarily
long to sacrifice efficiency of the entire system. Consequently, the length of the
hash-code is a relative factor to the computing power possessed by the opponent.
Therefore, the length of the hash-code is meant to vary from time to time as
technology advances and information security broadens its area of application.
It seems inappropriate to fix the length of the hash-code when various levels of
security are desired among different applications.

KCDSA [10], Korea Certificate-based Digital Signature Algorithm, is an ex-
ample of a cryptographic application where a variable length of hash-code is
needed. KCDSA employs variable length domain parameters in order to fulfill
the various security needs in different applications. In the case of KCDSA, there
is a need for a hash function that can produce a variable hash-code of up to 256
bits in order to fully utilize the flexible security level of KCDSA.

However, most conventional hash algorithms are designed to produce a spe-
cific length of hash-code, such as 128 bits for MD4 and MD5, and 160 bits for
SHA-1 and RIPEMD-160. Among the well-known hash functions, HAVAL [19] is
the only hash function that can produce a variable length hash-code. Although
HAVAL is still considered to be secure, there are some concerns that a suit-
able modification of MD4 attack could be applied to HAVAL with 3 passes.
Furthermore, HAVAL suffers from performance deterioration in CISC proces-
sors due to the excessive number of chaining variables used. There exists an
optional extension of RIPEMD-128 and RIPEMD-160 to produce 256-bit and
320-bit hash-code. However, these methods do not provide any increase in secu-
rity level, merely an increase in the length of the hash-code. This gives a clear
motivation to design a new hash function with variable length hash-code, which
is both efficient and secure.

Information security is becoming an inevitable part of our society, and there-
fore information technology must provide services to fulfill the needs of various
people. The need for variable length hash-code can be explained in an analogous
way. Moreover, the ever-increasing nature of computing power will eventually
threaten the length of the hash-codes used in many applications today. Instead
of redesigning a new hash function in such events, the use of a single hash func-
tion with a variable length hash-code seems to be a cost-effective and convenient
way of increasing the security level.

3 Terminology and Notations

The use of byte in this paper implies an 8-bit quantity, word implies a 32-bit
quantity, and block implies a 1024-bit quantity, which is the input size of the
compression function. We assume a byte with the most significant bit of each
byte listed first and a block with the least significant byte of each block given
first. Throughout this paper, the following notations will be used:

— + : addition of words, i.e. addition by modulo-232.
— X<¢ : the circular left shift of X by s bit positions.
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Table 1. Characteristics of HAS-V

Length of Input Block (bits) 1024
Length of Output (bits) 128 ~ 320
Number of Rounds 10
Number of Chaining Variables 10
Number of Steps 200
Table 2. Initial values
A B C D E
67452301 | efcdab89 | 98badcfe | 10325476 | c3d2elf0
F G H I J
8796abb4 | 4b5a6978 | 0fle2d3c | alblc2d3 | 68794e5f

— — : the bitwise complement operation.
— V, A, @ : the bitwise OR, AND, and XOR operation. (X AY is also denoted
as XY for simplicity)

4 Description of HAS-V Algorithm

The basic structure of the compression function of HAS-V is two parallel lines,
denoted as the X-line and the Y-line, consisting of 100 steps each. Each line
is composed of 5 rounds, where each round consists of 20 steps, and maintains
5 words of chaining variables, a total of 10 chaining variables for the entire
compression function. The two parallel lines are interrelated by swapping the
contents of the entire chaining variables in the X-line and the Y-line after each
round. The message words used in the compression function are 32 words, or a
1024 bit block, of the input message and 8 additionally generated words each
round by message expansion, a total of 40 words for the entire compression func-
tion. The characteristics of the structure of HAS-V are summarized in Table

Append Padding Bits and Length: The message is padded so that its
length is congruent to 952 modulo 1024. Padding is performed by appending
a single ”71” bit and necessary zero bits to satisfy the above constraints. The
remaining 72 bits, in order to be a multiple of 1024 bits, is filled by appending
the desired length of the hash-code represented in bytes and the length of the
input coded in modulo 2% represented in bits.

Initial Value of the Chaining Variables: The initial values of the chaining
variables used in HAS-V are given in Table[2 A, B, C, D, E are the chaining
variables of the X-line and F', G, H, I, J are the chaining variables of the Y-line.

Message Preparation and Expansion: The length of the input block used
in each compression function is 1024 bits. The upper 512 bits consist of 16 words,
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Table 3. Message combination to generate extra messages
l Index “ Round 1 [ Round 2 [ Round 3 [ Round 4 [ Round 5 ‘

16 0,1,2,3 3,6,9,12 | 12,5,14,7| 7,2,13,8 | 15,9,5,3

17 45,6, 7 15,2,5,8 | 0,9,2 11 | 3,14,9,4 | 12,8,6, 2

18 8,9,10, 11 | 11,14,1,4] 4, 13,6, 15| 15, 10,5,0| 13, 11,7, 1

19 | 12,13,14,15] 7,10, 13,0 8, 1, 10,3 | 11,6, 1, 12| 14, 10, 4, 0
X|[0], X[1], ..., X[15] that are used in the X-line and the remaining lower 512
bits consist of 16 words, Y'[0], Y[1], ..., Y[15] that are used in the Y-line. Each

line of the compression function then additionally generates 4 message words in
each round by message expansion. The extra messages are created by the XOR of
4-word combinations chosen from its present line. The word combinations used
in message expansion differ for every round of the compression function and are
given in Table Bl

For example, the message word X[17] used in round 2 of the X-line is gener-
ated as follows:

X[17] = X[15] & X[2] ® X[5] @ X|[8].

The rest of the message words, X[16], X[18], X[19], can be expanded in a similar
way. The message words in the opposite Y-line, Y[16], Y[17], Y[18], Y[19] can
be derived in an analogous way.

Ordering of the Message Words: Each message word among the 20 message
words, 16 initial input message words and 4 expanded message words, is applied
to a single step in each line. The order of message words used in both lines is
equivalent. The ordering of the message words for each round is given in Table @l
The extra messages generated by message expansion, X [16], X[17], X[18], X[19],
are applied to steps 10, 15, 0, and 5, respectively, in each round.

Step Operation: The operation in each step is equivalent in both the X-line
and the Y-line. The step operation of the X-line is given below.
T+ AS*+ f(B,C,D,E) + X + K,

E«~D;D«C;C+BSY . B—A; AT.

Here f, s, and K are the Boolean function, shift amount, and additive constant,
respectively. The Boolean function and constant differ for every round of the
compression function, whereas, the shift amount varies for every step within a
single round of the compression function.

Boolean Function: The following 5 Boolean functions are used in HAS-V.

fo(l’,%zau) = xy@ﬁxz@yu@zu,
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Table 4. Message ordering

[ Step ]| Round 1| Round 2| Round 3| Round 4 [ Round 5 |

0 18 18 18 18 18
1 0 3 12 7 15
2 1 6 5 2 9
3 2 9 14 13 5
4 3 12 7 8 3
5 19 19 19 19 19
6 4 15 0 3 12
7 5 2 9 14 8
8 6 5 2 9 6
9 7 8 11 4 2
10 16 16 16 16 16
11 8 11 4 15 13
12 9 14 13 10 11
13 10 1 6 5 7
14 11 4 15 0 1
15 17 17 17 17 17
16 12 7 8 11 14
17 13 10 1 6 10
18 14 13 10 1 4
19 15 0 3 12 0

Table 5. Order of Boolean function

l Line “ Round 1[ Round 2 [ Round 3 [ Round 4 [ Round 5‘

X fo S f2 f3 fa
Y Ja f3 J2 f1 fo
filz,y,z,u) =22 @y D u,
folz,y, z,u) = 2y @ ~zu ® 2,
fs(z,y,2,u) = 2 ©yz © u(= fi(y, =, 2, u)),
fa(z,y, z,u) = ~xy @ xz O yu @ zu(= fo(x, z,y,u)).

The Boolean functions are applied, in each line, as in Table

Shifts: For both lines, the shift amount is given in Table [Bl The period of the
shift amount is 20 steps in the compression function.

Constants: Additive constants are taken as the integer parts of the numbers
given in Table [

Swapping of the Chaining Variables: The contents of the chaining variables
in the X-line and the Y-line are swapped after every round.

A«F; B&G;C+H; D1 EsJ
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Table 6. Shift amount

Step mod 20 0 1 2 3 4 5 6 7 819
s 5|11 7| 13| 15| 6 | 13| 9 5| 11

Stepmod 20 || 10| 11| 12| 13| 14| 15| 16| 17| 18| 19
s 7|12 8 | 15| 13| 8 | 15| 6 7| 14

Table 7. Constants

l Line H Round 1 ‘ Round 2 ‘ Round 3 ‘ Round 4 ‘ Round 5‘
X 0 5a827999 | 6ed9ebal | 8f1bbecdc |a953 fdde
LQSO\/ﬁJ LQSO\/gJ L230\/5J LQsO\ﬁJ
Y L230\ﬁJ LQSO\/EJ 0 LQSOﬂJ LQSO\/?:J

Final Feedforward Process of Chaining Variables: Let us assume that
the contents of the chaining variables before the compression function are A ~ J,
and let the contents of the chaining variables after the compression function be
AA ~ JJ. Then the updated contents of the chaining variables, or the output
of the compression function, are given as shown.

A+=AA, B+ =BB, C+=CC, D+ = DD, E+ = EE,
F+=FF G+=GG, H+=HH, I+=1I, J+=JJ.

Output Tailoring: In the case of 320-bit hash-code, the output is given as the
contents of the 10 chaining variables concatenated, i.e. A||B||C||D||E||F||G||H
[|I]|J. Otherwise, when the length of the hash-code is required to be shorter
than 320 bits, it must be tailored into a string of specified length, denoted as
Ool|O1]] - .. ||O:(t = 3,4,...,8). The contents of O; differ in each case of various
lengths of hash-codes. Let us denote a t-bit string as X[ to explicitly indicate
the length of X.

— Case 1 (128-bit hash-code): The 32-bit chaining variables F and J can be
divided as follows:

Jo E£16]E([)16]’ J = Jl[lﬁ] J([)lﬁ].
O; is calculated as follows:

Oo=A+F+E" 0,=B+G+E,
Oy=C+H~+J 03=D+14J8.

— Case 2 (160-bit hash-code): O; is calculated as follow.
Ogy=A+F, O,=B+G, O, =C+H, O3s=D+1, Oy=FE+ J.
— Case 3 (192-bit hash-code): The 32-bit chaining variables D, E, I, and J

can be divided as follows:
D DE”D&H]DEO], o E£11]E£11]E([)10}7
= Igll]lill]l([)lo], J = J2[11]J1[11]J([)10].
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O; is calculated as follows:

Op= A+ (BNLM),  0r= B+ (|17,
0y = C+ (S, 05 =F+ (B} |DIY),
05 =G+ (BMIDG"), 05 = 1 + (B ||DM).

— Case 4 (224-bit hash-code): The 32-bit chaining variables E, I, and J can
be divided as follows:

E=pMEM N [ BBy — I8l 18 08 gl
O; is calculated as follows:

Oo = A+ (JENIEY, 0, = B+ ()1,
02 =C+ (1Y), 05 =D+ (P,
O, :F—s—EEl], Os = G+E£H], O¢ = H+E([)10].

— Case 5 (256-bit hash-code): The 32-bit chaining variables F and J can be
divided as follows:

E=EJEYEMEY J= 730 8.
O; is calculated as follows:

Op=A+JP 0,=B+JF,
Oy=C+J®, 05=D+JF,
Oy=F+EY 0;=G+E,
O¢=H+E® 0,=1+E

— Case 6 (288-bit hash-code): The 32-bit chaining variable J can be divided as
follows:
J = gy g g e g

O; is calculated as follow.

0o=A+J" 0, =B+ J"
Oy =C+J 05=D+J, 0y=E+J,
Os=F, Og=G, Oy =H, Og=1.

5 Design Rationales and Security Aspects

In this section, we discuss the underlying principles that were considered in
the process of designing HAS-V. A great deal of attention was paid to balance
the characteristics of security and performance. Security matters are considered
based on previous attacks on hash functions and employ firm design philosophies
of the previous hash functions. Performance matters are considered in the area
of hardware support and algorithmic parallelism.
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Number of Chaining Variables in Step Operation: One of the big dif-
ferences between CISC processors, including the Intel 80x86 family and the Mo-
torola 680x0, and RISC processors, including SPARC, MIPS, PA-RISC, Pow-
erPC, and Alpha, is the number of on-chip general-purpose registers [4]. Gen-
erally RISC processors have enough general-purpose registers to load all the
chaining variables on the register. However, due to their complex instruction
set, CISC processors usually suffer from a shortage of general-purpose registers.
In the case of a Pentium processor, there are only 7 general-purpose registers
on its chip. Assuming at least 1 register is needed for temporary storage, no
more than 6 registers can be used in an iterative step operation to perform with-
out deterioration. HAVAL uses 8 chaining variables in its step operation and
could suffer from performance deterioration in CISC processors. Therefore, in
the design of HAS-V, a twin structure was employed and the number of chaining
variables used in the step operation was chosen to be 5, so that the entire set of
chaining variables could be loaded on the processor during the iterative process.
It may seem at first that the two lines should be processed simultaneously since
the chaining variables are swapped after every round. However, the two lines of
the compression function can be processed independently as the entire chaining
variables are swapped instead of just a portion of it. In an implementation point
of view, the chaining variables are not actually swapped. Instead, the message
words, Boolean function, and constants used in the step operation of round 2
and round 4 are replaced by the co rresponding ones of the opposite line. This
can be better understood by referring to the pseudo-code in Appendix A.

Process of Message Words: Early attacks on MD4 and MD5 were based
on the weakness of the rather straightforward usage of the message words. An
attack on the last two rounds of MD4 [I] and the cryptanalysis of MD4 [7] fall
into this category of attack. A single message word of the input is only used
once in every round of MD4 and MD5. This seems to provide vulnerability for
inner collisions. A concept of message expansion was introduced in SHA-1, which
provided a concrete security level against these sorts of attacks. This attractive
property of message expansion was employed in the design of HAS-V. However,
the generation of 64 message words from 16 message words of input seemed to
load a heavy burden on the performance of SHA-1. In HAS-V, we have generated
20 message words from 16 message words for each line. This allows HAS-V to
stay within a fairly good performance range, while providing enough diffusion
from a single message word.

Step Operation: The structure of the step operation is an important factor
in determining the performance factor. It is known that the step operation used
in SHA-1 possesses a natural algorithmic parallelism in its compression function
[]. This arises from the fact that the updated chaining variable is not used in the
Boolean function of the next step operation, which has the effect of reducing the
critical path length. This mechanism has been employed in the step operation
of HAS-V to provide a further advantage in performance. Other characteristics
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in the step operation of HAS-V are the use of 4-variable Boolean functions and
the use of a shift amount, which varies for each step within a single round of
the compression function. The variable shift amount seems to provide better
immunity against attacks such as differential collision in SHA-0 [5]. The gener-
alization of inner collisions to a full compression function seemed to be harder
with variable shift amounts.

Boolean Function: Previous attacks such as the collision attack on the com-
pression function of MD5 [2] and differential attacks uses the linear approxima-
tion of Boolean functions. HAS-V employs 4-variable Boolean functions, whereas
most MD4-family hash functions employ 3-variable Boolean functions. Having
an extra variable in the Boolean function increases the complexity of a linear
approximation and the computational cost of the Boolean function. Therefore,
it is important to keep the balance between the needs for non-linearity and the
loss of computational efficiency, while constructing a Boolean function. The com-
putation of Boolean functions in HAS-V require about 3 or 4 unit operation7
whereas the 3-variable Boolean functions used in other hash functions require
about 2 or 3 unit operations. Therefore, by using 4-variable Boolean functions
and omitting a single addition in the step function, we can improve the security
aspects of HAS-V without performance deterioration. Among the numerous 4-
variable Boolean functions, we have selected ones that are 0-1 balanced, satisfy
SAC, and have a high non-linearity [I6/I7] to be used in HAS-V.

Output Tailoring: The output of HAS-V must provide a variable output
from 128 bits to 320 bits, incrementing in multiples of 32 bits. We have modified
the output tailoring method of HAVAL to produce the desired length of output,
while providing a fair share to all of the chaining variables. Moreover, this process
must not put unnecessary burden on the overall workload to deteriorate the
performance.

Endianness: As with most of the MD4-family hash functions, the newly pro-
posed hash function is optimized for 32-bit architecture processors. HAS-V fa-
vors ’little-endian’ architectures. Processors with ’big-endian’ architectures have
to byte-reverse each word before processing, and since the big-endian processors
are generally faster, it was decided to let them do the reversing it. This incurs a
performance penalty of about 25%.

! The number of unit operations for Boolean functions can be defined by the least
number of bit-wise operations such as =, A, V, or ¢, which are required to compute
the Boolean functions. It can be regarded as a performance measure. If we modify
the Boolean functions fo, fi, and fa, of HAS-V, the number of unit operations can be
found. For example, since the truth table of fo is equivalent to that of (z®u)(y®z)Pz,
the number of unit operations of fy is less than 4. In a similar way, those of f1 and
f2 are 3 and 4, respectively
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Table 8. Comparison of speed performance

Performance(Mbits/sec)
Algorithm Pentium ITI (600MHz) | Ultra 2 SPARC (300MHz)
Microsoft Visual C++ GNU C
MD5 41.95 22.04
SHA-1 22.58 10.54
RIPEMD-160 19.38 8.94
HAVAL(5 PASS) 20.64 11.01
HAS-V 27.86 12.58

6 Performance Evaluation

In this section we compare the performance of MD5, SHA-1, RIPEMD-160,
HAVAL, and HAS-V. Output tailoring was ignored in both HAVAL and HAS-
V, since it only occupies a negligible amount of time. Implementations were
written in the C language and there was no optimization done in any way.
The implementation was done solely for comparative reasons. The performance
results were extracted by hashing 64Mbytes of data using an 8Kbyte buffer.
Table [§ shows the results of our experiment. The results show that HAS-V has
better performance than SHA-1, RIPEMD-160, or HAVAL with 5 passes in both
environments.

The step operation of HAS-V consists of 3 additions, 2 circular shifts, and a
Boolean function. Since the Boolean function consists of 4 unit operations, a sin-
gle step operation will consist of 9 unit operations, assuming both addition and
circular shift to be equivalent to unit operation. The total number of unit op-
erations for generating the extra messages is 2(lines)x 5(rounds) x4 (messages) x
3(unit operations) = 120(unit operations). Therefore the number of unit
opeations to hash 1024 bit block is given below.

1(block) x 200(steps) x 9(step operation) 4+ 120(message expansion)

= 1920(unit operations)

In the case of RIPEMD-160, the total number of unit operation to hash 1024
bit block is given below.

2(block) x 160(steps) x 9(step operation)

= 2880(unit operations)

This is about 33% more operation than HAS-V. This fact can also be seen in
Table 8 where HAS-V is 31% faster than RIPEMD-160 on a Pentium PC.

7 Conclusion

We have proposed a new hash function with a variable length hash-code, namely
HAS-V. The design was made such that it is both secure and efficient in most
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computing environments. We expect that our results will broaden the use of
KCDSA or any other cryptographic application that uses hash functions. We
believe that the variable nature of the hash-code length will anticipate the needs
of various practical applications.
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A Pseudo-Code of HAS-V

A.1 Definition

Let the input message string be consisted of ¢ 1024-bit blocks, represented as
{X;[5], Yi[4]}(0 < i < t,0 < j < 16).

filz,y,z,u) =2y & -zzdyud zu (0 < j <19)
filz,y,z,u) =z2@ydu (
fj(xayazau):xy@_'xu@’z (
fi(z,y,z,u) =z @ yz O u (60 <
fi(z,y,z,u) = ~zy ® xz & yu® zu (80 < j <99
g;i(z,y, z,u) = "zy Bz dyud zu (
gi(z,y,z,u) =rByzdu (
gj(z,y,z,u) =2y ® ~2ud 2 (
gj(z,y,z,u) =22 DYy Su (60 <
gj(z,y,z,u) =2y @2z @yud zu (80 < j <99

= (00000000 KJ" = a953 fdde (0< _j <19)
= 5a827999 K} = 8 f1bbcdc ( )
= 6ed9ebal K;- = (00000000 (40 < < j < 59)
= 8f1bbcdc K; = 5a827999 (60 <j<79)

( )

= a953 fdde K = 6ed9ebal 80 <5 <99

s(j) = 5,11,7,13,15,6,13,9,5,11,7,12,8,15,13,8,15,6,7,14

m(j) = 18,0,1,2,3,19,4,5,6,7,16,8,9,10,11,17,12,13,14,15 (0 < j < 19)
m(j) = 18.3,6.9,12,19,15,2.5,8, 16, 11, 14, 1,4, 17,7,10,13,0 (20 < j < 39)
m(j) = 18,12,5,14,7,19,0,9.2,11,16, 4, 13,6, 15,17, 8, 1,10,3 (40 < j < 59)
m(j) = 18,7,2,13,8,19,3,14,9,4,16,15,10,5,0,17,11,6,1,12 (60 < j < 79)
m(j) = 18,15,9,5,3,19,12,8,6,2,16,13,11,7,1,17,14,10,4,0 (80 < j < 99)
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a;(k) =0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 (j = 0)

a;(k) =3,6,9,12,15,2,5,8,11,14,1,4,7,10,13,0 (j = 20)
a;(k) =12,5,14,7,0,9,2,11,4,13,6,15,8,1,10,3 (j = 40)
a;(k) =7,2,13,8,3,14,9,4,15,10,5,0,11,6,1,12 (j = 60)
a;(j) = 15,9,5,3,12,8,6,2,13,11,7,1,14,10,4,0 (j = 80)

A.2 Pseudo-Code

Initial values of the chaining variables
ho = 67452301; h1 = efcdab89; ho = 98badcfe; hy = 10325476; hy = c3d2el f0;
hs = 8796a5b4; hg = 4b5a6978; h7 = 0f1e2d3c; hg = a0blc2d3; hg = 68794e5f;

fori=0,...,t—1{
A=ho;B=h1;C =ho; D = h3; £ = hy;
F = hs;G = he; H = hy; I = hg; J = hy;
for j =0 to 99{
if(j = 0,40,80){
for k =0 to 3{
©Xila;(4k 4 3);

}
}
else if(j = 20,60){
for k =0 to 3{
Yi[16 + k] = Y;[a;(4k)] @ Yila;(4k + 1)] @ Y;[a,(4k + 2)]
®Yila;(4k + 3);
}

if(round = 1,3,5){

T = A<sU%29) 4 f,(B,C, D, E) + X;[m(j)] + K;;
}
else if(round = 2,4){

T = A% 1 g.(B,C, D, B) + Yilm(j)] + K;

}
E=D;D=C;C=BS3B=A4,A=T,;

for j = 0 to 99{
if(j = 0,40,80){
for k=0 to 3{
Yi[16 + k] = Y;[a;(4k)] @ Yila;(4k + 1)] @ Y;[a,; (4k + 2)];
@Yila;(4k + 3);

}
else if(j = 20,60){
for k=0 to 3{
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}

}
if(round = 1,3,5){
T = PO 4 g,(G, H,1,0) + Yilm()] + K

else if(round = 2,4){
T = F<sU%20) 4 £4(G H, 1L J) + Xam(5)] + Kj;

}
J=LI=HH=GS.G=F,F =T,
}
ho+=F; hi+=G; ho+=H; hs+=I; ha+=J;
hs+=A; he+=B; hy+=C; hg+=D; ho+=E;

Test Values of HAS-V

The test values of HAS-V are given in the case of 320-bit hash-code with no
output tailoring

HAS-V("")=475974be d7eall37d 982d1df5 b2583bla c4d5941d
8d557bb3 03586742 d8891788 94329668 a9da68c3
HAS-V("abc")=a70ab818 294865cf 9c9697d6 97152353 70381b83
3£8f1a42 0150588 8b002e43 05fe6405 519f£595¢c
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