A Type-Theoretic Study on Partial
Continuations

Yukiyoshi Kameyama

Graduate School of Informatics, Kyoto University 606-8501, JAPAN,
kameyama@kuis.kyoto-u.ac. jp

Abstract. Partial continuations are control operators in functional pro-
gramming such that a function-like object is abstracted from a part of
the rest of computation, rather than the whole rest of computation. Se-
veral different formulations of partial continuations have been proposed
by Felleisen, Danvy&Filinski, Hieb et al, and others, but as far as we
know, no one ever studied logic for partial continuations, nor proposed
a typed calculus of partial continuations which corresponds to a logi-
cal system through the Curry-Howard isomorphism. This paper gives
a simple type-theoretic formulation of a form of partial continuations
(which we call delimited continuations), and study its properties. Our
calculus does reflect the intended operational semantics, and enjoys nice
properties such as subject reduction and confluence. By restricting the
type of delimiters to be atomic, we obtain the normal form property. We
also show a few examples.

1 Introduction

The mechanism of first-class continuations (the call/cc-mechanism in Scheme
[1]) is a quite powerful control facility, and is equipped with many modern pro-
gramming languages such as Standard ML. Felleisen et al [5] established a theory
for first-class continuations by which we can reason about properties of programs
with first-class continuations.

Partial continuation is a refinement of first-class continuation in that a conti-
nuation object is abstracted from a part of the rest of computation, rather than
the whole rest of computation. Felleisen [6] introduced a pair of operators # and
F to represent partial continuations. The former delimits the range of continua-
tions which will be later invoked by the latter operator. The other distinguished
feature of partial continuations is that, its invocation does not abort the current
continuation, contrary to the first-class continuations. Hence the abstracted ob-
jects are normal functions which can be composed with other functions. As Fell-
eisen showed, the concept of partial continuation is useful in practice; interesting
examples can be implemented more concisely and efficiently using partial con-
tinuations. After then, several different operators for partial continuations have
been proposed by Queinnec and Serpette [20], Gunter [I1], Danvy and Filinski
[2] and others.
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If we want to give a logical view to partial continuations through the Curry-
Howard isomorphism, a fundamental problem arises in these approaches. Na-
mely, the scope of Felleisen’s # operator (and its counterpart in other resear-
cher’s calculi) is dynamic; for each F operator, the matching # is determined
at the time of evaluation. Consequently, we cannot represent the scope of #
by a simple variable-binding mechanism, thus cannot construct a simple logic
corresponding to their operators. One exception is the subcontinuation by Hieb
et al [T3] whose operator has static scope. However, their operator may generate
run-time errors and we cannot develop a type safe calculus for subcontinuations.

In this paper, we give a simple typed calculus for partial continuations which
have static scope. Since the scope of a partial continuation is lexically determined
by the corresponding delimiter, our variant is called a delimited continuation[t
Our calculus is designed to satisfy the following conditions: (1) it is a statically
typed system which corresponds to, through the Curry-Howard isomorphism, a
consistent logical system, (2) it is type safe in the sense that it enjoys the subject
reduction property and reductions never get stuck, and (3) its reduction rules
are confluent, and compatible with any contexts. By (1), our calculus can be
viewed as a logical system. Indeed, it corresponds to classical logic. By (2) and
(3), we have an equational theory for programs with partial continuations.

In order to make our type-theoretic analysis easier, we represent (the coun-
terpart of) F by two operators, an invoker of partial continuations and a throw
operation, and give reduction rules. Our reduction rules reflect the intended ope-
rational semantics, and enjoy the above properties (1)-(3). We also show that the
subcalculus with the delimiter and the throw operation (without the invoker)
corresponds to the classical catch/throw calculus in [18/[14], while the subcalculus
with the delimiter and the invoker (without the throw operation) corresponds
to intuitionistic calculus.

The rest of this paper is organized as follows. Section 2] gives the background
and motivation of our formulation. Sections [3], [4 and [ give the type system,
the operational semantics, and the reduction rules of our calculus, respectively.
Section [0 proves theoretical properties such as subject reduction and confluence.
Section [0 shows that our calculus corresponds to classical logic through the
Curry-Howard isomorphism. Section Bl gives the conclusion.

2 Formulating Partial Continuations in Type Theory

We start our analysis with Felleisen’s formulation. Felleisen [6] proposed a form
of partial partial continuations, which has the following reduction rule:

#E[FV] = V(A\x.Elz])

where FE is an evaluation context, V is a value, # is a delimiter which restricts
the range of partial continuations, and F is an operator which creates a partial-
continuation object up to the delimiter. In the above term, the created partial

! Olivier Danvy coined this term.
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continuation object Az.FE[x] is applied to the term V. Note that, this object
is a simple function, and not abortive in the sense that, when some value is
applied, it does not throw away the current continuation. These two features
are characteristic points for partial continuations compared with first-class (full)
continuations.

Felleisen’s partial continuations are refinement of full continuations; theoreti-
cally partial continuations behaves well, and are useful in practice. However, if we
want to construct a typed calculus for partial continuations which corresponds
to a sound logical system, it is problematic.

The problem is that, the scope of the #-operator is dynamic, for instance,
(A #(xzN))(Ay.FM) reduces to #((A\y.FM)N), thus F gets captured by #
through this reduction. In this system, we cannot intuitively understand the
meaning of programs. Consider the term Ax.#(x(FM)). We are tempted to
consider this # and F are connected. But if we apply \y.C[#y] to it, the above
F is delimited by the latter #. It seems impossible to have a Curry-Howard
isomorphism of this kind of calculi and ordinary logical systems, since the cor-
respondence between the #-operator and the F-operator cannot be represented
by the variable-binding mechanism (which is lexical).

Danvy and Filinski proposed another formulation of partial continuations [2]
[B]. Their operators reset and shift differ from Felleisen’s ones in that the
created partial continuation object is again delimited. This change has a better
effect for formalizing partial continuations, and in fact, they successfully gave
a CPS-translation in an ordinary, functional style. However, still the scope of
their reset operator (denoted by # in the above reduction) is also dynamic,
hence the same problem applies if one want to formalize their operator in a type
theory which admits the Curry-Howard isomorphism.

Hieb, Dybvig and Anderson [I3] proposed subcontinuations which essentially
have the following reduction rule:

#1(E[FRV]) = V(Az.#(E[x]))

where [ is a label attached to the operators. The notable point in their approach
is that (i) they can treat multiple labels so that the operator F can specify
the matching delimiter, and (ii) the binding mechanism of the label [ is the
ordinary variable binding so that it is static. These two points are big benefits
for logical viewpoint. However, the F-operator may become unbound through
the reduction, causing a run-time type-error (when V' contains an occurrence of
the label I, then the reduced term may contain [ free). Also they did not study
a typed calculus for their operator.

Our aim is to develop a theory for partial continuations which is logically
well-founded. Since existing partial continuation operators are not satisfactory
in the sense of logic, we shall change the operational behavior of existing partial
continuations to obtain a logically well-behaved system. We should be careful for
this change of semantics so that interesting programming examples with existing
partial continuations can be expressible in our calculus. In particular, we should
try to make this change as little as possible.
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As a conclusion we decided to formalize an improved version of Hieb et al’s
operator so that no run-time type error may occur. In order to make our analysis
easier, we shall not directly formalize the F-operator, but instead we treat two
operators calldc (stands for “call with partial continuation”) and throw, which
essentially have the following reductions:

#oE[calldc, V] — #,E[V(\z.#,E[z])]

#, E[throw, V] — #,V

where V is a value and F is an evaluation context defined later. The point is
that, in the first rule we attach one more delimiter to enclose the resulting term.
As is shown later, our (counterpart of the) F-operator can be represented by
calldc and throw.

3 The Type System

We now define the type system of our calculus. Actually we are defining two
calculi Ape and A3°™i¢. \pe is the full calculus, and by putting restriction on
terms we obtain Aafomic,

Types and terms are defined by the following grammar where K is an atomic
type, ¥ is a constant of atomic type K, and x and « are Variablesg. We assume
that Unit is an atomic type, and e is a constant (its single element) of type
Unit.

AB:=K|A—B|-A
M,N:=z|c| M| MN
| #o M | calldc, M | throw, M

The type —A is the type of tags of control operators for type A. Note that — is
a primitive type constructor, and not a defined symbol. In A3°™i¢ we restrict
that the types of tags be atomic, namely in formulating —A, the type A must
be atomic. A\p¢ has no restriction.

The first line of terms are usual A-terms. The second line consists of control
operators. The term #,M delimits the scope of partial continuation which may
be created inside M (with the tag «). The term calldc,M creates a partial-
continuation (delimited continuation) object like F-operator. Our calculi also
have an abortive operator throw, M which finishes the current continuation up
to the corresponding delimiter. As a notational convention, #,Mj ... M, should
be parsed as #,(M;7 ... M,).

A type environment is a finite set of the form x : A where no variable appears
more than once. For instance {x : A, a : =(B — C)} is a type environment.

2 There is no syntactic distinction of = and a, but we use x for ordinary variable and
« for tags.
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We use I' for a type environment. A judgement is in the form I" = M : A. The
typing rules to derive a judgement are displayed in Table [1. As usual, if two
type environments I; and I, are not compatible, then I} U I's is not defined. If
I'+ M : Ais derived, we say M is a (typable) term of type A under the type
environment I'. We sometimes omit type environments if they are apparent.

Table 1. Typing Rules

ru{z:A}rFz:A Ir'-c*: K

rv{z:A}F-M:B nFM:A—B ILb-N:A
I'-Xe.M:A— B nul+-MN:B

I'v{a:-B}FM:B

I'-#,M:B
I'-M:((Unit - A) - B) - A I'-M:B
I'u{a:—-B}F calldcaM : A I'U{a:-B} F throu,M : C

In Table [ The first three rules are as usual. The fourth rule is for the control
delimiter, and as we explained, it discharges the assumption « : =B, namely, it
binds the variable «.

The fifth and sixth rules are for calldc and throw. The role of calldc is
almost the same as F, but its type is slightly different, since (i) we split the role
of F into two operators calldc and throw, and (ii) by controlling the evaluation
order suitably, we used a thunk of type Unit — A in the rule for calldc. We can
delay the evaluation of a term M of type A by encapsulating it as AzUnit pr.
This technique is useful when we argue the correspondence between the ML-like
operational semantics and this formulation in Section[@. Since throw, M aborts
the current continuation and jumps to the corresponding control-delimiter, its
type can be any type. The variable « in these two operators is a free occurrence.

The variables x and « are bound by Ax.M and #,M, respectively, and
FV(M) denotes the set of free variables in M. As usual, we identify two terms
which differ in bound variables only. The term M[N/x] denotes the term M
substituted N for z. We also say that a term M is closed if FV (M) = {}.

Note that « is an ordinary variable, so we may abstract a like Aa.M. This
has practical benefit, since we often want to define functions with free tags, and
bind them in another function. Let us show an example in Scheme-like language.
We often want to write the following program:
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(define (foo x)
(callpc alpha ...) ...)

(define (goo y)
(catch alpha (foo y)))

In our calculus, such a program is not allowed (since our control operators have
static scope). However, we can represent the above program by abstracting the
variable alpha in foo. The resulting program is:

(define (foo x beta)
(callpc beta ...) ...)

(define (goo y)
(catch alpha (foo y alpha)))

By this technique, we can (partly) recover the expressiveness, which was lost by
changing the scope of delimiters from dynamic one to static one. However, not
all expressible programs with dynamic scope operators can be expressed in our
calculus. We think that it is a trade-off of theory and practice.

4 ML-Like Operational Semantics

In this section we give an operational semantics of our calculi in the style of
Felleisen et al []]. Note that this operational semantics may cause run-time type
errors, therefore its direct formalization (in a type safe way) is not possible. We
nevertheless state the operational semantics here to clarify our intented seman-
tics. Later we show that the equality in A3°™i¢ corresponds to this operational
semantics.

We first define values (denoted by V'), redexes (denoted by R), and evaluation
contexts (denoted by FE) as follows:

Vi=x|c| aM
R:=(Qax.M)V | 4,V | calldc,V | throw,V
E:=[]| EM | VE | calldc,F | throw, F | #,F

Then we have that, any closed term M is either a value, or there uniquely
exists a pair of a redex R and an evaluation context E such that M = E[R].

We have the following 1-step reduction rules where Ej is an evaluation con-
text which does not bind «.

E[(Ax.M)V] ~s1 E[M[V/z]]
E[#,V]~1 E[V]
E[#,Ep[calldc, V]| ~1 El#aEo[V (Au.dtyEo[ue])]]
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E[#,Ep[throw, V]| ~1 E[V]
Ey[calldc, V]~ error

Ep[throw, V] ~»; error

Since the decomposition of a term is unique, the above set of reduction rules
induces a deterministic evaluation strategy.

Run-time errors may happen for Apc even if a reduction begins with a closed
term; in the second and the fourth rules, the value V may be Ax.M and M may
contain free occurrences of «. For instance:

(#oAz.calldc,x)V ~ (Ax.calldc,z)V ~»1 calldc,V ~» error

On the contrary, no run-time errors occur in A3%™¢ since the value V in #,V
and throw,V must be either a variable or a constant.

5 Small-Step Reductions

We want to set up an equational theory to reason about the programs in \ag°mic
and Apc. In this respect the reduction step given in the previous section is too
big. This section gives finer reduction rules which are easier to study.

First we define a singular context F, as follows:

Es:=[]M | V[]| calldc,|] | throw,] ]

Next we define the notion of one-step reduction denoted by —1, which is
defined as the compatible closure of the following reduction rules.

We split the reduction rules into two groups. The first group of reduction
rules are as follows:

Ae. M)V —1 M[V/z] (1)
#oaM 1 M (if a ¢ FV(M)) 2)
#o#3 M —1 #, M/ 0] (3)

The first one is the usual call-by-value S-reduction. The second one means that
if there are no control operators with tag «, then the delimiter is useless. The
last one means that, if two delimiters are set in the same place, they can be
unified.

The second group of reduction rules are as follows:

#,(callde, V) —1 #,(V(Autt,ue)) (4)
#,(throw, V) —1 #,V (5)
E;[calldc,V] —1 calldc, (Ax.Eg[V (Ay.#ox(Az.Eglye]))]) (6)
#3(calldcyAx.M) —1 calldcy Az g M (if a#£P) (7)
E,[throw, V] —1 throw,V (8)
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In these reductions we assume x, ¥, z are fresh variables.

The first two rules express reductions with an empty partial continuation.
The third and fourth rules are one-step reductions for calldc and throw.

Although the righthand side of the third rule (Rule (6)) may look quite
complex, it is similar to Felleisen’s one-step reduction rule for first-class conti-
nuations. A crucial point of this reduction rule is that, in the righthand side, the
partial continuation object is delimited by a newly introduced delimiter #,, so
the occurrences of calldc, in E are bound by this new #,. If we do not have
a new delimiter in the reduct, we cannot simulate many interesting reductions
which were written with partial continuations of dynamic scope.

Let — be a reflexive, transitive closure of —1, and = be the least equivalence
relation which contains —.

Representing the F-like operator

The calldc operator does not discard the current continuation. But we can
define an operator for creating partial continuation objects, which discards the
current continuation. Let us define control as follows:

A
control,M = calldc,(Az.throw, Mx)

Then this operator has the following reduction in the ML-like operational se-
mantics as desired.

El#,Ep[control, V]| ~ E[#,V (Au.#qEplus])]

The control operator is closer to Felleisen’s F-operator and Danvy and
Filinski’s shift operator.

A Small Example

The following example was given by Danvy and Filinski [2]. In order to express
this example, we assume that 4+ and its reductions were added to our calculus.

1+ #,(10 + (Az.control, (Ak.k(k(z))))100)
— 1+ #,(10 + control, (\k.k(k(100))))
= 1+ #,(10 + calldc, (A\y.throw, (Ak.k(k(100)))y))
— 1+ #,(10 + (Ay.throw, (y(y(100)))) (Au.#,10 + u))
— 1+ #,throw, (Au.10 + w)((Au.10 + u)(100)))
— 1+ #,120
— 121
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A Note on Control Operators with Dynamic Scope

As we explained, our control operators have static scopes. If we would change
them to have dynamic scopes in Ap¢, we would have a non-terminating reduction
as follows.

Let P be Az.(#,(A\y.2)(2zw))z, and @ be Au.throw,P. Then, PQ has type
(C - A) — B under the type environment {z : (C' — A) — B, w : C}.
If the delimiter has dynamic scope, the reduction sequence from PQ does not
terminate as follows:

PQ — (#a((My.2)(Qu)))Q
— (#4((Ay.2)(throw,P)))Q
— (#4throw, P)Q
— (#.P)Q
— PQ
We do not have this reduction sequence with static scope operators, since we
must rename « in P before substituting @ for x in P.

PQ — (#5((\y.2)(Quw)))Q
— (#3((M\y.z)(throw, P)))@
— (#gthrow, P)Q
— (throw,P)Q
— throw, P

The term throw, P cannot be reduced any further.

6 Properties of our Calculus

This section gives properties of Aat™i¢ and Apc.
First of all, the reductions are closed under substitution.

Theorem 1. If M — M’ and N — N’, then M[N/x] - M'[N’/x].

This is obvious since our reduction rules are compatible with arbitrary con-
texts. Note that the calculus for the full continuations contains so called a compu-
tation rule which is not compatible with contexts. For instance CM — M (Az.Ax)
is only applicable for the top-level context where C is Felleisen’s control operator,
and A is the abort operator.

The subject reduction property expresses the type safety.

Theorem 2 (Subject Reduction Property). If ' - M : A and M — N,
then we have that '+ N : A and FV (M) C FV(N).
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Proof. We only verify the most complex reduction rule (6). Suppose that Ej
has type C, and its hole has type A. The lefthand-side term is typed as follows
(omitting the type environment for readability):

M : ((Unit — A) — B) — A
calldc M : A
Eglcalldc M| : C

Then, the righthand-side term is typed as follows:

y:Unit - A e:Unit
ye: A
E;[ye] : C
z:(Unit - C) = B Az.E;[ye] : Unit — C
z(Az.Eglye]) : B
#,2(A\z.E[ye]) : B
M :((Unit - A) > B)— A Ay.#ax(N2.Eglye]) : (Unit — A) — B
M(A\y.#q2x(Az.Egye])) : A
Es[M(My#,x(N\z.Eslye]))] : C
Az Es[M ( Ay #qox(Az.Es[ye]))] : (Unit - C) - B) = C
calldc,(Ax.Es[M (Ay.#o2(Az.Eqlye]))]) : C

We also have that the set of free variables are the same.
Other cases are proved easily. a
We then show that Ape and AgLo™i¢ are confluent by using Takahashi’s parallel
reduction method [19] in conjunction with Hardin’s interpretation method.

Theorem 3. The calculi \pc and NaE™ are confluent.

Proof. We first define a d-normal form d(M) of a term M as the term M
where the reduction (3) (unification of delimiters) is applied as many times as
possible, namely, contracting successive application of delimiters. Apparently,
for each term, its d-normal form is unique up to renaming of bound variables.

We then define the parallel reduction = on terms as follows:

—xr=uxz,and c=c.

~If M; = M! for i = 1,2, then Ae.M; = Az.M], MMy = MM},
calldc,M; = calldc,Mj, throw, M; = throw,M], and #,M; = #,M].

- I M= M, and V=V’ then A\e.M)V = M'[V'/x].

—If M= M and a & FV(M), then #, M = M'.

— IfV =V’ then #,calldc,V = #, V' (\u.#,ue).

— If V = V’/, then #,throw,V = #,V’.

- IV =V E;= FEl, then Fi[calldc,V] = calldc,(Az.EL[V'(Ay.#az(A
z.E[ye]))]).
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— If V = V’, then E;[throw,V] = throw,V’.
— If M = M’, then #gcalldc,Az.M = calldcy Az.#3 M .
— If M = M, then M = d(M").

Next, we define the term M™* for each term M as follows. In the following
definition, if more than one clause match the term M, then we always take the
first matching clause as the definition of M*.

=z,and ¢* =c

()\ )* = \v.M*,

— (e MV = dOVV* )

—( 5[ca11dca D* = d(calldc Az EX[V*(Ay.#o2(Az. Ef[ye]))]).
( S[throan])* = throw,V*.

(calldca )= CalldcaM* and (throw,M)* = throw,M*.
— # M) =M*if a g FV(M).

— (#atpgM)" = (#BM) [a/B].

— (#qcallde,V)* = #,(V*(Au.ue)).

— (#athrow,V)* = d(#, V™).

— (#gcalldcoAz.M)* = d(calldc Az .#5M™).

— (#aM)" = d(#,M").

Then by case-analysis, we have that if M = N then N = M™*, which im-
plies the diamond property of =. In this proof, the only problematic case is
#,#gcalldcoA\x.M = #,calldc,Az.#3M, but it can be probed by some calcu-
lation.

We also have, M — N implies M = N and then — is confluent.

Note that these arguments apply to both A3%°™i¢ and Apc. a

Subject reduction and confluence are most basic properties of the typed cal-
culi, but by restricting the tag types to be atomic, we have a few more desirable
properties.

Theorem 4 (Normal Form Property). Let M be a closed normal term in
atomic - Then M is either a constant or in the form of A\x.M’.

Proof. We say a term M is half-closed if FV(M) = {z1,---,z,} and the
type of x; is = A; for 1 < i < n. We can show by induction that, a half-closed
normal term M is in the following forms:

z;, ¢, Ax.M, calldc,V, or throw,V

The point here is that the type —A is not defined as A D1, in which case z;c
may be a half-closed normal term.
It follows that, if M is a closed normal term, it is a constant or a A-abstract.
O
The normal form property together with the subject reduction property en-
sures the type soundness for A3tomic.



500 Y. Kameyama

Unfortunately, the normal form property does not hold for Apc; there is a
closed normal term of the form #,\z.M in Apc. To obtain the property in Apg,
we should add reduction rules such as (#,V1)V2 —1 #, V] where V{ is obtained
by appropriate substitution. However this single reduction rule does not sulffice,
and we should add more and more. We believe that, even under the restriction
of \alomic we can express many programming examples, since we usually do not
want to place delimiters for function types.

We finally show that our small step reductions do characterize the operational
semantics given earlier.

Theorem 5. Let M and N be closed terms. If M ~» N, then M = N in \akomic,

Proof. The theorem is proved by induction on the length of evaluation. The
base case is trivial. We list here only mojor cases for the induction step.

Case-1. E[(Ax.M)V] ~ E[M[V/z]].

The same reduction is included in —1.

Case-2. E[#,V] ~ E[V] where a & FV(V).

Since we restricted the type of a be of the form =K where K is atomic, the
term V must be a constant of that type. We have #,¢ —1 ¢ in Agomic,

Case-3. Ef#,Ep[calldc, V]| ~ El#oEo[V (Au.#,Ep[ue])]].

We use one more induction on the structure of Fy to prove this case.

Case-3-1. If Ey = [ ] then, E[#,calldc,V] —1 E[#,V (A u.#,ue)], which is
E[#,E'[V (Au.#yue)]].

Case-3-2. If Ey = F[E;] where F' is an evaluation context and Ej is a singular
context, then we have

#,F[Es[calldc,V]] =1 #oF[calldca Az Es[V (Ay.#a2(Az. Esye]))]]
= #, F[(Az.E [V (Ay#ox(Az.Eqlye]))]) (Au.ttq Flue])]
(by induction hypothesis)
— # F[ SV Oy #a (Au#gF [ue]) (Az.Es[ye]))]]
= #o F[E[V(Ay#o#s F'[Es[ye]])]]
= # FIE [V (Ay#aF[Eg[ye]])]]
= # EO[V()\u# Eplue))]

where F’ is the result of substituting 3 for free occurrences of v in F to avoid
conflict of bound variables.

Case-3-3. If Ey = F[#g][ ]] where F is an evaluation context, then we have
(assuming V' is Az. M)

El#,F[#gcalldcoAz. M]] =1 E#,F[calldc Az #5M]]
= E#,Fl(Ax#tgM)(\u#,Flue])]]
(by induction hypothesis)
— E#,F#gM[\ut, Flue]/x]]]
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On the other hand, we have

El#oFl#g(Ax.M)(Autto Fl#gue])]] =1 E[#o Fl#s(Az.M)(Aud,Flus])]]
—1 El#o Fl#sM [ u.#,Flue]/x]]]

So we have the equality. When V is not in the form Ax.M, namely, it is a variable
or a constant, then the proof is easier since there are no free occurrences of the
tag [.

Case-4. E[#, Eo[throw,V]] ~ E[V]

Since A3°™i¢ does not allow A-abstraction for the above V', V must be either
a variable or a constant. We then prove this case similarly to the Case-3. If Ey is
composed by a delimiter, namely, Ey = #g[ |, then we use the fact that V' does
not contain 3 free. We also have E[#,E'[throw,V]] — E[#,V], and #,V —; V.
Other cases are easy. O

By this theorem and the confluence of A3t°™i¢ we have the following corollary,
which means our reduction rules really reflect the intended operational seman-
tics.

Corollary 1 (Correspondence of ~» and — in M\3{°™€). Let M be a closed
term and V be a value. If M ~ V| then M — V in A3%emic,

7 A Logical View

The Curry-Howard isomorphism relates typed lambda calculi and intuitionistic
logical systems. As Griffin and other researchers showed, the isomorphism can
be extended to the relationship between typed lambda calculi with sequential
control operators and classical logic [10]. In this section, we show that A\3%°mic
and Apc also correspond to classical logic.

)\Sgom‘c and A\p¢ are Classical Logic

We assume that L is included as an atomic type in A3°™€. (If it is not the case,
choose any atomic type as L, since we do not use the L-elimination rule.) Let
¢ be a map which simply discards the lefthand-side of colon from a judgement
M : A, namely, ¢(M : A) = A. A type in A\3L°mi¢ and \pe can be regarded as
a formula in implicational logic where — is interpreted by implication, —A is
interpreted by A D1, and Unit is a provable formula (say, L—_1). The map ¢
naturally extends to type environments.

Theorem 6 (Isomorphism between \i{°™€ /). and classical logic). Let
I be a type environment, M be a preterm, and A be a type (a formula). Then
'+ M : A holds in Na&™i if and only if ¢(I') = A holds in a classical implica-
tional logic. The same thing holds for Apc.
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Proof (only-if part). We only have to verify the following three typing rules
are preserved through ¢.

(1) For the case of the delimiter, we have to infer I - B from I'U{-B} - B.
(ii) For the case of calldc, we have to infer I'U {-B} F A from I' F ((Unit —
A) = B) — A (Unit is some provable formula). (iii) For the case of throw, we
have to infer I'U{-B} F C from I' F B.

All of them can be proved in classical logic.

Proof (if part).

We only have to show the classical reasoning can be simulated by A&°™i¢. To
show this, we shall prove that, for any type A and B, there exists a closed term
of type ((A — B) — A) — A. This is shown by induction on the type A.

For the base case (A is an atomic type K), the following figure shows that
((K — B) = K) — K is inhabited.

{z:K}Frz: K
{z:K,a:-K}}F throw,z : B
{y:(K—-B)—=K}ty:(K—B)—> K {a:-K}F Ax.throw,z: K — B
{y: (K = B) —» K,a: ~(K)} F y(Az.throw,z) : K
{y: (K — B) = K} F #,y(Ax.throw,z) : K
{} F My #y(Az.throwaz) : (K — B) > K) - K

For the induction step, let A be C — D. By induction hypothesis, we have a
closed term M of type ((D — B) — D) — D. Then we can easily show that a
closed term Aux.M (Ay.u(Az.y(zx))z) has type (A — B) — A) — A. Hence we
can prove all the instances of Peirce’s law in \atomic,

The proof is even easier for Apc, since we can use an arbitrary type in place
of K in the figure above. ad

Note that we used the throw-operator only, which means that Aal°™i¢ (and
Apc) without the calldc-operator is still a classical calculus. In fact, Sato and the
present author developed calculi for the catch/throw mechanism [1814] which
correspond to classical propositional logic. It is easy to see that the delimiter
and the throw-operator can be understood as the catch and the throw operators,
and such a subcalculus of A3°™i¢ (or Apc) constitutes a confluent subcalculus of
the classical catch/throw calculi in [I8][14].

Note also that our reduction rules can be thought as proof reductions in
classical logic. We already gave the subject reduction for the reduction (6), and
if we forget the terms, we obtain a proof reduction. The resulting proof-reduction
is (by nature) similar to Griffin’s reduction rules for Felleisen’s control operator.

The calldc-operator is not Classical

On the other hand, if we eliminate the throw-operator from A3°™¢ (or Ap¢), the
resulting calculus becomes strictly weaker in the logical sense.

Suppose {} - M : A is inferred in Apc where M does not contain the throw-
operator. We shall show that A is provable in minimal logic. To simplify the
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matter, we assume M uses only one tag variable «. Suppose M contains k
subterms of the form calldc,N;, and the type of N; is ((Unit — A4;) — B) —
A;. We put P, = (((Unit — A4;) — B) — A;) — A,. The introduction rule
of calldc is (when mapped by ¢) provable if we assume each P;. Hence we
can regard the delimiter introduction rule (through ¢) as eliminating Py, - - -, Py
from the assumption list. In other words, our goal is to prove I' + B from
I',Py,---, P, F B. But the formula (/\f:1 P; — B) — B is provable in minimal
logic (which can be shown by induction on k).

From this fact, one may think that the calldc-operator may be expressible
by standard combinators such as S and K, but we believe this is not the case. The
proof term of the above theorem has the same type as our control operators, but
it behaves quite differently (the latter term is not interesting in computational
aspects).

8 Conclusion

Partial continuations were proposed by Felleisen and others and there are many
researches on partial continuations since then. Compared to existing calculi for
partial continuations, the characteristic feature of our approach is that our cal-
culus is based on a type-theoretic framework. We showed that our calculus (i)
enjoys the subject reduction property (ii) is confluent, (iii) does admit the stan-
dard Curry-Howard isomorphism (by which it corresponds to classical logic).
Hieb et al’s subcontinuation also has static scope, but their approach also lacks
the type-safety property (which means that it sometimes generates uncaught
partial-continuation object). Our approach can be thought as a refinement of (a
typed version of ) Hieb et al’s subcontinuations, and we believe that our calculus
can be a basis of syntactic, type-theoretic analysis for partial continuations and
other variations of control operators.

Since we can abstract tags, we believe that many examples by Felleisen’s one
and Danvy and Filinski’s one can be written in our calculus. In fact we already
worked in tree-traversal example by Felleisen [6].

Future Work. So far, several research topics are left for future work. The
first target is the strong normalization (SN) of Aa°™i¢. A common tool to show
it is a type-preserving CPS-translation. We gave a CPS-translation for \gtomic
in our draft, but it does not preserve typing, so the SN of A3°™i¢ is an open
problem. Other directions are expressiveness and application. In this paper, we
confined ourselves to sequential programs, but as many authors pointed out,
partial continuations are a useful tool for giving control over parallel/concurrent
programs. Also, there should be applications for formalizing mobile computing.
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