
An Efficient Parallel Algorithm
for Scheduling Interval Ordered Tasks

Yoojin Chung1, Kunsoo Park2?, and Hyuk-Chul Kwon3?

1 Research Institute of Computer and Information & Communication,
Pusan National University, Pusan, 609-735, Korea

chungyj@pusan.ac.kr
2 School of Computer Science and Engineering,
Seoul National University, Seoul 151-742, Korea

kpark@theory.snu.ac.kr
3 Division of Computer Science and Engineering,
Pusan National University, Pusan, 609-735, Korea

hckwon@pusan.ac.kr

Abstract. We present an efficient parallel algorithm for scheduling n
unit length tasks on m identical processors when the precedence graphs
are interval orders. Our algorithm requires O(log2 v + (n log n)/v) time
and O(nv2 + n2) operations on the CREW PRAM, where v ≤ n is a
parameter. By choosing v =

√
n, we obtain an O(

√
n log n)-time algo-

rithm with O(n2) operations. For v = n/ log n, we have an O(log2 n)-
time algorithm with O(n3/ log2 n) operations. The previous solution ta-
kes O(log2 n) time with O(n3 log2 n) operations on the CREW PRAM.
Our improvement is mainly due to a reduction of the m-processor schedu-
ling problem for interval orders to that of finding a maximum matching
in a convex bipartite graph.

1 Introduction

The m-processor scheduling problem for a precedence graph G is defined as
follows. An input graph G has n vertices each of which represents a task to be
executed on any one of m identical processors. Each task requires exactly one
unit of execution time on any processor. At any timestep at most one task can
be executed by a processor. If there is a directed edge from task t to task t′, then
task t must be completed before task t′ is started. An m-processor schedule for
G specifies the timestep and the processor on which each task is to be executed.
The length of a schedule is the number of timesteps in it. A solution to the
problem is an optimal (i.e., shortest length) schedule for G.

The m-processor scheduling problem for arbitrary precedence graphs has
been studied extensively. When m = 2, there are polynomial-time algorithms for
the problem [6,3,9,7], and when m is part of the input, the problem is known to be
NP-hard [20]. When m is part of the input, several researchers have considered
restrictions on the precedence graphs. Polynomial-time algorithms for the m-
processor scheduling problem are known for the cases that the precedence graphs
? This work was supported by the Brain Korea 21 Project.

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 100–111, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

An Efficient Parallel Algorithm for Scheduling Interval Ordered Tasks 101

are trees [12] and interval orders [15]. A survey of results on other special cases
of the problem can be found in [13].

In parallel computation, the two processor case has been studied mostly.
When m = 2, Helmbold and Mayr [11] gave the first NC algorithm and Vazi-
rani and Vazirani [21] presented an RNC algorithm. Jung, Serna and Spirakis
[16] developed an O(log2 n)-time algorithm using O(n3 log2 n) operations on the
CREW PRAM. When m = 2 and the precedence graphs are interval orders,
Moitra and Johnson [18] and Chung, Park and Cho [2] gave NC algorithms, and
the one in [2] requires O(log2 v + (n log n)/v) time and O(nv2 + n2) operations
on the CREW PRAM, where v ≤ n is a parameter.

When m is part of the input and the precedence graphs are interval or-
ders, Sunder and He [19] developed the first NC algorithm for the scheduling
problem, which takes O(log2 n) time using O(n5 log2 n) operations or O(log3 n)
time using O(n4 log3 n) operations on the priority CRCW PRAM. Mayr [14]
gave an O(log2 n)-time algorithm using O(n3 log2 n) operations on the CREW
PRAM.

In this paper, we present an efficient parallel algorithm for the m-processor
scheduling problem when the precedence graphs are interval orders. Our algo-
rithm takes O(log2 v + (n log n)/v) time using O(nv2 + n2) operations on the
CREW PRAM, where v ≤ n is a parameter. By choosing v =

√
n, we obtain an

O(
√

n log n)-time algorithm with O(n2) operations. For v = n/ log n, we have an
O(log2 n)-time algorithm with O(n3/ log2 n) operations.

We briefly compare Mayr’s algorithm and ours. A parallel algorithm that
computes the length of an optimal m-processor schedule for an interval order
will be called an m-LOS algorithm. Mayr’s algorithm basically consists of two
parts. The first part uses an m-LOS algorithm to compute the lengths of opti-
mal schedules, which takes O(log2 n) time using O(n3 log2 n) operations on the
CREW PRAM. The second part computes an actual scheduling, which takes
O(log2 n) time using O(n3 log2 n) operations on the CREW PRAM. Our algo-
rithm also consists of two parts and its first part is an m-LOS algorithm, but
our algorithm is quite different from Mayr’s as follows.

– We give an efficient m-LOS algorithm that takes O(log2 v + (n log n)/v)
time and O(nv2 + n2) operations on the CREW PRAM by generalizing the
techniques used for two-processor scheduling in [2].

– After computing the lengths of optimal schedules, we reduce the m-processor
scheduling problem for interval orders to that of finding a maximum mat-
ching in a convex bipartite graph using the lengths to compute an actual
scheduling. Therefore, the part of computing an actual scheduling in our
algorithm takes O(log2 n) time using O(n log2 n) operations on the EREW
PRAM.

The remainder of this paper is organized as follows. The next section gives
basic definitions and a sequential scheduling algorithm. Section 3 describes the
reduction of m-processor scheduling to maximum matching in a convex bipartite
graph. Section 4 describes our efficient m-LOS algorithm.

102 Y. Chung, K. Park, and H.-C. Kwon

2 Basic Definitions and Sequential Algorithm

In this section we describe basic definitions and a sequential m-processor sche-
duling algorithm. An instance of the m-processor scheduling problem is given by
a precedence graph G = (V, E). A precedence graph is an acyclic and transitively
closed digraph. Each vertex of G represents a task whose execution requires unit
time on one of m identical processors. If there is a directed edge from task t to
task t′, then task t must be completed before task t′ is started. In such a case,
we call t a predecessor of t′ and t′ a successor of t. We use 〈t, t′〉 to denote a
directed edge from t to t′. A schedule is a mapping from tasks to timesteps such
that at most m tasks are mapped to each timestep and for every edge 〈t, t′〉, t is
mapped to an earlier timestep than t′. The length of a schedule is the number
of timesteps used. An optimal schedule is one with the shortest length.

Let I = {I1, . . . , In} be a set of intervals with each interval Ii represented by
Ii.l and Ii.r, where Ii.l and Ii.r denote the left and right endpoints of interval
Ii, respectively. Without loss of generality, we assume that all the endpoints are
distinct. We also assume that the intervals are labeled in the increasing order
of right endpoints, i.e., I1.r < I2.r < · · · < In.r because sorting can be done in
O(log n) time using O(n log n) operations on the EREW PRAM [4]. Given a set
I of n intervals, let GI = (V, E) be a graph such that

– V = I = {I1, I2, . . . , In} and
– E = {〈Ii, Ij〉 | 1 ≤ i, j ≤ n and Ii.r < Ij .l}.

Such a graph GI is called an interval order. Note that GI is a precedence
graph. Given a set I of n intervals, the interval graph GI is an undirected graph
such that each vertex corresponds to an interval in I and two vertices are adja-
cent whenever the corresponding intervals have at least one point in common.
Therefore, an interval graph GI is a complement of the interval order GI . We say
that two vertices are independent if they are not adjacent in a graph. Note that
overlapping intervals are adjacent in GI and they are independent of each other
in GI . In what follows, we use the words tasks and intervals interchangeably.

A schedule of length r on m processors for an interval order GI can be
represented by an m × r matrix M , where the columns are indexed by 1, . . . , r
and the rows are indexed by 1, . . . , m. Let P1, . . . , Pm denote the m identical
processors. If task x is scheduled on processor Pi at timestep τ , then x is assigned
to a slot M [i, τ]. No two tasks are assigned to the same slot in M . A slot of M
to which no task is assigned is said to have an empty task. We assume that the
right endpoint of an empty task is larger than all right endpoints in I. A column
of M is called full if it does not have an empty task. Let opt(I) be the length of
an optimal schedule for an interval order GI .

Algorithm m-seq(I, m)

Input: intervals in I
Output: m× opt(I) matrix Ms

An Efficient Parallel Algorithm for Scheduling Interval Ordered Tasks 103

begin
τ ← 1;
Sτ ←the list of intervals in I sorted in the increasing order of right endpoints;
while Sτ 6= φ do

S′ ← {};
Extract the first interval from Sτ and insert it to S′;
repeat

Scan Sτ from left to right. When interval w is scanned,
if w is overlapping every interval in S′

then extract w from Sτ and insert it to S′ fi;
until (S′ contains m intervals or all intervals of Sτ are considered)
Schedule the intervals of S′ in column τ of Ms

in the order of the elements in list S′;
Sτ+1 ← Sτ ;
τ ← τ + 1;

od
Output the schedule Ms constructed;
end

Fig. 1. Sequential scheduling algorithm

The sequential algorithm [15] in Figure 1 solves the m-processor scheduling
problem for an interval order GI , which runs in O(n log n) time. Let I(1, j)
denote {I1, . . . , Ij}, 1 ≤ j ≤ n. Note that m-seq computes an optimal schedule
for GI(1,j). We can easily get the following facts from algorithm m-seq.

Fact 1 All the intervals in the same column of Ms overlap each others.

Fact 2 In each column τ of Ms in m-seq, Ms[1, τ].r ≤ Ms[2, τ].r ≤ . . . ≤
Ms[m, τ].r.

Fact 3 In the first row of Ms, Ms[1, 1].r < Ms[1, 2].r < . . . < Ms[1, m].r.

Proof. It follows from the fact that for every τ , Ms[1, τ] is the first ending interval
in Sτ and Ms[1, τ ′] with τ ′ > τ is in Sτ .

3 Constructing an Optimal Schedule

In this section we describe our parallel m-processor scheduling algorithm for
interval orders. We first describe characteristics of maximal cliques in interval
graphs. A set of intervals form a clique if each pair of intervals in the set has a
nonempty intersection. If we scan any given interval x from its left endpoint to
its right, we can meet all those maximal cliques to which x belongs. This yields
the Gilmore-Hoffman theorem [10].

104 Y. Chung, K. Park, and H.-C. Kwon

j

2 3 4 5 6 71t

a b c e i l o

f d g

h n

m

c4 c3 c2c5 c1

P2

P3 j

k

P1

a b c e i l

d g m

h

f n

C1 C2 C3 C4 C5 C6 C9C7 C8

{d,f,h,j} {k,l,n}{a,f}

k

o

Fig. 2. An interval set I and GI ’s optimal schedule when m = 3.

Theorem 1. [10] The maximal cliques of an interval graph can be linearly or-
dered so that for any given interval x, the set of cliques in which x occurs appear
consecutively in the linear order.

Let k be the number of maximal cliques in GI . Let C1, . . . , Ck be the maximal
cliques of GI in the ordering of Theorem 1. Given an interval set, we can find
the maximal cliques of the interval graph GI using Lemma 1. In Figure 2, dotted
vertical lines mark the right endpoints of Lemma 1, i.e., there are nine maximal
cliques in GI and they are C1 = {a, f}, C2 = {b, f}, C3 = {c, d, f, j}, etc.

Lemma 1. [2] In an interval set I, a right endpoint represents a maximal clique
of GI if and only if its previous endpoint in the sorted list of left and right
endpoints is a left endpoint.

For each interval x ∈ I, let sx and lx be the smallest and the largest j, respec-
tively, such that x belongs to Cj . In Figure 2, sh = 4 and lh = 6 because interval
h is in C4, C5 and C6. Let sltask(i, j), 1 ≤ i, j ≤ k, be the set of intervals x such
that i ≤ sx and lx ≤ j. In Figure 2, sltask(1, 5) = {a, b, c, d, e, f}. Note that al-
gorithm m-seq(I, m) in Figure 1 computes an optimal schedule for Gsltask(1,j),
1 ≤ j ≤ k, because m-seq computes an optimal schedule for GI(1,t), 1 ≤ t ≤ n,
and maximal cliques C1, . . . , Ck of GI are labeled by scanning endpoints of I

An Efficient Parallel Algorithm for Scheduling Interval Ordered Tasks 105

from left to right using Lemma 1. Let len(i, j) be the minimum number of time-
steps required to schedule all tasks in sltask(i, j), i.e., opt(sltask(i, j)).

Lemma 2. [2] For two intervals x, y ∈ I, lx < sy if and only if x.r < y.l.

We now describe our parallel m-processor scheduling algorithm for interval
orders. Our algorithm consists of two parts. The first part is an m-LOS algorithm
m-length, which will be described in Section 4. Algorithm m-length computes
len(1, j) for all 1 ≤ j ≤ k. The second part computes an optimal schedule by
reducing the m-processor scheduling problem for an interval order to that of
finding a maximum matching in a convex bipartite graph.

We first describe the definition of a convex bipartite graph. A convex bi-
partite graph G is a triple (A, B, E) such that A = {a1, a2, . . . , an} and B =
{b1, b2, . . . , bm} are disjoint sets of vertices and the edge set E satisfies the fol-
lowing properties:

(1) Every edge of E is of the form (ai, bj).
(2) If (ai, bj) ∈ E and (ai, bj+t) ∈ E, then (ai, bj+r) ∈ E for every 1 ≤ r < t.

Property (1) is a bipartite property while property (2) is a convexity pro-
perty. It is clear that every convex bipartite graph G = (A, B, E), where A =
{a1, . . . , an} and B = {b1, . . . , bm}, is uniquely represented by a set of tri-
ples: T = {(ai, gi, hi) | 1 ≤ i ≤ n}, where gi = min{j | (ai, bj) ∈ E} and
hi = max{j | (ai, bj) ∈ E}. Dekel and Sahni [5] developed an O(log2 n)-time
convex bipartite maximum matching algorithm using O(n log2 n) operations on
the EREW PRAM.

Our m-processor scheduling algorithm is as follows.

Algorithm m-schedule

– Step 1: Compute sx and lx for every x ∈ I.
– Step 2: Let L0 = 0. Let Lj = len(1, j) for 1 ≤ j ≤ k and compute Lj .
– Step 3: Construct a convex bipartite graph Gb = (Ab, Bb, Eb), where Ab = I,

Bb = {1, 2, . . . , mLk} and Eb is computed from Lj , j ≤ k, as follows. If an
interval x ∈ I is in a maximal clique Ct in GI , then x is adjacent to all j in Bb

such that mLt−1 +1 ≤ j ≤ mLt. Since an interval x is in every Ct such that
sx ≤ t ≤ lx by Theorem 1, Gb is represented by T = {(x, mLsx−1+1, mLlx) |
x ∈ I}.

– Step 4: Find a maximum matching in Gb. Then an optimal schedule for
GI is represented by an m × Lk matrix Mb, whose j-th column consists of
the tasks in Ab matched with m(j − 1) + 1, . . . , mj in Bb in the maximum
matching of Gb.

We now prove the correctness of algorithm m-schedule.

Lemma 3. All the intervals in the same column of Mb are independent of each
other in GI .

106 Y. Chung, K. Park, and H.-C. Kwon

Proof. By definition of Gb, all intervals that are adjacent to one of mLj−1 +
1, . . . , mLj in Gb, 1 ≤ j ≤ Lk, are also adjacent to all of mLj−1+1, . . . , mLj and
they are all in the same maximal clique in GI . Therefore, the intervals matched
with mLj−1 + 1, . . . , mLj in the maximum matching of Gb are independent of
each other in GI . Since all the intervals in columns Lj−1 + 1, . . . , Lj , 1 ≤ j ≤ k,
in Mb are independent of each other in GI , we have the lemma.

Lemma 4. The convex bipartite graph Gb = (Ab, Bb, Eb) has a maximum mat-
ching of size n, i.e., all intervals in Ab are matched in a maximum matching of
Gb.

Proof. Construct an edge set E′ ⊆ Ab × Bb from Ms constructed by algorithm
m-seq in Figure 1 as follows. E′ = {(x, j) | x ∈ Ab is the j-th element of Ms in
the column-major order}. Then every edge (x, j) in E′ satisfies m(τ − 1) + 1 ≤
j ≤ mτ , where τ is the column number in Ms at which x is. We first show that
E′ ⊆ Eb. Note that τ ≤ Llx because m-seq produces an optimal schedule for
Gsltask(1,lx). And we have τ > Lsx−1 by the following.

– If x is in the first row in Ms, then τ > Lsx−1 because x 6∈ sltask(1, sx − 1)
and the task in the first row uses a new time unit after time Lsx−1.

– If x is in row r such that r ≥ 2, i.e., x = Ms[r, τ], then Ms[1, τ] 6∈ sltask(1, sx−
1) because Ms[1, τ] and x overlap by Fact 1, and thus τ > Lsx−1.

Hence Lsx−1 + 1 ≤ τ ≤ Llx . Since x is adjacent to all t such that mLsx−1 + 1 ≤
t ≤ mLlx in Eb, every edge (x, j) in E′ is also in Eb. Since j’s are distinct, E′ is
a maximum matching of size n in Gb.

Lemma 5. The m× Lk matrix Mb is an optimal schedule for GI .

Proof. Consider tasks x and y of GI such that y is a successor of x. Let τ and τ ′

be the columns of Mb at which x and y are, respectively. Note that Mb has Lk

columns, which is opt(I), and all tasks are in Mb by Lemma 4. Since all the tasks
in the same column of Mb are independent of each other in GI by Lemma 3, we
can prove that Mb is an optimal schedule for GI by showing that τ ′ > τ .

Let t and t′ be integers matched with x and y, respectively, in the maximum
matching of Gb. Then t ≤ mLlx and mLsy−1 +1 ≤ t′ by definition of Gb. Since y
is a successor of x, we have lx < sy by Lemma 2, which implies that t′ is greater
than t. Since y must be in a different column of Mb with that of x by Lemma 3,
we have τ ′ > τ .

Theorem 2. An optimal schedule for GI on m processors can be solved in
O(log2 v + (n log n)/v) time with O(nv2 + n2) operations on the CREW PRAM,
where v ≤ n is a parameter.

An Efficient Parallel Algorithm for Scheduling Interval Ordered Tasks 107

Proof. The correctness of algorithm m-schedule follows from Lemma 5. We will
show that m-schedule takes O(log2 v + (n log n)/v) time and O(nv2 + n2) opera-
tions on the CREW PRAM. Step 1 takes O(log n) time using O(n log n) opera-
tions as follows. In a sorted endpoints sequence, put 1 at the right endpoints of
Lemma 1 and 0 in other endpoints and compute sx and lx using a prefix sum, i.e.,
the prefix sum at x.l is sx− 1 and the prefix sum at x.r is lx. Since we can com-
pute all Lj (= len(1, j)) for 1 ≤ j ≤ k by running algorithm m-length in Section 4
only once, Step 2 takes O(log2 v+(n log n)/v) time with O(nv2 +n2) operations.
Step 3 takes constant time using O(n) operations. Step 4 takes O(log2 n) time
with O(n log2 n) operations using Dekel and Sahni’s algorithm [5].

4 Computing the Length of an Optimal Schedule

We now describe our m-LOS algorithm. We obtain our m-LOS algorithm in
Figure 3 by generalizing the 2-LOS algorithm in [2].

Algorithm m-length
for all i, j with 1 ≤ i ≤ j ≤ k do in parallel

compute |sltask(i, j)|
len0(i, j) = d|sltask(i, j)|/me

od
for r = 1 to dlog ne do

for all i, j with 1 ≤ i ≤ j ≤ k do in parallel
lenr(i, j) = maxi≤x≤j{lenr−1(i, x) + lenr−1(x + 1, j)}

od
od
print lendlog ne(1, k)
end

Fig. 3. An efficient m-LOS algorithm

We now prove the correctness of algorithm m-length. We first define sets
χ1, . . . , χz of tasks for an interval order such that:

– all tasks in any χi+1 are predecessors of all tasks in χi and
– the length of an optimal schedule equals

∑
id|χi|/me.

Our sets χi’s for m-processor scheduling are the generalization of those for
two-processor scheduling [3] tailored to the special case of interval orders. We
do not explicitly compute these sets in algorithm m-length in Figure 3; we only
make use of them for the proof of its correctness.

We define the sets χ1, . . . , χz of tasks from the schedule Ms computed by
algorithm m-seq in Figure 1 as follows. We recursively define tasks vi and wi for
i ≥ 1. Let v1 be the last task executed by processor P1 (i.e., v1 is Ms[1, opt(I)])
and w1 is (a possibly empty task) Ms[m, opt(I)]. Given vi, we define wi+1 and
vi+1 as follows. Suppose that vi is Ms[1, τ]. Let τ ′ be the largest column number

108 Y. Chung, K. Park, and H.-C. Kwon

less than τ in Ms such that Ms[m, τ ′].r > vi.r or Ms[m, τ ′] is an empty task.
Then wi+1 is Ms[m, τ ′] and vi+1 is Ms[1, τ ′]. In Figure 2, v1 = o, and thus w2
is an empty task and v2 = i. Also w3 = j and v3 = c. Note that each column
τ ′′ such that τ ′ < τ ′′ < τ is full. Let z be the largest index for which wz and vz

are defined. We assume that vz+1 is a special interval β whose right endpoint
is smaller than all endpoints in I and lvz+1 = 0. Let τi, 1 ≤ i ≤ z, denote the
timestep at which vi is executed. Define χi to be {x|x is in column τ ′′ such that
τi+1 < τ ′′ < τi} ∪ {vi}. In Figure 2, sets χi’s for GI are marked by thick lines
in the schedule. The characteristics of χi’s are as follows.

Lemma 6. In GI , every task x ∈ χi satisfies x.r ≤ vi.r.

Proof. Since τi+1 is the largest column number less than τi such that Ms[m, τi+1
].r > vi.r, we have Ms[m, τ ′′].r < vi.r for τi+1 < τ ′′ < τi. Note that we assume
that an empty task has the largest right endpoint in I. Since the task in the last
row in each column has the largest right endpoint in the column by Fact 2, every
task x in column τ ′′ such that τi+1 < τ ′′ < τi satisfies x.r < vi.r. Therefore,
every x ∈ χi satisfies x.r ≤ vi.r.

Lemma 7. In GI , all tasks in χi+1 are predecessors of all tasks in χi.

Proof. Let y be a task in χi. Since every x ∈ χi+1 satisfies x.r ≤ vi+1.r by
Lemma 6, we can prove the lemma by showing that vi+1.r < y.l. Since y.r ≤ vi.r
and vi.r < wi+1.r = Ms[m, τi+1].r, we have y.r < Ms[m, τi+1].r. Since y is at one
of columns τi+1 + 1, . . . , τi, we have Ms[1, τi+1].r < y.r by Facts 2 and 3. Hence
Ms[1, τi+1].r < y.r < Ms[m, τi+1].r. If y overlaps Ms[1, τi+1] = vi+1, then y
should be assigned to column τi+1 in m-seq in Figure 1, which is a contradiction.
Therefore, vi+1.r < y.l.

Theorem 3. The length of an optimal schedule for GI is
∑

1≤i≤zd|χi|/me.
Proof. Since each column τ ′′ such that τi+1 < τ ′′ < τi is full and vi = Ms[1, τi]
is in χi, we get d|χi|/me = τ − τ ′. Therefore,

∑
1≤i≤zd|χi|/me is the number of

columns in Ms, which is opt(I).

When m = 2, Chung et al. [2] showed that χi equals sltask(lvi+1 + 1, lvi) for
1 ≤ i ≤ z and that lendlog ne(i, j) equals len(i, j) for 1 ≤ i ≤ j ≤ k. Similarly,
we can prove the correctness of algorithm m-length as follows.

Lemma 8. In GI , χi ⊆ sltask(lvi+1 + 1, lvi
) for 1 ≤ i ≤ z.

Proof. Let x be a task in χi. Since vi+1 ∈ χi+1 is a predecessor of x by Lemma 7,
we have vi+1.r < x.l, which implies lvi+1 < sx by Lemma 2. Since x.r ≤ vi.r by
Lemma 6, we have lx ≤ lvi

. Therefore, x is in sltask(lvi+1 + 1, lvi
).

Corollary 1. In GI ,
⋃

i≤t≤j χt ⊆ sltask(lvj+1 + 1, lvi) for 1 ≤ i ≤ j ≤ z.

An Efficient Parallel Algorithm for Scheduling Interval Ordered Tasks 109

Corollary 2. In GI , all tasks in sltask(lvj+1 + 1, lvi
), i ≤ j, are successors of

all tasks in
⋃

j+1≤t≤z χt and predecessors of all tasks in
⋃

1≤t≤i−1 χt.

Lemma 9. Every task in sltask(lvi+1 + 1, lvi) is in one of columns τi+1 +
1, . . . , τi.

Proof. Let y be a task in sltask(lvi+1+1, lvi
). Note that y satisfies Ms[1, τi+1].r <

y.l by Lemma 2 and y.r < Ms[1, τi + 1].l by Lemma 7. Therefore, y must be in
one of columns τi+1 + 1, . . . , τi by the way algorithm m-seq in Figure 1 works.

Lemma 10. In GI ,
∑

i≤t≤jd|χt|/me = len(lvj+1 + 1, lvi
) for 1 ≤ i ≤ j ≤ z.

Proof. The proof for the case m = 2 is in Lemma 8 in [2] and the proof of the
lemma is similar.

Lemma 11. In algorithm m-length, lenr(i, j) ≤ len(i, j) for 0 ≤ r ≤ dlog ne.
Proof. It is similar to the proof of Lemma 9 in [2].

Lemma 12. In algorithm m-length, lendlog ne(i, j) ≥ len(i, j) for 1 ≤ i ≤ j ≤ k.

Proof. We show that lendlog ne(1, k) ≥ len(1, k). We prove by induction on r
that for i ≤ 2r,

lenr(lvx+i
+ 1, lvx

) ≥
∑

x≤t<x+i

d|χt|/me (1)

When r = 0, (1) holds as follows. Since each column τ ′′ such that τi+1 < τ ′′ < τi

is full, d|sltask(lvx+1 + 1, lvx
)|/me ≥ d|χx|/me ≥ τi − τi+1 by Lemma 8. Since

d|sltask(lvx+1 + 1, lvx)|/me ≤ τi − τi+1 by Lemma 9, we have d|sltask(lvx+1 +
1, lvx)|/me = τi−τi+1. Therefore, len0(lvx+1+1, lvx) = d|sltask(lvx+1+1, lvx)|/me
= d|χx|/me. Assume that (1) holds after r iterations of the main loop. In the
(r + 1)st iteration for 2r < i ≤ 2r+1,

lenr+1(lvx+i + 1, lvx) ≥ lenr(lvx+i + 1, lvx+2r) + lenr(lvx+2r + 1, lvx)

≥
∑

x+2r≤t<x+i

d|χt|/me+
∑

x≤t<x+2r

d|χt|/me

≥
∑

x≤t<x+i

d|χt|/me

Since each χi contains at least one task, there are at most n χi’s. Thus,

lendlog ne(lvz+1 + 1, lv1) ≥
∑

1≤t≤z

d|χt|/me

≥ len(lvz+1 + 1, lv1) by Lemma 10.

Since lvz+1 + 1 = 1 and lv1 = k, we get lendlog ne(1, k) ≥ len(1, k). Similarly, we
can prove that lendlog ne(i, j) ≥ len(i, j) for 1 ≤ i ≤ j ≤ k by using sets of χi’s
for GI′ , where I ′ is sltask(i, j) in I.

110 Y. Chung, K. Park, and H.-C. Kwon

Theorem 4. There is an m-LOS algorithm that requires O(log2 v+(n log n)/v)
time and O(nv2 + n2) operations on the CREW PRAM, where v is a parameter
such that v ≤ n. Furthermore, it also computes the length of an optimal schedule
for Gsltask(1,j), 1 ≤ j ≤ k.

Proof. The correctness of algorithm m-length follows from Lemmas 11 and 12.
Algorithm m-length has a straightforward implementation using O(log2 n) time
and O(n3) processors on the CREW PRAM. It can be improved to O(log2 v +
(n log n)/v) time and O(nv2 + n2) operations using Galil and Park’s reduction
technique [8], which is similar to the proof of Theorem 3 in [2].

References

1. M. Bartusch, R. H. Mohring, and F. J. Radermacher, “M-machine unit time sche-
duling: A report of ongoing research,” Lecture Notes in Economics and Mathema-
tical Systems 304, Springer-Verlag (1988) 165–212.

2. Y. Chung, K. Park, and Y. Cho, “Parallel maximum matching algorithms in in-
terval graphs,” Int’l. J. Foundations of Comput. Science 10, 1 (1999) 47–60.

3. E. Coffman and R. Graham, “Optimal scheduling for two processor systems,” Acta
Informatica 1 (1972) 200–213.

4. R. Cole, “Parallel merge sort,” SIAM J. Comput. 17, 4 (1988) 770–785.
5. E. Dekel and S. Sahni, “A parallel matching algorithm for convex bipartite graphs

and applications to scheduling,” J. Parallel Distrib. Comput. 1 (1984) 185–205.
6. M. Fujii, T.Kasami, and K. Ninomiya, “Optimal sequencing of two equivalent

processors,” SIAM J. Appl. Math. 17 (1969) 784–789.
7. H.N. Gabow, “An almost-linear algorithm for two-processor scheduling,” J. ACM

29, 3 (1982) 766–780.
8. Z. Galil and K. Park, “Parallel algorithms for dynamic programming recurrences

with more than O(1) dependency,” J. Parallel Distrib. Comput. 21, (1994) 213–
222.

9. M. R. Garey and D. S. Johnson, “Scheduling tasks with nonuniform deadlines on
two processors,” J. ACM 23 (1976) 461–467.

10. M.C. Golumbic, Graph theory and perfect graphs, Academic Press, New York, 1980.
11. D. Helmbold and E. Mayr, “Two processor scheduling is in NC,” SIAM J. Comput.

16, 4 (1987) 747–759.
12. T. C. Hu, “Parallel sequencing and assembly line problems,” Oper. Res. 9 (1961)

841–848.
13. E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, ”Sequencing and

scheduling: Algorithms and complexity,” Technical report , Centrum voor Wiskunde
en Informatica, 1989.

14. E. Mayr, “Scheduling interval orders in parallel,” Parallel Algorithms and Appli-
cations 8 (1996) 21–34.

15. C. H. Papadimitriou and M Yannakakis, “Scheduling interval-ordered tasks,” SIAM
J. Comput. 8 (1979), pp. 405–409.

16. H. Jung, M. Serna and P. Spirakis, “A parallel algorithm for two processors prece-
dence constraint scheduling,” Proc. Int’l Colloquium on Automata, Languages and
Programming (1991) pp. 417–428.

17. D. Kozen, U.V. Vazirani and V.V. Vazirani, “NC algorithms for cocomparabi-
lity graphs, interval graphs, and unique perfect matchings,” Proc. Foundations of
Software Technology and Theoretical Computer Science (1985) pp. 496–503.

An Efficient Parallel Algorithm for Scheduling Interval Ordered Tasks 111

18. A. Moitra and R. Johnson, “A parallel algorithm for maximum matching on inter-
val graphs,” Proc. Int’l Conference on Parallel Processing 3 (1989) pp. 114–120.

19. S. Sunder and X.He, ”Scheduling interval ordered tasks in parallel,” J. Algorithm
26 (1998), pp.34–47.

20. J. D. Ulman, Complexity of sequencing problems, in ”Computer and job scheduling
theory” (E. G. Coffman, Ed.), Wiley, 1976.

21. U.V. Vazirani and V.V. Vazirani, “The two processor scheduling is in random NC,”
SIAM J. Comput. (1989) pp. 1140–1148.

	Introduction
	Basic Definitions and Sequential Algorithm
	Constructing an Optimal Schedule
	Computing the Length of an Optimal Schedule
	References

