
A Single Complete Refinement Rule for
Demonic Specifications

Karl Lermer1 and Paul Strooper2

1 Software Verification Research Centre
2 Dept. of Comp. Science and Elec. Eng.,

The University of Queensland, Queensland 4072, Australia,
{lermer,pstroop}@csee.uq.edu.au

Abstract. We present the complete lattice of demonic languages and
its interpretation in refinement proofs. In contrast to the conventional
approach of refinement with an abstraction relation on the underlying
state spaces, we introduce a notion of refinement with an abstraction
relation on the power sets of the state spaces. This allows us to derive a
single complete refinement rule for demonic specifications.

1 Introduction

In [10], a refinement semantics is presented for so-called demonic specifications
that lifts the refinement of operations defined in formal specifiation languages
such as Z and VDM to the refinement of state machines. The semantics is con-
sistent with the conventional refinement semantics for the system underlying a
specification in Z [14]. Rather than using a system or state machine semantics
via the subset ordering of prefix-closed languages [5,6,14], an approach is taken
where operations are interpreted as relations on state spaces, and input/output
histories are used to define the semantics of the underlying state machine. This
approach is not state dependent, as is the case for the improved failure model
of CSP [4,6]. Instead, the languages and specifications are restricted to so-called
demonic ones, where the enabling on a new input is dependent only on the past
input history independent of the past outputs. The refinement relation is not
simply trace inclusion where traces may disappear during the refinement pro-
cess; it requires the refined system to accept the same or more traces as the
original one. As usual, refinement relations on the operational level are defined
via abstraction relations between the underlying state spaces. In analogy to stan-
dard simulation techniques [5,9,6,11,14,13], it is then possible to express every
refinement with the help of two refinement methods on the operational level,
denoted by forward and backward refinement.

A relational approach with abstraction relations as above will always neces-
sitate two refinement rules for completeness. By using a predicate-transformer
semantics, Gardiner and Morgan [2] obtain completeness of refinement by using
a single refinement technique, called cosimulation (a predicate transformer with
certain properties).

J. van Leeuwen et al. (Eds.): IFIP TCS2000, LNCS 1872, pp. 564–579, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

A Single Complete Refinement Rule for Demonic Specifications 565

In this paper, we build on the relational approach of [10] to further investigate
the completeness of refinement. As refinement semantics we will use the partial
ordering on prefix-closed and demonic languages introduced in [10]. We then
extend the results from [10], by proving that this ordering defines a natural
lattice structure on the prefix-closed and demonic languages, and discuss its
importance for refinement proofs. This is in analogy to the subset ordering on
languages and its interpretation in refinements [3,1,5,11,14,13]. Furthermore, we
generalise the notion of refinement relations via abstraction relations on state
spaces to refinement relations via abstraction relations on power sets of state
spaces. As for the predicate transformer setting [2], it is then possible to derive
a single complete refinement rule.

In Section 2 we introduce the notions of prefix-closed and demonic langua-
ges, and demonic specifications from [10]. In Section 3, we present the lattice
structure on these languages, and in Section 4 we introduce a notion of refine-
ment on specifications and show its soundness and completeness. We conclude
in Section 5 with a comparison with related work.

2 Languages and Specifications

We view a module as a black box, accessible only through a fixed set of operati-
ons — the exported procedures and functions. A module interface specification
(hereafter just specification) specifies the behaviour of the module. The syntax
of the specification states the names of the access routines, and their inputs and
outputs. We use Op to denote the set of all operation names, In to denote the
set of all inputs, and Out to denote the set of all outputs.

The semantics of the specification describes the observable behaviour of the
operations. We are interested in comparing the behaviour of different specifica-
tions. Because there are many ways to represent the state in a specification, we
need a definition of behaviour that is independent of the state representation. We
first consider histories (observable behaviours): finite, possibly empty sequences
of the form

h = 〈c1, v1〉〈c2, v2〉 . . . 〈cn , vn〉
For i ∈ {1, ...,n}, ci = 〈ιi , opi〉 is a call to an operation opi ∈ Op with input
ιi ∈ In, and vi ∈ Out is an output. If an operation has no input or output, we
use the special symbol ⊥ to indicate this. We use the symbol ε to denote the
empty history.

2.1 Languages

The set of all histories, H, is determined by Op, In, and Out . A language L is
defined as a subset of H. We only consider non-empty languages that are prefix-
closed : for any history h ∈ L and any call-value pair 〈c, v〉, if h〈c, v〉 ∈ L then
h ∈ L.

LanH = {L ⊆ H | L 6= ∅ ∧ L is prefix-closed }

566 K. Lermer and P. Strooper

This implies ε ∈ L for all languages in LanH. We introduce the following ope-
rators on histories. For any history

h = 〈c1, v1〉〈c2, v2〉 . . . 〈cn , vn〉
we denote the corresponding trace or input sequence by

I(h) = c1c2 . . . cn

As for histories, we use ε to denote the empty trace and thus I(ε) = ε. For a set
of histories H ⊆ H, we define the set of all traces of H by

Tr(H) = {I(h) | h ∈ H }
For a language L and a trace t ∈ Tr(H), we collect all possible histories with

trace t in the set

ΩL(t) = {h | h ∈ L ∧ I(h) = t}
We will also use the following operators on finite sequences σ = s1s2...sn :

front(σ) = s1s2...sn−1, last(σ) = sn , and σ ↑ m = s1...sm . Finally, we use #σ to
denote the length of σ.

In [10], we show that the class of demonic languages provides a natural
semantics for data refinement in VDM and Z. Intuitively, a language L is demonic
if it is prefix-closed and the fact that an input is enabled depends solely on the
past input history, independent of the corresponding outputs.

Definition 1. A language L is demonic if

a) L is prefix-closed.
b) ∀ h1, h2 ∈ L : I(h1) = I(h2) ⇒

∀ ι ∈ In, ω ∈ Out , op ∈ Op :
h1〈〈ι, op〉, ω〉 ∈ L ⇒ ∃ω′ ∈ Out : h2〈〈ι, op〉, ω′〉 ∈ L

The set of demonic languages will be denoted by

Land
H = {L ⊆ H | L 6= ∅ ∧ L is demonic}

For instance, deterministic languages (∀ τ ∈ Tr(L) : #ΩL(τ) = 1) and total
languages (∀ h ∈ L, ι ∈ In, op ∈ Op ∃ω ∈ Out : h〈〈ι, op〉, ω〉 ∈ L) are demonic.

A useful characterisation for demonic languages is the following: a language
L is demonic iff

∀ τ ∈ Tr(L) \ {ε} : ΩL(front(τ)) = { h ↑ (#τ − 1) | h ∈ ΩL(τ) }

Unfortunately, the set of demonic languages Land
H does not behave as nicely

as the set of prefix-closed languages LanH, which forms a complete lattice un-
der the inclusion ordering ⊆ and the usual set operations. In general, demonic
languages are not closed under intersection and union. We will see below that
Land

H carries a lattice structure under a different ordering relation.

A Single Complete Refinement Rule for Demonic Specifications 567

We introduce a partial ordering b on languages. In Section 3, we use the
poset (partially ordered set)

(Land
H,b)

to define a lattice structure on Land
H, and in Section 4, we use this lattice as a

domain for the characterisation of refinement proofs.

Definition 2. Let L and L′ be languages in H,

L′ b L iff Tr(L) ⊆ Tr(L′) ∧ ∀ t ∈ Tr(L) : ΩL′(t) ⊆ ΩL(t)

For languages L and L′, L′ b L if all traces in L also occur in L′, and if every
history in L′ corresponding to a trace in L is also a history in L.

2.2 Specifications

A specification S defines a language L — the subset of H expressing the be-
haviour defined by the specification. In general the form of the specification
may vary, but in this paper we focus on model-based specifications, where the
behaviour is specified in terms of a state space St .

Definition 3. A (model-based) specification S is a six-tuple

(Op,St , In,Out , INIT , S)

with operation (name) set Op, state set St, input set In, output set Out, a
nonempty set of initial states INIT ⊆ St, and an interpretation function

S : Op → P ((In × St) × (St × Out))

Note that Op, St , In, Out , INIT can be infinite sets. Any operation op ∈ Op is
interpreted via S as a set of pairs

(〈ι, s〉, 〈s ′, ω〉)
where each pair represents a state transition with input ι ∈ In, internal states
s, s ′ ∈ St (s denotes the state before and s ′ the state after the operation is
performed), and output ω ∈ Out .

For a specification S , the precondition of operation op ∈ Op with input ι ∈ In
will be denoted by

preS (〈ι, op〉) = {s ∈ St | ∃ s ′ ∈ St , ω ∈ Out : (〈ι, s〉, 〈s ′, ω〉) ∈ opS }
We recursively define the postcondition of a trace t ∈ Tr(H) by

ptraceS (t) =

INIT if t is the empty trace
{s ′ ∈ St | ∃ s ∈ St , ω ∈ Out :

(〈ι, s〉, 〈s ′, ω〉) ∈ opS ∧ s ∈ ptraceS (t1)}
if t = t1〈ι, op〉

568 K. Lermer and P. Strooper

Note that in our setting, pre- and postconditions denote sets of states, not pre-
dicates. Given a specification S and a history h ∈ H, we denote the set of final
states of h by

finalS (h) =

INIT if h = ε
{s ′ ∈ St | ∃ s ∈ St : (〈ι, s〉, 〈s ′, ω〉) ∈ opS ∧ s ∈ finalS (h1)}

if h = h1〈〈ι, op〉, ω〉

We can now define the language accepted by a specification S, consisting of
the empty history and all histories that are produced by starting from an initial
state in INIT and recursively applying the operations from Op.

Definition 4. For a specification S, the language accepted by S is

LS = {h ∈ H | h = ε ∨ ∃ h1 ∈ LS , op ∈ Op, ι ∈ In, ω ∈ Out :
h = h1〈〈ι, op〉, ω〉 ∧ (∃ s ∈ finalS (h1), s ′ ∈ St : (〈ι, s〉, 〈s ′, ω〉) ∈ opS)}

It follows from this definition that LS is prefix-closed (i.e., LS ∈ LanH).
There is a notion corresponding to demonic languages for specifications. A

specification S is demonic if whenever an input/operation pair 〈ι, op〉 is enabled
in a final state of a history h ∈ LS it must be enabled in all the final states of
the trace I(h). Again, the input enabling depends only on the input history.

Definition 5. A specification S is demonic if

∀ τ ∈ Tr(LS) \ {ε} : ptraceS (front(τ)) ⊆ preS (last(τ))

Every demonic specification S defines a demonic language LS [10, Prop. 2].
The converse is not true in general: there are non-demonic specifications that
specify demonic languages. However, for every demonic language L there exists
a demonic specification that defines L [10, Prop. 11].

As an example of a demonic specification, consider the following random
number generating specification SA1 from [10].

There are two operations: random generates a random integer value and has
no output, and val returns the value generated by the last call to random as its
output. If no call to random has been made, val returns 0.

Op = {random, val} , Out = Z ∪ {⊥} , In = {⊥}
StSA1 = Z , INITSA1 = {0}

randomSA1 = {(〈⊥, s〉, 〈s ′,⊥〉) | s, s ′ ∈ Z}
valSA1 = {(〈⊥, i〉, 〈i , i〉) | i ∈ Z}

By adding the operation two = {(〈⊥, 2〉, 〈2, 2〉)} to specification SA1 we
obtain a non-demonic specification. This is because two is only enabled at state
2 and not on all states that can be generated by random.

To motivate the use of demonic specifications and languages and to give a
few generic examples, we state the correspondence to the commonly used failure

A Single Complete Refinement Rule for Demonic Specifications 569

and trace models in the theory of communicating sequential processes (CSP) [6,
7].

Given a specification S = (Op,St , In,Out , INIT , S) and a fresh symbol ζ we
define two derived demonic specifications, the total completion

S (TC) = (Op,St ∪ {ζ} In,Out ∪ {ζ}, INIT , S(TC))

and the failure completion

S (FC) = (Op,St ∪ {ζ}, In,Out ∪ P(In × Op × Out), INIT , S(FC))

of S . For every operation symbol op ∈ Op we define

opS(TC) = opS ∪ {(〈ι, s〉, 〈ζ, ζ〉) : ι ∈ In ∧ s ∈ St ∪ {ζ}}
opS(FC) = opS ∪ {(〈ι, s〉, 〈ζ,X 〉) : ι ∈ In ∧ s ∈ St ∧ X ∈ P(In × Op × Out)

∧ ∃ω ∈ Out : 〈〈ι, op〉, ω〉 ∈ X
∧ ∀〈〈ι0, op0〉, ω0〉 ∈ X @s ′ ∈ St : (〈ι0, s〉, 〈s ′, ω0〉) ∈ op0

S }
∪{(〈ι, ζ〉, 〈ζ, ∅〉) : ι ∈ In}

In both specifications the state ζ is interpreted as the state that the system
enters after a failure occurred. The total completion extends the behaviour of
the original specification by assuming that a failure can occur in any state, no
matter what the input is: the system may enter the failure state at any moment.
The failure completion handles failures in a more sophisticated manner. A failure
transition can only occur if the transition was impossible in the original system.
With the help of the set X the modified system can output failure transitions
at any state.

The total and the failure completion of a specification S are demonic speci-
fications.

Proposition 1. For every specification S, S (TC) and S (FC) are demonic with
total languages LS(TC) and LS(FC).

Defining the failures of a specification S by

failures(S) = {(h,X) : h ∈ LS ∧ X ∈ P(In × Op × Out)
∧ ∃ s ∈ finalS (h) ∀〈〈ι, op〉, ω〉 ∈ X@s ′ ∈ St : (〈ι, s〉, 〈s ′, ω〉) ∈ opS}

we can formulate the following theorem. It shows that prominent failure and
trace models of CSP [6,7] can be expressed via demonic specifications and the
ordering relation b. For brevity, and because the theorem is not used later on, the
proofs have been omitted from the paper. The first equivalence is rather obvious
and states that the inclusion relation on the languages (input/output trace sets)
of the specifications is characterised by the b relation of the underlying total
completions. The second equivalence characterises the inclusion relation on the
failure sets of specifications in terms of the b relation on the underlying failure
completions.

570 K. Lermer and P. Strooper

Theorem 1. Let SA and SC be any specifications. Then, the following corre-
spondences hold.

i) LSC (TC) b LSA(TC) ⇔ LSC ⊆ LSA

ii) LSC (FC) b LSA(FC) ⇔ failures(SC) ⊆ failures(SA)

3 Lattice of Demonic Languages

In this section, we present the lattice structure that is induced on the prefix-
closed and demonic languages by the ordering relation b. First we introduce
operators that define the supremum and infimum in the lattice. To obtain a
complete lattice, we add the new symbol ⊥ as the smallest element to both
LanH and Land

H.

Definition 6. i) Lε = {ε}, LanH∗ = LanH ∪ {⊥}, Land
H

∗
= Land

H ∪ {⊥}
ii) For a nonempty family of languages Li ∈ LanH, i ∈ I :

IT (Li) = ∩i∈ITr(Li) , UT (Li) = ∪i∈ITr(Li)

iii) For a nonempty family of languages Li ∈ LanH, i ∈ I :

∨I Li = ∪{ΩLi (τ) | i ∈ I ∧ τ ∈ IT (Li)}
∧I Li =

{⊥ if ∃ τ ∈ UT (Li) : ∩{ΩLi (τ) | i ∈ I ∧ τ ∈ Tr(Li)} = ∅
∪{∩{ΩLi (τ) | i ∈ I ∧ τ ∈ Tr(Li)} | τ ∈ UT (Li)} otherwise

∧p
I Li =

{⊥ if @L ∈ LanH : L ⊆∧I Li ∧ Tr(L) = Tr(∧I Li)
∪{L ∈ LanH | L ⊆∧I Li ∧ Tr(L) = Tr(∧I Li)} otherwise

∧d
I Li =

{⊥ if @L ∈ Land
H : L ⊆∧I Li ∧ Tr(L) = Tr(∧I Li)

∪{L ∈ Land
H | L ⊆∧I Li ∧ Tr(L) = Tr(∧I Li)} otherwise

It is possible that for prefix-closed languages Li , i ∈ I , the language ∧I Li is
not prefix-closed. In fact, we will see that ∧p

I Li , if not ⊥, is the greatest prefix-
closed language below ∧I Li (w.r.t b). Also, if all Li , i ∈ I are demonic then
∧I Li is not necessarily demonic. This is illustrated by the following example.
Assume operations c1 and c2 with no inputs (we will use c1 as a shorthand for
the call 〈⊥, c1〉, and similarly for c2), and outputs o1, o2, o3, and o4. We define
the languages

L1 = {ε, 〈〈c1, o1〉〉, 〈〈c1, o2〉〉, 〈〈c2, o3〉〉, 〈〈c2, o4〉〉,
〈〈c1, o1〉〈c2, o3〉〉, 〈〈c1, o2〉〈c2, o3〉〉, 〈〈c2, o3〉〈c1, o2〉〉, 〈〈c2, o4〉〈c1, o2〉〉}

L2 = {ε, 〈〈c1, o1〉〉, 〈〈c2, o3〉〉, 〈〈c2, o4〉〉, 〈〈c2, o3〉〈c1, o1〉〉, 〈〈c2, o4〉〈c1, o2〉〉}
L1, L2 are demonic languages with

L1 ∧ L2 = {ε, 〈〈c1, o1〉〉, 〈〈c2, o3〉〉, 〈〈c2, o4〉〉,
〈〈c1, o1〉〈c2, o3〉〉, 〈〈c1, o2〉〈c2, o3〉〉 , 〈〈c2, o4〉〈c1, o2〉〉}

L1 ∧p L2 = {ε, 〈〈c1, o1〉〉, 〈〈c2, o3〉〉 , 〈〈c2, o4〉〉,

A Single Complete Refinement Rule for Demonic Specifications 571

〈〈c1, o1〉〈c2, o3〉〉, 〈〈c2, o4〉〈c1, o2〉〉}
L1 ∧d L2 = {ε, 〈〈c1, o1〉〉, 〈〈c2, o4〉〉, 〈〈c1, o1〉〈c2, o3〉〉, 〈〈c2, o4〉〈c1, o2〉〉}

The following two lemmas prove properties of ∧I Li , ∧p
I Li , ∧d

I Li , and ∨I Li
that will allow us to derive the complete lattice structure for languages ordered
by b.

Lemma 1 For any nonempty family of languages Li ∈ LanH, i ∈ I :
a) ∧p

I Li ∈ LanH∗ and ∧d
I Li ∈ Land

H
∗

b) If ∧I Li 6=⊥ then ∧I Li b Lj for all j ∈ I

Proof. a) The union of prefix-closed languages is again prefix-closed, and the
union of demonic languages with the same set of traces is also demonic [10,
Prop. 1].

b) For any j ∈ I , Tr(Lj) ⊆ UT (Li) = Tr(∧I Li) and for τ ∈ Tr(Lj) we get
Ω∧I Li (τ) = ∩{ΩLi (τ) | i ∈ I ∧ τ ∈ Tr(Li)} ⊆ ΩLj (τ) 2

Lemma 2 For any nonempty family of languages Li ∈ LanH, i ∈ I :
a) ∨I Li ∈ LanH
b) If all Li ∈ Land

H, then ∨I Li ∈ Land
H

Proof. a) Let hz ∈ ∨I Li . Then, I(hz) ∈ IT (Li) and since Li , i ∈ I , is
prefix-closed, we can conclude I(h) ∈ IT (Li). Moreover, for all i0 ∈ I for which
hz ∈ Li0 , because Li0 is prefix-closed, we have h ∈ Li0 and so, by definition of
the ∨-operator, h ∈ ∨I Li .

b) Let Li , i ∈ I be demonic. Then we fix a trace τ ∈ Tr(∨I Li) \ {ε} and
some h ∈ Ω∨I Li (front(τ)). Because

Ω∨I Li (front(τ)) = ∪{ΩLi (front(τ)) | i ∈ I }
we can find i0 ∈ I with h ∈ ΩLi0

(front(τ)). Since Li0 is demonic and τ ∈
∩i∈ITr(Li) there exists a h ′ ∈ ΩLi0

(τ) with h ′ ↑ (#τ −1) = h. We can conclude
h ′ ∈ Ω∨I Li (τ) and so ∨I Li ∈ Land

H. 2

We also need the following result, proven in [10, Prop. 5].

Lemma 3 For languages L,L′ ⊆ H we have:
a) L′ b L ⇒ Tr(L ∩ L′) = Tr(L) ∩ Tr(L′) = Tr(L), L′ b L′ ∩ L
b) (L′ demonic ∧ L′ b L) ⇒ L′ ∩ L demonic

If we extend the ordering b in a canonical way from LanH to LanH∗ such that
⊥ becomes the smallest element in LanH∗, then we do obtain a complete lattice.
Furthermore, we set ∨

∅
Li =⊥ and ∧

∅
Li =∧p

∅
Li =∧d

∅
Li = Lε.

Theorem 2. a) (LanH∗,b) is a complete lattice with greatest element Lε and
smallest element ⊥. For a family Li , i ∈ I of languages in LanH, its supremum
is ∨{i∈I | Li 6=⊥} Li and its infimum is ⊥ if there is at least one i ∈ I with Li =⊥
and ∧p

I Li otherwise.

572 K. Lermer and P. Strooper

b) (Land
H

∗
,b) is a complete lattice with greatest element Lε and smallest

element ⊥. For a family Li , i ∈ I of languages in Land
H, its supremum is

∨{i∈I | Li 6=⊥} Li and its infimum is ⊥ if there is at least one i ∈ I with Li =⊥
and ∧d

I Li otherwise.

Proof. a) Let L ∈ LanH. Then, {ε} = Tr(Lε) ⊆ Tr(L) and ΩL(ε) = {ε} ⊆
ΩLε

(ε). Hence, L b Lε which shows that Lε is the greatest element in LanH∗.
Let Li , i ∈ I be a nonempty family of languages in LanH. Applying Lemma

2 a) shows ∨I Li ∈ LanH. For any j ∈ I , Tr(∨I Li) = IT (Li) ⊆ Tr(Lj). For
any trace τ ∈ Tr(∨I Li),

ΩLj (τ) ⊆ ∪i∈I ΩLi (τ) = Ω∨I Li (τ)

Therefore, Lj b∨I Li , j ∈ I .
Moreover, for any L ∈ LanH with Li b L, we have Tr(L) ⊆ IT (Li) =

Tr(∨I Li) and for τ ∈ Tr(L) we have

Ω∨I Li (τ) = ∪i∈I ΩLi (τ) ⊆ ∪i∈I ΩL(τ) = ΩL(τ)

We deduce ∨I Li b L.
This proves that ∨I Li is the least upper bound of the family Li , i ∈ I in

LanH. It remains to extend this in a straightforward manner to LanH∗.
Next we claim ∧I Li b Lj for every j ∈ I . This is trivial if ∧I Li =⊥ and

the remaining case has been shown in Lemma 1 b).
Therefore, ∧p

I Li ⊆∧I Li b Lj for every j ∈ I . Since ∧p
I Li , if not equal to

⊥, has the same set of traces as ∧I Li , we can infer

∧p
I Li b∧I Li b Lj

for every j ∈ I . Let L ∈ LanH∗ with L b Lj , for all j ∈ I . We must prove
that L b∧p

I Li , which trivially holds for L =⊥. For L 6=⊥, we first prove
that L b∧I Li . Note that ∅ 6= Tr(∧I Li) = UT (Li) ⊆ Tr(L), Moreover,
Tr(Lj) ⊆ Tr(L) for all j ∈ I and, if τ ∈ UT (Li) then

ΩL(τ) ⊆ ∩{ΩLi (τ) | i ∈ I ∧ τ ∈ Tr(Li)} = Ω∧I Li (τ)

Hence, L b∧I Li .
We define L′ = L ∩ (∧I Li) and claim the following two properties.

L′ ∈ LanH (1)
L b L′ b∧p

I Li b∧I Li (2)

We show (1) first. Note that ε ∈ L′. Let hz ∈ L′. L is prefix-closed and
so h ∈ L. Furthermore, I(hz) ∈ Tr(∧I Li) = UT (Li). From Li , i ∈ I being
prefix-closed, we can deduce I(h) ∈ Tr(∧I Li). Since L b∧I Li , we can conclude
h ∈∧I Li and therefore h ∈ L′.

To prove (2), we note that ∧p
I Li b∧I Li , which was shown above. L′ is

prefix-closed by (1), and furthermore L′ ⊆∧I Li and L b∧I Li . By Lemma 3 a),

A Single Complete Refinement Rule for Demonic Specifications 573

we can conclude Tr(L′) = Tr(∧I Li). Hence, by definition of the ∧p-operator
we obtain L′ ⊆∧p

I Li . That L′ and ∧p
I Li have the same traces then implies

L′ b∧p
I Li

The property L b L′ follows from Lemma 3 a) and L b∧I Li .
From (2) we obtain L b∧p

I Li by transitivity of b, which is what we wanted
to verify.

b) It is obvious that Lε is demonic and since Lε is the greatest element in
LanH∗, it follows that Lε is also the greatest element in Land

H
∗
.

For any family Li , i ∈ I in Land
H we get ∨I Li as its supremum in LanH.

According to Lemma 2 b), ∨I Li is demonic and therefore, it is the supremum
of Li , i ∈ I in Land

H.
It remains to show that ∧d

I Li is the greatest lower bound for Li , i ∈ I in
Land

H. From the definitions of ∧p
I Li and ∧d

I Li we can infer ∧d
I Li b∧p

I Li and
together with a) we then obtain

∧d
I Li b∧p

I Li b Lj , j ∈ I

Now, assume L ∈ Land
H with L b Li , for all i ∈ I . With a) we deduce

L b∧p
I Li b∧I Li

As above, by setting L′ = L∩ (∧I Li) and by using Lemma 3 b), we obtain that
L′ is demonic. Property (2) holds again and by definition of ∧d

I Li ,

L′ ⊆∧d
I Li

Hence, L b L′ ⊆∧d
I Li . Note that Tr(∧d

I Li) = Tr(∧I Li) = Tr(L′) which
follows from Lemma 3 a). Therefore,

L b L′ b∧d
I Li

and from the transitivity of b we can conclude that L b∧d
I Li . 2

The following results further explore the correspondence between the opera-
tors ∧, ∧p and ∧d .

Proposition 1 If Li ∈ LanH, i ∈ I , is a downward ordered net (i.e., ∀ i , j ∈
I ∃ k ∈ I : Lk b Li ∧ Lk b Lj), then ∧I Li =∧p

I Li .

Proof. For a downward-ordered net Li , i ∈ I , since ∧p
I Li , if not equal to ⊥,

is the greatest prefix-closed set in ∧I Li , we simply have to show that ∧I Li is
prefix-closed.

Let hz ∈∧I Li . There is i0 ∈ I such that hz ∈ Li0 . Li0 is prefix-closed, and
so h ∈ Li0 . Thus, I(h) ∈ Tr(∧I Li).

Now for all i1 ∈ I such that I(h) ∈ Tr(Li1), there exists an i2 ∈ I with
Li2 b Li0 and Li2 b Li1 . Hence, I(hz) ∈ Tr(Li2) and hz ∈ Li2 . Li2 is prefix-
closed and so h ∈ Li2 . From ΩLi2

(I(h)) ⊆ ΩLi1
(I(h)) we conclude h ∈ Li1 .

From this we conclude h ∈∧I Li , which proves that ∧I Li is prefix-closed. 2

574 K. Lermer and P. Strooper

Definition 7. A language L is τ -output-finite for a trace τ ∈ Tr(L) \ {ε} if for
all histories h ∈ ΩL(front(τ)) the set

{h ′ | h ′ ∈ ΩL(τ) ∧ h ′ ↑ #h = h}

is finite. L is output-finite if it is τ -output-finite for all τ ∈ Tr(L) \ {ε}.

Proposition 2 If Li ∈ Land
H, i ∈ I is a downward-ordered net and for all τ ∈

Tr(∧I Li) there exists an i ∈ I with Li being τ -output-finite, then ∧I Li =∧d
I Li .

Proof. It suffices to prove that ∧I Li is demonic, assuming ∧I Li 6=⊥. Let τ ∈
Tr(∧I Li)\{ε} and h ∈ Ω∧I Li (front(τ)). We find i1 ∈ I with Li1 being τ -output
finite. Furthermore, Li1 is demonic, and so we can conclude front(τ) ∈ Tr(Li1)
and that the set

A = {h ′ | h ′ ∈ ΩLi1
(τ) ∧ h ′ ↑ #h = h}

is nonempty and finite. We claim that there exists an h ′ ∈ A with h ′ ∈∧I Li . If
not, we can find j1, ..., jn ∈ I such that τ ∈ ∩n

k=1Tr(Ljk) and ∩n
k=1ΩLjk

(τ)∩A =
∅. But there exists an i2 ∈ I with Li2 b Li1 and Li2 b Ljk , 1 ≤ k ≤ n. We infer
τ ∈ Tr(Li2) and h ∈ Li2 . Again, Li2 is demonic and so

∅ 6= {h ′ | h ′ ∈ ΩLi2
(τ) ∧ h ′ ↑ #h = h} ⊆ ∩n

k=1ΩLjk
(τ) ∩ A

which contradicts the assumption above. 2

This shows that ∧I Li is demonic, and hence ∧I Li =∧d
I Li , for downward-

ordered nets of output-finite and demonic languages Li , i ∈ I .

4 Refinement

Data-refinement proofs [3,1,8,14,13] are used to verify that a specification (or
implementation) SC with a concrete state representation is correct with respect
to a specification SA with an abstract state representation. In [10], we show
the soundness and completeness of refinement with respect to the ordering b
on demonic languages using a combination of forward and backward refinement.
Here we generalise this notion of refinement to one that is based on an abstraction
relation on the power sets of the underlying state spaces, and show that this
provides a single sound and complete refinement rule.

Definition 8. Given two specifications SA = (Op,StA, In,Out , INITA, SA
) and

SC = (Op,StC , In,Out , INITC , SC
), an abstraction relation

ABS : P StC ↔ P StA

and operation op ∈ Op, we say that opSA
power-refines to opSC

(opSA vABS

opSC
) if the following conditions hold.

A Single Complete Refinement Rule for Demonic Specifications 575

(P1) ∀ ι ∈ In , R ∈ P StA , T ∈ P StC :
((T ,R) ∈ ABS ∧ ∅ 6= R ⊆ preSA(〈ι, op〉)) ⇒ T ⊆ preSC (〈ι, op〉)

(P2) ∀ ι ∈ In , ω ∈ Out , R ∈ P StA , T ∈ P StC , t ∈ T , t ′ ∈ StC :
((T ,R) ∈ ABS ∧ ∅ 6= R ⊆ preSA(〈ι, op〉) ∧ (〈ι, t〉, 〈t ′, ω〉) ∈ opSC

) ⇒
(∃R′ ∈ P StA , T ′ ∈ P StC :
(R′ 6= ∅ ∧ (T ′,R′) ∈ ABS ∧ t ′ ∈ T ′

∧ (∀ s1 ∈ R′ ∃ s0 ∈ R : (〈ι, s0〉, 〈s1, ω〉) ∈ opSA
))

Refinement with properties (P1) and (P2) lifts the common forward refinement
of VDM and Z [8,10,14] with abstraction relations on the state spaces to refine-
ment with abstraction relations on power sets. (P1) states that if T and R are
related via ABS and 〈ι, op〉 is enabled in all states in R then 〈ι, op〉 is enabled
in all states in T (denoted by the dashed lines in the picture below).

preSA(〈ι, op〉)

R T

preSC (〈ι, op〉)
-� ABS

(P2) states that via ABS every input of opSA
must be accepted by opSC

with
outputs that were possible for opSA

. The last condition in (P2) asserts that all
states that are contained in the abstract state set R′ and related to a concrete
state set T ′ are final states under the abstract operation with input and output
that were accepted by the concrete operation. This is illustrated in the picture
below where the dashed lines indicate how the concrete transition is simulated
by the abstract one.

preSA(〈ι, op〉)

R T
-� ABS

T ′
	t ′

t
w

~j
R′

〈〈ι, op〉, ω〉
〈〈ι, op〉, ω〉

-� ABS

This notion of operation refinement naturally leads to the following notion
of specification refinement.

Definition 9. We say that specification SA = (Op,StA, In,Out , INITA, SA
)

power-refines to specification SC = (Op,StC , In,Out , INITC , SC
) and write

SA v SC if there exists an abstraction relation ABS as above such that

(PR1) ∀ op ∈ Op : opSA vABS opSC

(PR2) (INITC , INITA) ∈ ABS

576 K. Lermer and P. Strooper

We write SA vABS SC if we want to explicitly indicate the abstraction relation
ABS.

We will see below that the relation v defines a preorder on demonic speci-
fications. Obligation (PR1) states that every abstract operation can be power-
refined to a concrete one and obligation (PR2) states that the abstract initial
state set corresponds to the concrete initital state set. Note that we overload
the semantics of the symbol v. It will be obvious from the context whether we
mean operation or specification refinement.

As an example, consider the following alternative specification SA2 of the
random number generating specification SA1 of Section 2.2.

StSA2 = Z ∪ {undef } , INITSA2 = {0}
randomSA2 = {(〈⊥, s0〉, 〈undef ,⊥〉) | s0 ∈ Z ∪ {undef }}

valSA2 = {(〈⊥, i〉, 〈i , i〉) | i ∈ Z} ∪ {(〈⊥, undef 〉, 〈i , i〉) | i ∈ Z}

In specification SA1 the operation random generates a random integer number
and a subsequent call to val makes this number visible. In SA2, random will
always set the state to undef and only a subsequent call to val will generate a
random number. In [10], we show that there is a backward refinement from SA1
to SA2, but no forward refinement. However, there is a power-refinement such
that SA1 power-refines to SA2. An abstraction relation that shows this is

ABS = {({i}, {i}) : i ∈ Z} ∪ {({undef }, Z)}

If we use the ordering b as the underlying semantics of specification refi-
nement and power-refinement with obligations (PR1) and (PR2) as the refine-
ment technique, then Theorem 3 below states the soundness and completeness
of power-refinement for demonic specifications.

Theorem 3. For demonic specifications SA and SC , LSC b LSA ⇔ SA v SC .

Proof. To prove LSC b LSA ⇒ SA v SC , we use the abstraction relation

(T ,R) ∈ ABS iff ∃ h ∈ LSC ∩ LSA : T = finalSC (h) ∧ R = finalSA(h)

Because ε ∈ LSC ∩ LSA , INITC = finalSC (ε), and INITA = finalSA(ε), we can
conclude (INITC , INITA) ∈ ABS , which establishes (PR2).

For (P1), we assume (T ,R) ∈ ABS and ∅ 6= R ⊆ preSA(〈ι, op〉). According
to the definition of ABS , there is h ∈ LSC ∩ LSA with T = finalSC (h) and R =
finalSA(h). From I(h)〈ι, op〉 ∈ Tr(LSA) and LSC b LSA , it follows I(h)〈ι, op〉 ∈
Tr(LSC). SC is demonic and therefore T = finalSC (h) ⊆ ptraceSC (I(h)) ⊆
preSC (〈ι, op〉).

To prove (P2), we additionally assume ω ∈ Out , t ∈ T and t ′ ∈ StC

with (〈ι, t〉, 〈t ′, ω〉) ∈ opSC
. Hence, h〈〈ι, op〉, ω〉 ∈ LSC and because of LSC b

LSA we have h〈〈ι, op〉, ω〉 ∈ LSA . For T ′ = finalSC (h〈〈ι, op〉, ω〉) and R′ =
finalSA(h〈〈ι, op〉, ω〉) we derive (T ′,R′) ∈ ABS , t ′ ∈ T ′ and R′ 6= ∅. Finally,

A Single Complete Refinement Rule for Demonic Specifications 577

because R′ = finalSA(h〈〈ι, op〉, ω〉), for any s1 ∈ R′ there is a s0 ∈ R such that
(〈ι, s0〉, 〈s1, ω〉) ∈ opSA

, which concludes the proof of (P2).
To prove LSC b LSA ⇐ SA v SC , we first prove the following property by

induction on the length of the traces in Tr(LSA).

∀ τ = 〈ι1, op1〉...〈ι#τ , op#τ 〉 ∈ Tr(LSA)
∃ R0, ...,R#τ ,T0, ...,T#τ , t0, ..., t#τ , ω1, ..., ω#τ :
a) R0 = INITA ∧ T0 = INITC

b) ∀ 0 ≤ i ≤ #τ : ti ∈ Ti ∧ (Ti ,Ri) ∈ ABS

c) ∀ 1 ≤ i ≤ #τ : (〈ιi , ti−1〉, 〈ti , ωi〉) ∈ opi
SC

d) ∀ 0 ≤ i ≤ #τ : ∅ 6= Ri ⊆ ptraceSA(τ ↑ i)

e) ∀ 1 ≤ i ≤ #τ ∀ s1 ∈ Ri ∃ s0 ∈ Ri−1 : (〈ιi , s0〉, 〈s1, ωi〉) ∈ opi
SA

(3)

Base case (τ = ε): We have (INITC , INITA) ∈ ABS and ptraceSA(ε) =
INITA 6= ∅ by definition. Similarly, we can select t0 ∈ T0 = INITC 6= ∅.

Induction step (τ ′ = τ〈ι, op〉 ∈ Tr(LSA)): For τ ∈ Tr(LSA) we can find
R0, ...,R#τ , T0, ...,T#τ , t0, ..., t#τ , ω1, ..., ω#τ that satisfy property (3) according
to our induction hypothesis. Since SA is demonic, it follows from property (3)
d) that ∅ 6= R#τ ⊆ ptraceSA(τ) ⊆ preSA(〈ι, op〉). From (P1) and (T#τ ,R#τ) ∈
ABS we can infer T#τ ⊆ preSC (〈ι, op〉). Then we find t ′ ∈ StC , ω ∈ Out such
that (〈ι, t#τ 〉, 〈t ′, ω〉) ∈ opSC

. Property (P2) then supplies us with R′ ∈ P StA,
T ′ ∈ P StC such that R′ 6= ∅, (T ′,R′) ∈ ABS and t ′ ∈ T ′. Furthermore, for
any s1 ∈ R′ there is a s0 ∈ R#τ with (〈ι, s0〉, 〈s1, ω〉) ∈ opSA

. We know by our
induction hypothesis that R#τ ⊆ ptraceSA(τ) and therefore R′ ⊆ ptraceSA(τ ′).
The induction step is completed by setting R#τ ′ = R′, T#τ ′ = T ′, t#τ ′ = t ′ and
ω#τ ′ = ω.

We proceed by proving the following property by induction on the length of
the traces in Tr(LSC) ∩ Tr(LSA).

∀ h = 〈〈ι1, op1〉, ω1〉...〈〈ι#h , op#h〉, ω#h〉 ∈ LSC : I(h) ∈ Tr(LSA) ⇒
∀ t0, ..., t#h ∈ StC :

(t0 ∈ INITC ∧ (∀ 1 ≤ i ≤ #h : (〈ιi , ti−1〉, 〈ti , ωi〉) ∈ opi
SC

)) ⇒
∃R0, ...,R#h ,T0, ...,T#h :
a) R0 = INITA ∧ T0 = INITC

b) ∀ 0 ≤ i ≤ #h : ti ∈ Ti ∧ (Ti ,Ri) ∈ ABS
c) ∀ 0 ≤ i ≤ #h : ∅ 6= Ri ⊆ finalSA(h ↑ i)

d) ∀ 1 ≤ i ≤ #h ∀ s1 ∈ Ri ∃ s0 ∈ Ri−1 : (〈ιi , s0〉, 〈s1, ωi〉) ∈ opi
SA

(4)

Base case (h = ε): This trivially holds because finalSA(ε) = INITA 6= ∅ and
(INITC , INITA) ∈ ABS .

578 K. Lermer and P. Strooper

Induction step (h ′ = h〈〈ι#h′ , op#h′〉, ω#h′〉 ∈ LSC with I(h ′) ∈ Tr(LSA)):
Let t0 ∈ INITC , t1, ..., t#h′ ∈ StC with (〈ιi , ti−1〉, 〈ti , ωi〉) ∈ opi

SC
, 1 ≤ i ≤ #h ′.

By the induction hypothesis there are sets R0, ...,R#h , T0, ...,T#h that satisfy
the property (4). That is ∅ 6= R#h ⊆ finalSA(h) ⊆ ptraceSA(I(h)), (T#h ,R#h) ∈
ABS and I(h)〈ι#h′ , op#h′〉 ∈ Tr(LSA). The specification SA is demonic and
therefore R#h ⊆ ptraceSA(I(h)) ⊆ preSA(〈ι#h′ , op#h′〉). With (P2) we then can
find R′ ∈ P StA, T ′ ∈ P StC such that R′ 6= ∅, (T ′,R′) ∈ ABS and t#h′ ∈ T ′.
Furthermore, for any s1 ∈ R′ there is a s0 ∈ R#h with (〈ι#h′ , s0〉, 〈s1, ω#h′〉) ∈
op#h′S

A
. Since R#h ⊆ finalSA(h) we can conclude that R′ ⊆ finalSA(h ′). The

induction step is completed by setting R#h′ = R′ and T#h′ = T ′.
Finally, note that property (3) implies Tr(LSA) ⊆ Tr(LSC) and from pro-

perty (4) we can infer ΩLSC (τ) ⊆ ΩLSA (τ) for every trace τ ∈ Tr(LSA). This
implies LSC b LSA . 2

As a corollary, power-refinement v defines a preorder on the set of demonic
specifications.

5 Conclusions and Related Work

In this paper, we have extended the results on the refinement of demonic lan-
guages from [10]. We have presented a lattice structure for the set of demonic
languages and proved the correspondence to the set of demonic specifications.
By lifting the common notion of abstraction relations on state spaces to relati-
ons on the power sets of state spaces, it was possible to derive a single complete
refinement rule. This refinement rule provides a characterisation of the ordering
on demonic languages in terms of a refinement preorder on demonic specificati-
ons. This complements the classical characterisation by backward and forward
refinement proven in [10].

The refinement ordering we use is consistent with the conventional semantics
underlying a system specification in Z and VDM [14,13]. Hence the forward and
backward refinement techniques of these specification languages are sound and
complete methods for the verification of the refinement ordering b on demonic
languages. To our knowledge, there is no refinement theory founded on abstrac-
tion relations on power sets of states. All relational approaches we are aware of
work with abstraction relations on state spaces and therefore need at least two
refinement rules for completeness results [5,9,7,6,11,14,13] or significant restric-
tions on the languages and specifications. Furthermore, those approaches are
founded on the subset ordering on prefix-closed languages.

The restriction to demonic specifications and the generalisation to abstrac-
tion relations on power sets make it possible to obtain a similar completeness
result as in the predicate transformer setting [2] with only one refinement tech-
nique. As for predicate transformers, finding abstraction relations with a single
complete rule is in general more difficult than relying on the combination of two
less complex rules. Hence for practical applications the combination of back-
ward and forward refinement rules is recommended. Comparing the predicate
transformer approach with our approach, Rewitzky and Brink [12] show that

A Single Complete Refinement Rule for Demonic Specifications 579

predicate transformers can be interpreted as total functions on the power sets
of the state spaces. The predicate transformer refinement ordering can then be
seen as the subset ordering on the underlying behaviours, which implies that
traces can disappear during the refinement process. Any cosimulation may be
seen as a total function on the power sets of the state spaces. Our refinement or-
dering on demonic languages and specifications differs from the subset ordering
in that traces cannot disappear during the refinement. Furthermore, a demonic
composition principle in specifications is more general than the composition by
total operations. Also, in our relational approach, a restriction to abstraction
functions on power sets would be insufficient.

Acknowledgements: We thank Ian Hayes and the anonymous referees for their
suggestions on earlier versions of the paper.

References

1. R. J. R. Back. On correct refinement of programs. Journal of Computer and
System Sciences, 23:49–68, 1981.

2. P. H. B. Gardiner and C. Morgan. A single complete rule for data refinement.
Formal Aspects of Computing, 5(4):367–382, 1993.

3. C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1972.

4. C.A.R. Hoare. Communicating sequential processes. Prentice-Hall International,
UK, LTD, 1985.

5. C.A.R. Hoare, He Jifeng, and J. W. Sanders. Prespecifications in data refinement.
Information Processing Letters, 25:71–76, 1987.

6. He Jifeng. Process simulation and refinement. Formal Aspects of Computing,
1:229–241, 1989.

7. He Jifeng. Various simulations and refinements. In J.W. de Bakker, C., W.P. de
Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness, volume 430 of Lecture Notes in Computer
Science, pages 340–360. Springer-Verlag, 1989.

8. C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall, second
edition, 1990.

9. M. B. Josephs. A state-based approach to communicating processes. Distributed
Computing, 3:9–18, 1988.

10. K. Lermer and P. Strooper. Refinement and state machine abstraction. Technical
Report 00-01, Software Verification Research Centre, January 2000. To appear in
Theoretical Computer Science.

11. N. Lynch and F. Vaandrager. Forward and backward simulation for timing-based
systems. In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg,
editors, Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer
Science, pages 397–445. Springer-Verlag, 1991.

12. I. Rewitzky and C. Brink. Predicate transformers as power operations. Formal
Aspects of Computing, 7(2):169–182, 1995.

13. W.-P. Roever and K. Engelhardt. Data refinement: model-oriented proof methods
and their comparison. Cambridge tracts in theoretical computer science; 4. Cam-
bridge University Press, 1998.

14. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall, 1996.

	Introduction
	Languages and specifications
	Languages
	Specifications

	Lattice of demonic languages
	Refinement
	Conclusions and related work

